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The existence of a function n(e) (e>0)  is established such that given a finite set V i n  the 
plane there exists a subset W ~  V, [WI<n(E) with the property that for any vE V ~ W  there are 
two points wa, wzE W such that the angle <~(wxvw2)>n-e. 

1. Results 

The Erd6s--Szekeres theorem [5] mentioned in the title says that if V c R  ~ 
and [V[ =>2", then V contains three points a, b, cE V such that <~ (abc) > n(l - (l/n)). 
Here ~(abc) denotes the angle at vertex b of  the triangle abe, thus 0 <- <~(abc)<=rc. 

The aim of  this paper is to extend this theorem in the following way. 

Theorem 1. For any e > 0  there exists n(e) such that every finite set V c R  2 con- 
tains a subset Wc= V, IWI-_<n(~) with the property that for any vEV',,,W there are 
points wl, w2E W such that <~(wlvw~)>Tr-e. 

In other words, every finite set V c R  2 contains a "small" subset W from 
which any point of  V',,,W is seen at a "large" angle. 

We will show that one can take 

n(e) = (~_) to'u) 

where cx and c2 are contants. On the other hand n ( e ) ~ 2  cl~ since one can construct 
a set V c R  2 with IVI--2 c/~ such that ,~(abc)<-rr-e for every a, b, cE V (see [6]). 

The proof-method of  Theorem 1 works in R a (d>2)  as well giving 

Theorem 2. For any e > 0  and d>=2 there exists a constant n(d, e) such that every 
finite set V c R  a contains a subset WC= V, IW[<=n(d, e) with the property that for 
any vE V'x,,W there are points wx, w2E W with <~(wtvw2)>n-e. 

Let no(d, e) be the smallest number n(d, e) for which Theorem 2 holds. When 
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e<  1, say, we obtain from the proof  that 

2(c/~)~-l <= no(d, e) <_ ( c~J~_) (c'/8)d-' 

where for the lower bound see [1] or [6]. 
In the proof  of Theorem 1 and 2 we may assume that e >0  is small because 

if the theorem holds with some e >0  then it holds with every e'->e: one can take 
simply n(d, e ' )=n(d,  ~). So the above estimation for n0(d, e) holds for small e. 
When e=Tr/2, one can do better. More precisely, let e ~ a r c  cos (I/d). Then a 
stronger version of  Theorem 2 is true, which was also proved by J~.nos Pach inde- 
pendently [7]. 

Theorem 3. For every d=2 ,  3 . . . .  there exists a number n(d) such that the follow- 
ing holds. Every finite set V c R  d contains a subset We=V, [Wl<-n(d) such that 
W~ boundary (conv V) and for any point vE(conv V ) \  W there are points Wl, w2E 
E W with cos <~(w~vw2) <- - lid. 

From theproofo f th i s  theorem weget that for arc cos (1/d)<e<2n, no(d, e) <- 
<--_2d~a-1).d a<a+~). Erd6s and Fiiredi [4] gave an example V=R a with IVl>-_c~ 
points such that <~(abc)<~ for every a, b, cEV, where ~>n/3 is fixed and c , > l .  
This shows that for arc cos (1/d)<e<2n, ca~_8~no(d, e). 

The reason for the bound arc cos (1/d)<=e in Theorem 3 is the following 
fact which is certainly well-known. If  the point a belongs to a d-dimensional sim- 
plex, then the simplex has two vertices b and c with <~(bac)>=n-arccos (l/d). 

I mention that our theorems hold for compact sets V = R  a (instead of finite). 
This can be seen using a simple continuity argument. 

In [5] Erd6s and Szekeres dealt with a related problem. Having fLxed a basis 
in R a, a box is defined as {xERn: ai<=xi~b~ i=1  . . . . .  d}. Now Erd6s and Szekeres 
show in [5] that if V = R  ~, IV[>2~-~, then there are points a, b, cER ~ such that 
b is contained in the smallest box containing a and c. This result is extended in a 
paper by Bfirfiny and Lehel [2] in the same way as Theorem 1 here extends the Erd6s- -  
Szekeres theorem on large angles. In particular, Theorem 2 follows from the results 
of  [2] but with a much weaker estimation on no(d, ~). 

2. Sketch of the proof of Theorem 1 

The proof  of Theorem 1 will be algorithmic. In this section we give an in- 
formal description of the algorithm together with some preliminary definitions and 
lemmas. We will work with small squares whose sides are parallel to the coordinate 
axes. 0(x, y) denotes the Euclidean distance of x, yER 2. 

Definition 1. We say that sl,s~ER 2 cover the square C ~ R  ~ 
for every cEC. 

if <~(slcs~.)>n-e 

Let C O be the smallest square containing V. The algorithm will find a sub- 
division of C O into small squares and a set W c  V, IWl<=n(~) whose pairs cover 
every small square C in the subdivision provided C 0 ( V \ W ) ~  O. 
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Definition 2. (Ca, S) is called a good pair if Ca is a square of  side length A and 
S c R  2 with the properties 

(i) Q(c,s) >= lOl/2Ae -1 (VcEC, VsES), 
(ii) "~ (sl csz) >= O,5s (V cE C, V sx, s2E S, sl ~ s~). 

Sometimes we shall omit the index A and simply say that (C, S) is a good 
pair. A good pair can be thought of as a square C together with a set of directions 
S because, by condition (i), the points in S are far away from C (almost at infinity 
with respect to its diameter). As a rule, S will be a subset of V and the algorithm 
will produce good pairs (C, S) in such a way that some point sE S together with 
a suitable point vE V will cover C. Property (ii) means that the directions in S are 
not too close to each other. This fact implies at once a simple property of good pairs: 

Lemma 1. I f  (C, S) is a good pair, then [Si~47cf -1. 

Definition 3. The good pair (C~, S) covers the square C] if there is an sE S such 
that for every cEC], c and s cover C~. 

The crucial property of good pairs is given next. 

Lemma 2. I f  (CX~, S) and (C], S) are good pairs and 

0.1e(c2, s) >= e(cl, c2) (VclEC],Vc~ECJ,VsES), 

Q(Cl,  C2) ~ 101/2Az -1 (Vc~EC~,Vc2ECJ), 

then either (C~, S) covers C~, or (C~, SU {u}) is a good pair for every uEC~. 

We can now explain how the algorithm works. At a certain stage we will 
have a good pair (Cd, S)  such that no s 1, s2E S cover C j .  We then subdivide Ca by 
a set of smaller squares of side length A'=2-kA (k=k(e) will be specified later). 
A small square Ca, of  this subdivision is called a cell if Ca, f )V~0 .  We pick one 
point uEV from each cell Ca,. These points form a set UC: V with lUl<_-4 k. If  
Ca, is a cell then (Ca,, S) is clearly a good pair. Now the main part of the algorithm 
can be named as "either cover Ca, or augment S".  More precisely, on applying 
Lemma 2 to the good pairs (C~,, S) and (C~,, S)  one finds a point uEU such 
that either C~, is covered by u and a suitable sES or (C~,, SU {u}) is a good pair, 
unless a very special case occurs. If  this special case does not come up then, in view 
of  Lemma 1, we are finished after at most 4he -~ steps of  the type "either cover or 
augment".  In this case the set W will be the union of all the sets U and will have 
cardinality at most (4k) ~-~.  The special case which needs special care as well corre- 
sponds to, roughly speaking, a point vE V such that <~ (vl vv2)<= n - ~  for every v~, v~E V. 
Such a point v must be contained in IV, so we cannot choose uECa, f) V arbitrarily 
if vEC'a as we could in the other case. 

To close this section we prove Lemmas 1 and 2. 

Proof  of Lemma 1. Consider a point cEC and a unit circle E around it. For  each 
sES define the arc A~ as A,=  {xEE: ~(xcs)<0.25~}. These arcs are pairwise dis- 
joint by (ii) so the sum of  their lengths is at most 2~z: 

2re ~ Z length (A~) = [S[.0.5e. I 
sES 
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Proof of Lemma 2. Assume first that there is an sES such that ~(c~cxs)~O.9s 
(VcxEC x, Vc2EC2). Then the condition 0.1Q(c2, s)>=O(c~, c~) implies 

and then 

sin<~ (c2cls) _ Q(cz, s) >= 10, 
sin<~ (c2scl) ~(c2, Cl) 

sin '~(C2SCl) <= 0.1 sin ~(c~c~s) <- 0.1 sin 0.9s < sin O.ls. 

This shows that in this case ,~(c, c2s)>zc-(O.9e+O.ls)=rc-e, i.e., (C 1, S)  
covers C 2 by definition. 

Assume now that for each sES there are c°EC ~ and c°EC " such that 
<(c°c°s)>O.9s. Then, using the condition Q(q,  c~)~101/7 As -1, an easy argu- 
ment shows that ~(C2ClS)>=0.5~ for each c~EC 1, c2EC 2, sES, i.e., (C ~., SU{u}) 
is a good pair for every uECL II 

3. The proof of Theorem 1 

We start with the good pair (C o , 0 )  where C o is the smallest square con- 
taining V. 

Assume that at a certain stage of the algorithm we have a good pair (C °, S) 
with the property that no sl, s2ES cover C °. (If this were not so C ° would be cov- 
ered.) Now we subdivide CO by smaller squares of side length A'=2-kA, where 
k=k(~)  will be specified later. Let g' denote the set of cells of this subdivision, i.e., 
Ca.ECg if Ca, OV#O. 

Now we try to apply the "either cover or augment" procedure. In order to 
do so, there are some cases to consider. 

Case 1. For each CEcg there is a C 'Eg  such that (C', S) covers C. 
In this case we pick one point uE V from each cell CEcg. The set U of these 

points satisfies IUl-<_[cgl<=4 *. Moreover, for every CECg there are uEU and sES 
such that C is covered by u and s. 

Now we assume that there is a cell CE~, which is not covered by any pair 
(C',  S) with C'EcK. Such a cell is called uncovered. 

Case 2. There are two uncovered ceils Ca, C2ECg with o(el, c2)>-1/6A for each 
elEC 1 and c2EC2. 

Then we pick one point from each cell as in Case 1. The cells covered by 
some pair (C, S) with CEC¢ will then be covered by a suitable uE U and sES. 

Consider now a cell CEff which is uncovered. Then either 

o r  

~_.l A _ l__~_ A, 
cl) => 12 ¢7 

1 A 1 A' e(c, _>- - -¢ -y  

(V cE C, V c~E (71), 

(V cE C, V c2E C=). 
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By symmetry we may and do assume that the first inequality holds. Let u be the 
point picked from C1. 

Claim. (C, SU {u}) is a goodpair provided 2k>300e -1. 

Proof. We are going to apply Lemma 2 to the good pairs (C, S) and (C1, S). The 
first condition holds because for every cEC, e~EC~ and sE S 

0.1Q(cl, s) ~ 0.1 min (c°,s) =>0.1. IO ~C2Ae -1 > }f2A >= O(c, cl) 
c° E C~ 

(if e<  1, say). As for the second condition, 

1 1 A , = f  I 2~ 1 ] A ,  
(c ,  - f f  A - 

and this has to be larger than 101/2A'e -1. This holds, for instance, when we choose 
k=[log2 (300e-1)]. 

So the conditions of Lemma 2 hold. But C~E~ is an uncovered cell and then 
the second alternative occurs: ((7, SU{u}) is a good pail" for every UEClf~V. II 

We can see now that in Case 2 the "either cover or augment" method works. 
From now on we assume that there are uncovered cells in c£ and for any two 

uncovered cells C~, C2Ecg ~(c~, e2)~-A/6+ 2 ~2A" (VeiEC i i =  1, 2). 
Let K be (one of) the smallest square(s) K c C  ° which contains all uncov- 

ered cells from ~. The side length of Kis at most A/6+2~2A'. Further, let L = C  ° 
be a square with side length A/2 containing K and such that the minimal distance 
between K and C ° \ L  is at least 10l/2-A'e -~. We assume further that the sides 
of L are contained in the lines defining the subdivision of C o into the smaller squares 
Ca,. Such an L exists if 

<yA, 

which is again true if k=[log2 (300e-~)]. 

Finally we define a partition of cg: 
c,6~'= {CEC£: C is covered by some good pair (C', S), C'ECg}, 
ff~= {GETS: C is uncovered and (C, S) covers every cell in C°n\L}, 

Case 3. cK~=O. 
Again we pick one point uE V from each cell, these points form the set U c  V. 

The cells in cg~ will be covered by some uCU and sES in the same way as in Case 1. 
Let CEC~ and consider a cell C 'E~ ,  C'c=C°\L  which is not covered by the 
good pair (C, S). Let uEC" N U. 

Claim. ((7, SU{u}) is a good pair. II 

The proof is almost identical with that of Case 2 and is omitted. 
We see again that in this case the method of "either cover or augment" 

works. 
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Case 4. :gx# O. 
In this case we do not pick any point from V but make the promise to pick 

one point from the set X1 = VN (U :g~) at a later stage of  the algorithm. For  further 
reference we rename K as K1, L as/-,1, ~, cgx, cgy, ~z as cg~, cg~, ff~ and cg~. We ob- 
serve that if we pick a point uEXt, then each CEffI, c 0 C =Ca\L~ will be covered 
by u and a suitable sES. The algorithm continues by subdividing La into 2k×2 k 
smaller squares and considering L~ as C O in the preceding step. 

I f  Case 4 occurs, we get two squares K~ and L~, sets of  cells ffz, ~g, c~, :g~ 
(the sides of L2 are of length A/4) and a new set of  "promise" X2= VN(U~g).  
In this case we make the promise to pick a point from the set X1 NX2 ( i f ) (1NXo#0)  
and continue in the same way as before. So we go on like that producing the squares 
Ki, L~, sets of  cells cg i, ~ ,  <g~, ~ and sets of promises X~NX2N ... N X  i. 

We can keep our promises only if X1N ... n x i # 0 .  Suppose this is so. Again, 
we try to use the method of  "either cover or augment" on the square L~ (side-length 
2-~A). I f  it works (i.e. Cases 1, 2 or 3 occur), we can keep our promise by choosing 
a point from CN(X~N... N:(i) for a suitable CECg~. If  it does not work, then Case 
4 occurs again: we get X~+~#0, K~+I, L~+~, etc. 

i i + l  

Case 4ao N Xl#O but N Xi=O for some i = 1 , 2 , 3  . . . . .  

1 

Case 4b. n Xi~ 0 for i :  1, 2, 3 . . . . .  
j = l  

co 

In Case 4b O Xi~ n L ~ :  {u}~ V because the squares Li shrink to a single 
i=1  i ~ l  

point. Then we pick the point u and put it in the set W. It is easily checked that for 
every i and every C E ~ ,  C~=C°k,,L~ is covered by u and a suitable point sES. 

In Case 4a we pick a point u from each cell CE~i+I according to the follow- 
ing rules: 

i 

uEVNC, if C N N X j = 0  and CNX~+~=O, 

uEXi+INC, if C N X i + a # 0 ,  

f t 

uECNNX~ if CNNXj#0 .  
j = l  1=1 

The points chosen this way form the set U, clearly Uc=V and ]U[-<4 k. In addi- 
tion, the conditions X~+I#0 and X~fl . . .NX~#0 imply that U contains a point 
u'EXi+l and u"EX1G ... n x t .  Then every cell in C°a\Li+x is covered by the points 
u', s or u", s for a suitable sE S. 

So we are concerned with the cells CECgi+I lying in L i +  1 . 

I f  CEcg}'+I or C E ~ + I ,  then the method of "either cover or augment" works 
in the same way as in Cases 1, 2 and 3. 

Finally, if CECg~+l, then C c C i c C ~ _ I c . . . c C I  where CjECgj. (This chain 
of  cells exists and is unique because the subdivision of Lj+I is a refinement of the 
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subdivision of Lj, restricted to LI+x. ) But it cannot be the case that each CIEcg~ 
because then XI+IA. . .OXx~Vfq(CfqCiO. . . f lC1)¢O,  a contradiction. So CjE 
ECg~tJcg~ for some j = l  . . . . .  i. 

If  Cj E ~g~, then Cj is covered by a pair u, sE S where uE V is a point from the 
cell in ~j  that covers C~. The points u, s cover then the cell C as well. 

IfCjECg~, then the pair Cj, (SU {u}) is a good pair for a suitable uE Vf lLj_I ,  
and, afort iori ,  (C, SLI {u}) is a good pair as well. 

So for each CEC~:+~ we pick one more point uE VfqC°a in such a way that 
either C is covered by u and some sE S or (C, SO {u}) is a good pair. The set of  
these points is U o, clearly IUo] "<= ~i+1 ~:~ ~l/4lcgl] = 4 k - L -  

What we did in Case 4a is a modification of the method "either cover or 
augment".  This modification uses at most I f l+ l fo l<_-5 .4  ~-1 points. So we see 
that in Cases 1, 2, 3 and 4a our method works using at most 5 .4  k-a points, while 
in Case 4b we need only one point to cover every point in C°a fq V. 

The number of steps being limited by [S[-<4ne -x we conclude that Theo- 
rem 1 holds with 

n(e) = ( 5 . 4 ~ - x )  4"8-~. 

The proof of Theorem 2 is almost identical with the previous one. The only 
differences are in Definition 2, Lemma 1 and 2. In Definition 2, (i) is to be modified 
to Q(c,s)>-_lOl/dAe -~ (VeEC, VsES), in Lemma 1 we have only IS[<=(e~e-a) d-x, 
and in Lemma 2, condition 0(e~, e2)=>10 I/2-Ae -a has to be replaced by o(ea, e2)-  -> 
_~10 l /dAe-L In the proof, k=k(e )=[ logz  (200 l/de-X)] giving 

n(d,e)= 1 + - ~  ~ 

4. Proof  of  Theorem 3 

As mentioned in the introduction, we will use the following 

Lemma 3. I f  the origin belongs to cony {a 0 . . . .  , aa} where ao . . . . .  aaER a, then 
there are indices i and j with ,~(aiOaj)>=r~-arccos lid. 

Proof. We may assume that llaoll=llalll=...=lladll=l because we are concerned 
with angles at 0. Assume indirectly, that ( a ~ , a j ) > - l / d  for each O<-i<j<-d. 
The condition 0Econv {a0, al . . . . .  aa} implies the existence of s0 . . . . .  ~d->0 with 

d 

Z ~i= 1 and 
/ = 0  

d 

0 = • ~ia,. 
i = 0  

Multiplying this by aj and using (as, a j ) > -  1/d we get 

- ( 1  - ~ j ) ~ -  = ~, - < ~ i ( a , ,  aj)  = - ~ i "  
I = 0  i = O  

2* 
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Summing these inequalities for j = 0  . . . .  , d we have 

d 1 d 

j=0 d y=0 
a contradiction, l 

The proof of Theorem 3 is by induction on d. The cases d =  1 and d =  2 
are easy. 

Assume the theorem holds in the k-dimensional space for k<d. We are 
going to prove it in the d-dimensional space. 

As F is finite, conv F is a convex polytope. Denote the set of its vertices 
by U, the set of facets by So and the set of unit outer normals to the facets by N. 
So N c S  d-1  the unit sphere in R d. Take an e-net MC= S d-~ with 

IMI -~ d (2} d-1 

8>0 will be specified later. Set Cod=arc cos (-- l / d ) .  

Consider a point mEM and the set N, .= {hEN: l n - m l ~ e  }. N,, is the set 
of outer normals to the facets £,e,. of conv V. Let Hm~R d be a hyperplane with 
normal m. The projection n,, (or lr, for short) to H,, maps the set K,,-=- U (L: LE ~,.)  
to Hm that can be taken for Ra-L The vertex set Um of the polytope cony K,, is 
dearly a subset of U, and z(convKm)=n(conv U,,)=convn(Um). So we may 
apply the induction hypothesis to the set re(U,,)C=H,,=R d-a. Then we get a subset 
W,. c= n(Um), I W,,[ <=n(d- 1) such that for any point uE(conv n(U,,))\W,, there 
exist two points wa, w2E Wm with .~(w~uw~)>-Coa_a. It is clear that for each uE 
Econv 7r(U,.) there is exactly one point fiEK,, with 7r(t~)=u. 

Now we show that <~(ff~r?2)==-Co~_~-2e if fiEL for some LE~, . .  For 
this end it is enough prove that if wE Wm then the angle between the lines wu and ffa 
is at most e where u=n(~)  and w--n(ff,). This implies the claim because then 

1 ~ (~ la f f~ ) -  ,~(wluwd[ ~_ 28. 

If  wE W,~ then ffEL' for some L 'E~ , , .  Pick a point gEL' from the relative 
interior of L '  and very close to ft. Similarly, pick a point ~3EL from the relative in- 
terior of L and very close to ~. We prove that the angle between the lines through 

and ~3 and through z and ~ is at most e where z=n(~)  and v=n03). This is clearly 
sutficient. 

Consider the two-dimensional plane P spanned by ~, ~, z and v. PAconv Km 
is a convex polygon on the plane. The points ~ and ~3 lie on its boundary. The angle 
between the tangent line to the polygon at ~ and the line zv is at most 8, the same is 
true at ~. This follows from the definition of Nm. Observe that ~ and z3 are not on 
"opposite" sides of the polygon because the outer normals at them are near to 
each other. Then the slope of the chord ~3 of the polygon is between the slopes of 
the tangent lines at ~ and ~. And this is what we wanted to prove. 

Choose now 8>0 in such a way that coa---coa-x-2~. Set 

W = IJ Wm= {xE U: ~cm(x)EWm, xEK,, for some mEM}. 
mEM 
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Then 1 W l<=n (d -1 ) . lM[ <=n(d -1 ) . 4a - ld  2a-1, and for any point uEboundary 
(cony V) there exist two points w~, w~E W with .~(w~uw2)>-_coa. 

Moreover, W "covers" also cony W because by Carath6odory's theorem [3] 
cony W is the union of d-dimensional simplices with vertices from W, and then we 
can apply Lemma 3. 

So far we have proved that the theorem is true for any uE[conv WUboun- 
dary(conv V ) ] \ W .  So we pick a point uEconv V with u~conv WUbotmdary 
(conv V). We are going to find two points wl, w~E W with .~(w~uw~)>-oga. 

Denote by z the point in conv W, nearest to u. The hairline zu (starting at z) 
meets boundary(cony V) in the point v. The hyperplane H through z with normal 
u - z  is a supporting hyperplane to cony W, so the two points w~, w~E W with 
~(WlVW2)>-_o~a lie on that side of H which does not contain v, i.e., 

7C 7Z 
~(WlZV)  > - "~(w2zv) :>- 7 

= 2 ' 

Using this property it is easy to show that ,¢i(WlUW2)>=,q(wlvw2). 
details. 

A simple computation shows now that 

n(d) <- 2a(a-1) d a(a+ a), 

We omit the 
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