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A balancing game is a perfect information two-person game. Given a set 
V C R&, in the zth round Player I picks a vector UC E V, and then Player II picks 
C~ = j-1 or -1. Player II tries to minimize sup {\I Z$+ E& Ii : fi = 0, 1, 2,...]. 
In this paper we generalize this game and give necessary and sufhcient conditions 
for the existence of a wimCng strategy for Player I and Player II in the generalized 
game. Later we give upper and lower botmds to the value of the original game; 
the bounds in many cases are equal. Further we present simple strategies for 
both players. 

Recently Joel Spencer has proposed the following two-person game [l]- 
Given a finite set I’ C R* and a point z E Ra, Player I selects a vector n{ E V’? 
and then Player II selects Q = +1 or -1 in the &h round. There are an 
infinite number of rounds. Player II tries to minimize 

(Here [I {[ denotes the max-norm in Rd. The empty sum equals the zero 
vector.) Spencer put z = 0, his choice for V was also special. This game is a 
perfect information, zero-sum game. We shall see later that this game has a 
value, Player II has an optimal pure strategy, and Player I has an e-optimal 
pure strategy. We denote the value by f(.z, V) or f(z). 

In [l], J. Spencer and R. Graham gave a strategy for Player II yielding an 
upper bound to j(0, V). Jeff Lagarias determined the exact value of j(@, V) 
in the case when V consists of all vectors with 0, 1 or -1, 0, +1 corn- 
ponents brivate communication]. He, in fact, gave an optimal strategy for 
Player I. Independently, Z. Fnredi also determined the exact vame of f(8, V) 
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when V’ is the set of all vectors with 0, 1 components [private canm~nica- 
tion]. 

In this paper we generalize this game, and we prove that the generalized 
game has pure strategies for both players. Nevertheless, it is hard to find 
these strategies exphcitly, and that is why we are to give upper and lower 
bounds to f(.z, V). To find the upper bound is relatively easy. We present two 
proofs for the lower bound. One of them gives a simple strategy for Player I. 
The other one follows from a lemma on the so-called V-closed sets. Sets of 
this type have an important role throughout the paper. 

It is interesting that, in fact, the most important case is d = 2. That is why 
the proofs are of geometrical type. 

2 

Suppose V C Rd is a nonempty set. 

DEFINITION. A set T G Rd is said to be V-closed if t E T and u E Vimplies 
t+veTort-uET. 

We denote the set of V-closed sets by q(V). 

DEFINITION. The following two-person game is the game [V, K, z]: 
Suppose KC Rd, z E Rd. In the ith round, Player I selects a vector vi E V, and 
then Player II selects Ed = 1 or - 1. There are an infinite number of rounds. 
Player II wins, if for each n = 0, 1, 2 ,.... 

and loses otherwise. 
Now, we are able to present our first theorems. 

THEOREM 1. Player I Izas a winning strategy in the game [V, K, z] zy and 
only if there is no T E %7(V) such thut .z E T c K. 

THEOREM 2. Player II has a winning strategy in the game [V, K, z] if and 
only ij there is a T E q(V) such that z E T !Z K. 

These theorems do not imply each other because the game is infinite. 
Further, they reduce the question “who wins” to the existence of a set T 
with the prescribed property. Once this set is found an explicit winning 
strategy is given for Player II. However, if such set does not exist, it is difficult 
to determine the strategy for Player I explicitly, though it exists and it is 
well defined. That is why one is tempted to find conditions assuring the non- 
existence of a set T with the prescribed property. 
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Now, with these theorems, we are able to prove the existence of the value 
f(z, V) of the original game. 

COROLLARY 1. Suppose V is$nite and nonempty. Then there is a number 
f (2) with the property that in the original game Player II has a strategy as- 
suring he never loses more than f(z), und further, to any E > 0 Player 1 has a 
strategy with which he wins no less than f (2) - C. 

3 

In this section we prove Theorems 1 and 2 and Corollary 1. The following 
simple facts about V-closed sets are useful. 

(i) The union of any collection of V-closed sets is V-closed. 

(ii) %‘(V) = %?(V’), where one gets V’ from V by multiplying some 
vectors from V by -1. 

(iii) If T E G?(V), then L(T) E %?(L( V)) for any linear transformation 
L: Rd+R@. 

(iv) If T E ‘k?(V) and ,4 is a subspace of Rd and a E Rd, then [a + A] CI 
TE%qA. f-7 v). 

(v) If T E q(V), then 40s T E %Y( V), too. 
(vi) The set 

is klosed. 

WY = iv& v: W C V, W is finite 
! 

(vii) P(V) = P(V’) -j- a with a suitable a E Ra [and with the set V 
defined in (ii)]. 

(viii) If V is finite, then P(V) is centrally symmetric with respect to the 
point i xvev v E Rd. 

Proof of Theorem 2. First, let us suppose that there is a set T E G??(V) 
with z E T G K. Then Player II has a strategy assuring z +- z& E# G T for 
n = 0, 1, 2,.. . . Indeed, this is true for n = 0, and if it is true for n - 1, i.e., 
t = z + x:Zi 4 E T, then for any un E V Player D may select Go = 1 if 
t +- Do E T or E% = - 1 if t - 9 E T. Because T G K this strategy is a. winning 
strategy for Player I. 

Suppose now, that Player II has a winning strategy. Put 
T = {i E Ra : Player II has a winning strategy in the game [V, K, t]j. 
Clearly z E T c K’. We claim that T is V-closed. Assume, on the contrary9 

that there is a t G T and v E V such that neither t + u nor t - v belong to T. 
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But then Player II could not have a winning strategy in the game [V, K, t]. 
A contradiction. 

Proof of Theorem I. If Player I has a winning strategy, then Player II 
cannot have a winning strategy, i.e., there cannot be a set TE 9?(V) with 
ZGTCK. 

To complete the proof of Theorem 1 we need the following map Hz if 
S G Rd, then 

Clearly H(S) !Z S. Let H1(S) = H(S), Hz(S) = H(H(S)),.. ., and H”(S) = 
fi& Hi(S). Define Ho(S) = S and H-i(S) = Rd. Clearly 

and 
H-l(S) 2 Ho(S) 2 HI(S) 2 Hz(S) 2 ..* 2 Ha(S) 

Ha(S) E Y(V). 

Suppose, now, that there is no set T E ‘Z(V) with .z E T c K. This means 
that z # Ha(K), i.e., there is an index rz such that z E H+l(K) but z 6 Hn(K). 
But, then, there is a v = v1 E V with z + v q! Hn-l(K) and z - v $ H*-l(.K). 
Now, Player l’s strategy runs like this: On the m-st round, he selects v1 E V. 
For any choice of Player II z + qvr $ Hn+Y), so there is an index q < 
n - 1 such that z + elvl E Hfil-l(K) but z + elvl $ H@$Y). Player I, on the 
second round, selects v2 E V such that for Q = 1 and - 1 

2 + elvl + 6 v2 $ HyK). 2 

And so on. This strategy (in at most n steps) will clearly yield to the point 
,z + v1 + *a* + ~JJ* not in K. And this is what we wanted to prove. 

Remarks. Clearly, this strategy is the best for Player I in the sense that, 
with it, he can win in the minimal possible number of rounds. 

In view of (i), for every S c Rd there is a set M c S, ME g(V) with the 
property that for any T G S, T E V(V) T c M holds true, namely, 

M = u {T: TCS, Tcv(V)}. 

It is easy to see that we have given a new presentation for M 

M = W’(S). 

We remark further that the map H can be written in the following form: 

H(S) = S n n ((S + v) u (S - v)). 
‘VSV 



ON A CLASS OF BALANCING GAMES 119 

Proof of Corollary I. Let us denote by B the closed unit ball of the max 
norm in Rd and consider the game [V, LB, z], where A is a positive real 
number. Clearly, 

sup {A : Player I wins in the game [K kB, z]j 

= inf {A : Player II wins in the game [V, AB, z$-. 

Denote this number by j(z). f(z) is finite because, for finite V, P(V) is a 
bounded set in Ra and for sufficiently great A, z -k P(V) G AB. 

Now we claim that, in the game [V, j(z) 3, z], Player II has a winning 
strategy. Suppose, on the contrary, that Player I has. Then, with the strategy 
of Theorem 1, he wins in at most z rounds, and we conclude that after 
k (< FZ) rounds the game is won in the point z + J&X q+ @j(z) .B. But there 
is only a finite number of such points and, with a suitable c > 0, none of these 
points will belong to (j(z) + E) B; i.e., Player I has a winning strategy for 
the game [I’, (j(z) + E) B, z], and this is impossible. 

In this way we see that Player II has a winning strategy for the game 
[V, f(z) B, z]. Following the same strategy in the original game he will never 
lose more than f(z). 

The second part of Corollary 1 is now trivial. 

The theorems we have proven so far do not provide us with information 
on the value of j(z). &n- next aim is to give upper and lower bounds to f(z). 

Let diam S denote the diameter of S c Rd, i.e. 

To state our theorems simply we need the following assumption: 

(*) VC Rd is finite, nonempty, and does not contain collinear vectors 

THEOREM 3, If V is$nite and nonempty, then 

THEOREM 4. Under assumption (*) 

.I%‘, J9 2 max I (11 z II , + diam P(V)). 

These theorems and (viii) yield to 
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COROLLARY 2. If+z,,gv u E P(V) and (*) hoUs, then 

f(6), V) = + diam P(V). 

We need the following lemma: 

LEMMA. If (*) holds true and T c Ra, T E 9?(V), and T is mvtanp~y a& 
bounded, then there is a point a E R& such that 

a + P(V) L clos conv T. 

This lemma simply means that the “smallest” nonempty and bounded set 
in V(V) is just P( V). Moreover, if Vhappens to consist of linearly independent 
vectors, then any V-closed, bounded, and nonempty set obviously contains 
P(V). And what the lemma says is that the vectors from V behave as if they 
were linearly independent; i.e., nothing can be gained by using their depen- 
dences. The author thinks this is the underlying fact that makes the proofs of 
Theorem 4 work. 

We show that while the proof of Theorem 3 is very easy the proof of 
Theorem 4 is not so simple. The author strongly believes that to prove a lower 
bound to f(z, V) an appeal to convexity cannot be avoided. In connection 
with this we mention that the Lemma does not remain true if we put clos T 
instead of clos conv Tin the statement. 

Further, we remark that, by the lemma, one is able to describe the set 
conv {z E Rd : j(z) < CX] for any cx > 0. Unfortunately, this result cannot be 
used determine the sets {z E Ra : f(z) < o$. 

5 

Proof of Theorem 3. Let t,, E P(V) be such that 

and put T z z - t0 + P(V). Then z E T and T is V-closed. It follows from 
Theorem 2 that Player 11 has a strategy assuring z + x& QZJ~ E T for fi = 
0, I, 2 ,.... But TC supfET /[It 11 * B, and 

sup 11 t 11 = min max 11 2 - tl + & 11, 
tET tlwn ww9 

i.e., 

First Proof of Theorem 4. It is clear that f (z) > [I z 11 . Since B is convex 
and centrally symmetric with respect to the origin, diam (f(z) * B) = 2j(z). 
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Now, in view of Theorem I it is enough to prove that there is no set T E %( P”) 
with diam T < diam P(V) (except for, of course, the empty set). But this 
fact is an easy consequence of the lemma. 

Before proving the lemma we need a proposition. We write X(U) resp. y(u) 
for the first resp. second component of u E P. 

PROPOSITION. Suppose a1 , uz ,..., @k E l?, x(& > 0 (i = l,..., k), zFzl 
X(Q) = ,5, and the slopes of the vectors Q~ are strictly increasing. Write D for 
the convex hull of the two halflines e1 = {(O, y): y > 01 and ez = {(h, y) : 
y 2 xFz1 y(a6)] and the points ~.r , a1 + Q , a1 + uz + a3 ,..., a1 + us + *.. 
+ a7,$ . 

Then for any set of numbers a3 E [O, 1] (i = 1,2,..., k) we have 

ProoJ Assume, on the contrary, that there are ai E [O, 1] (i = l,..., k) 
such that xfwl acas $ D, and put 1= {i : 1 < i G k, az > 01. Clearly I cannot 
be the empty set. Let 1 = {i1 , iz ,..., iJ with & < i2 < .‘. < is . We may 
suppose that x:-1 adjffi3 E D for m = 1,2,..., s - 1. This means that the 
polygonal path through the points 0, aclafl, ailail + cq2a+..., cxilazl + -.. + 
ad3aGs meets the boundary of D in a pomt b = aglail + *.. + ~~8~za~~~l + 
Dais with 0 < A < 1. On the other hand, 0 < x(b) < h and so b has to be on 
the polygonal path through the points 6, aI , ul + a2 ,..., ul + a.- + ab ; i.e., 
b = aI + az + ... + azTl + paz with 0 < p < 1. But because x;Li acf 
aij E D, zIsl asiai $ D, the slope of ags is less the slope of az, and then 
j3 < 1. Now, from the two representations of b we conclude that 

where 0 < & < 1 and ps # 0. But this is impossible because it implies &at 

Proof of the Lemma. In view of the assumption (*) the case in which 
d = 1 is trivial so we begin with d = 2 (see Fig. 1). First we choose a support 
line e0 to clos conv T in such a way that e6 and clos conv T have only one 
point, say z0 , in common. Now put the origin of a coordinate system into 
z0 , and let the y axis be e,, , and suppose that T is on the right hahplane. We 
may suppose that X(U) > 0 for all a G V (the choice of .zO and e0 implies that 
X(V) # O), and let V = {vl ,..., VJ be indexed in such a way that their slopes 
increase. Let e(a) be the “lower” support line to conv T7 parallel with v G V* 
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FIG. 1. Illustration to the lemma. The heavy line is the boundary of D1 . 

Then (iv) implies that e(uJ 0 clos conv T is a line segment, parallel to q and 
at least as long as vi . Going a round on the “lower” boundary of clos conv T 
from the origin we denote the endpoints of these line segments by L+ , & , a2 , 
b s ,..., ak , bk ; i.e., CQ (bi - UJ = vi with a suitable 0 < LX~ < 1 for i = 1, 
2 ,..., k (bi = q-1 may happen). Applying the proposition to the vectors 
al, bl - al , a2 - b, b2 - a2 ,..., ak - bkel, bk - ak and to the numbers 
0, E~CQ , 0, eza2 , 0 ,..., 0, ckc+ (with ci = 0 or 1) we get that gzl QV~ E Dl , 
where Dl is the convex hull of the two halflines {(O, y) : y > 01 and {es1 
X(Q), y): y > &Y(Q)} and the points a1 , bl , a2 , bs ,..., Us, bk . Since, in 
view of the assumption (*), P(V) = {szl ENVY : ed = 0 or l} we have shown 
that P(V) L Dl . In a similar way, one can prove that P(V) c Dz , where Dz is 
the convex hull of two halflines and certain well-defined points from the 
“upper” boundary of clos conv T. Clearly, Dl n D2 C clos conv T. 

In this way, we have proven a bit more than the lemma says. Namely, if 
e,, , ,z,-, , and the directions in V are chosen as above, then 

z,, + P(V) C clos conv T. 

This is what one needs to complete the proof in the case in which d > 2- 
For d > 2 one supposes the lemma is not true (in the above form); i.e., 
choosing a supporting hyperplane e0 to clos conv T with outer normal n,, in 
such a way that e0 n clos conv T = {q,} E Ra, there is a point z1 E z,-, + P(V) 
not in clos conv T. (It is supposed that the vectors from V all satisfy <rz,, , v> 
> 0), Then z0 and clos conv T can be strictly separated by a hyperplane e1 
with normal q . We write v for the projection from Ra onto the subspace 
spanned by n0 and rzl . It is easy to show that e1 can be chosen so that rr( V) do 
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not contain collinear vectors. Now, in the two dimensional subspace spanned 
by n0 and rzl 

?T(zJ $77(clos corlv T), 

but g(q) E 7r(z0) + 7@(V)) = I + P(v( I’)) and n(clos conv 7) = clos 
conv r(T), in contradiction to what we proved for d = 2. 

We present another proof of Theorem 4. This proof gives a direct strategy 
for player I 

Second Proqf of Theorem 4. As before, f(z) > I\ z 11 is trivial, and we 
begin with the proof off(z) > $ diam p(V) for d = 2. (See Fig. 2.) 

FIG. 2. Uustration to the strategy for Player I. 

Without loss of generality we may suppose that 2h = diam P(V) = xgsv 
1 X(U)/ = xeEp X(8) (multiplying some vectors from V by - 1, if necessary). 
Let VI , vt ,..., I& , the vectors in V with Ox # 0 (i = l,..., /c), be indexed in 
such a way that their slopes decrease. Let v0 be defined by ~(0~) = -h, 
y(v,,) = 0, and put vv = w% = z + & quS . Now Player I’s strategy runs 
like this : He selects ZQ for the (n + 1)th round if 

Note that this strategy depends only on the first component of w, and is not 
defined for x(w) < X(Q) = --h and for x(w) 2 J& X(VJ = ,!2. Now we claim 
that if -h < X(KJ,J < h for all n = 0, 1,2,..., then y(+~~) tends to infinity. It 
is clear that if this proposition holds true then we are through in the case 
in which d = 2. 

The polygonal path through the points vO, q, + q ~ vS + vX + nS ,...~ 
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RI + 01 -I- -.* + vfi is a function Y(X) * F(X) is defined on [--A, ,$) and is con- 
cave. Let the level of HJ with X(W) E [-A, A) be defined by 

or less formally, A(w) is the distance through which one should slide the graph 
of v upwards so that it contain the point r~. In these terms, Player I’s strategy 
is to select a vector which is tangent to the function y(x) + A(w) at the point 
VV. A(JQ~) is nondecreasing for v is concave. We claim that it tends to infinity. 
Since x(!+~) = x(z) -t- x; ~~x(vJ G [-A, A) for n = 0, I,..., there are an 
infinite number of indices m with E~ = + I and E~+~ = -1. For such an 
index V~ = vi and vm+l = V~ with i <j (here i and j depend on m). Clearly, 
there is a tangent line to the function v(x) + A(Jv~-J at the point wm-l which 
is parallel with vi . Now p(x) + A(MJ& is concave, and that is why A(M+& - 
A(w& is at least as large as the distance through which one should slide this 
tangent line upwards so that it contain KJ%+~ . This distance depends only on 
i and j and is positive for each i, j (i < j). But there is only a finite number of 
such distances, and so there is a minimal among them. This proves that A 
tends to infinity. Now v(x) is bounded so ~(MJ%) has got to tend to infinity. 

We have the case in which d > 2 left. One may suppose without loss of 
generality that diam p(V) = xwEV x(v), where X(U) is the first component of 
a G Rd. Let e1 E Rd be the vector with x(q) = I and zeros in the other com- 
ponents, and let e E Rd be such that e and e1 are not collinear. Let v denote 
the orthogonal projection of Rd onto the two-dimensional subspace spanned 
by e and e1 . Then it is possible to choose e E Rd in such a way that r(V) does 
not contain collinear vectors, except possibly for those with X(D) = 0. 

Now we simply project “the game” from Rd to the subspace spanned by e 
and e1 . The above strategy in this subspace will do for Rd ES well. \’ 

Now we clearly have the following result: 

COROLLARY 3. If the assumption (*) hoIds and the upper and lower bounds 
of Theorems 3 and 4 agree for z = 0, then the strategies given in the proofs are 
optimal for both players in the game starting with z = 8. 

Thus in this case the strategy for Player I given in the second proof of 
Theorem 4 is not only e-optimal but optimal as well. 

6 

Remarks. (1) In the proofs of Corollary 1 Theorems 3 and 4 we used only 
the following properties of B : B is convex, centrally symmetric with respect 
to the origin, and 0 E int B. Because these properties are true for the unit 
ball of any norm, Corollary 1, and Theorems 3 and 4 are also true in case of 
any norm of Rd. 
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We mention further that Theorems 1 and 2 also remain true if we replace 
Ra with any Abelian group. 

(2) It is an interesting and useful consequence of the lemma that if the 
assumption (*) holds true and T is V-closed and u E R’, then we have for 
d(~, T), the width of Tin the direction U, that d(% T) 2 zWcv I<% v)] . 

Let V1 resp. VZ be the set of all vectors with 0, 1 resp. - 1, Q, -k 1 compo- 
nents. V’% does not satisfy the assumption (*) because v E VZ implies that 
-Q G VZ . But Vi = {U E VZ : the first nonzero component of v equals +-1) 
clearly satisfies (*), and the game is the same with Vi as with V$ . Now it is 
easy to show that the hypotheses of Corollaries 2 and 3 are satisfied for VI 
and Vi . Then we have explicit optimal strategies for both players (in both 
games) assuring 

f(O, Vl) = 2a-2 for d > 2 
and 

j-(0, Vz) = f(0, Vi) = *(3d-l + 1) fordal. 

(3) If we drop the condition of noncollinearity from the assumption (*) 
we can prove similar results. Trying to carry out the proofs of Theorem 4 for 
this case the following question arises. Suppose u g Ra is a unit vector in the 
Euclidean norm and V = {&v : A1 > AZ > .-+ > & > O}. What is, then, 

W-7 ==inf{diamT: TEG?(V)]? 

Clearly, 8(V) = A1 if k = 1, 8(V) = A1 + AZ if k = 2, The author could only 
suggest the formula for 8(V) in the general case. This formula seems to be 
rather complicated. However, it is easy to give a simple estimation: 

4+Az<w)<2& if k > 2. 

Further, it can be shown easily that there is a set T E e(V) with $ E T c 
{ho : A > 01 and diam T = 8(V). Writing TO(V) for the union of all sets of 
this type the following theorem can be proven: 

THEOREM. Suppose V C Ra isfinite cmd notiempty. The equivalence relation 
30 be col&neaf spIitx V into the disjoint union of VI ,..., Vk . The v~ctorsf~om 
Vs may be supposed to have the same direction. Put 
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We mention further that this theorem remains true (in the obvious form) 
if we replace the assumption “V is finite” by 

(4) It is possible to generalize the lemma in the following way. Put 

R(V) = 1 x 0!(o) 2x W C V finite, CX(ZI) = 0, 1, 2 ,... 1 
?EW 

THEOREM. Suppose V C Rd is nonempty and does not contain collinear 
vectors, and u E Rd is such that <u, v) 2 0 for each v E V. Let T E 9?(V) and e0 
be a supporting hyperplane to clos conv T with normal u such that e0 n clos 
conv T # % . Put V’ = V n O+ (~10s conv T), V” = V\V’. Then there is a 
point z,, E e,, n clos conv i” such that 

z. + R( V’) + R( V”) C clos conv T, 

where 0+ (~10s COIN T) denotes the recession cone for ~10s conv T (see [2]). 
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