
COMBINATORICA 6 (3) (1986) 221--233

PACKING A N D COVERING A TREE BY SUBTREES

I. BAR./~NY, J. E D M O N D S and L. A. WOLSEY

Received 27 September 1984

For two polyhedra associated with packing subtrees of a tree, the structure of the vertices
is described, and efficient algorithms are given for optimisation over the polyhedra. For the related
problem of covering a tree by subtrees, a reduction to a packing problem, and an efficient algorithm
are presented when the family of trees is "fork-free".

1. Introduction

Given a tree R with vertex set V and a family of its subtrees o ~ , consider the
problem of packing these subtrees into the tree:

(P0) Max Z {c(V)x(T): TEo~}

subject to ~ ' { x (T) : T)v} _-< 1 (vEV),

x(r)~{0, 1} (rc~),
where c(T) is a weight function on -~.

It is known that this problem can be solved by a polynomial-time algorithm
as the intersection graph of o~ is triangulated [3] and the maximum weighted stable
set problem on a triangulated graph can be solved efficiently [2], see also [4].

In this paper we consider various generalisations of problem P0. For related
problems involving all subtrees of a tree, see [5].

In order to state our results we need some preparation. First we assume
that the tree is rooted (with root rE V). This induces a partial ordering of Vin the
usual way: we say that u<v (u, vE V) if u C v and u belongs to the unique path
connecting r and v. We are also given a monotone non-decreasing real valued func-
tion a: V ~ R , i.e., u, vEV, u<v implies a(u)~a(v).

The first problem we consider is the linear program

(P1) Max ~ , {c(T)x(r) : TEo~}: xEQ1

where Q1cR]+~I is described by the inequalities:

Z { x (T) : T3v}<-a(v) (vEV),

x (T) ~ 0 (TE~-).

AMS subject classification (1980): 68 E 10, 05 C 05, 05 B 40

2 2 2 I, BARANY, I. EDMONDS, L. A. WOLSEY

We describe a dual greedy algorithm for P1, which can also be viewed as a
dynamic programming algorithm. This is one way to obtain a characterisation of
the vertices of Q1, which are integer whenever a: V-~R is an integer valued mono-
tone nondecreasing function.

The second problem we consider is also a packing problem, except that the
family ~ of subtrees is replaced by the family of all subtrees, and a somewhat special
objective function. We consider the linear program :

(P2) Max ~ c(u, v)x(u, v): xEQ~_
u, vEV

where Q ~ R ivl~ is described by the inequalities

x(u, v) <= a(v)
uEV

x(u,v)-x(u, w) <- 0 if wE[u, v] (u, vEV)

x(u, v) >= 0 (u, vEV),

where there is a variable x(u, v) for each pair u, vE V, and where [u, v] denotes the
vertices on the path connecting u and v.

Take a solution x(u, v) to P2. Fix u and set ~0=min {x(u, v): vE V, x(u, v)>0}
and S~={vEV: x(u, v)>0}. If S ~ 0 , then S~ is a tree containing u. Now define
inductively S~={vEV: x(u, v)>~i-1} and ~i=min {x(u, v): x(u, v)>~i-1} un-
less S~'=0. Clearly S~' is a tree containing u and x(u,v)=aos~(v)+(al-~o)
s~(v) + (~ - ~) s~(v) +... where s~ is the characteristic function of S?, i.e., s~(v)= 1
if vES~ and 0 otherwise. So we may think of a solution x(u, v) of P~ as a weighted
sum of subtrees S~' of R, each S~ being "rooted" at u. Relative to problem (P1),
here ~ is the set of all subtrees but the objective value associated with a subtree T is

max {~' c (u, v): vET}.
uET

Here again we obtain a characterisation of the vertices of Q~, and a dual greedy
algorithm to solve the linear program. The problem P2 with a(v)= 1 for all vE V
was the major motivation for this work, as it generalises the tree packing problems
considered in [1].

The third problem we consider is that of covering the tree R by subtrees from
~'. This can be formulated as the integer program:

(Co) min ~ ' {c(T)x(T): TE,.9 z'}

Z {x(r): l
x(T)E {0,1}

While Co is generally NP-hard, we show that when the family ~- of subtrees
has a certain property, denoted fork free, which generalises a property of distance
subtrees, problem Co can be reduced to problem P2 and hence solved efficiently.

We mentioned already that Po is a maximum weighted stable set problem on
a triangulated graph. It is shown in Section 5 that the two problems are equivalent.

It is known that when the constraint matrix appearing in Co is totally balan-
ced, Co can be solved by linear programming. What is the relationship between

PACKING/COVERING TREES 223

totally balanced matrices and node versus subtree incidence matrices when the
subtree family is forkfree? This and similar questions are discussed in Section 5.
In addition we return to P2 via the problem that was the starting point of this rese-
arch, the economic lot sizing problem with backlogging.

2. Packing with a given family of subtrees

Some notation is needed. A subtree and its set of vertices are denoted by
the same letter. For any subtree T of R we call r (T) = M i n {v: vE T} the root of T.
This is clearly well-defined. For vE V we denote R(v) the subtree spanned by the
vertices {uEV:u>-v}. Note that if u<v, then [u, v]= {wE V: u<:w<-v}. The
predecessor p(v) of node v is the first vertex on the path going from v to r. The suc-
cessor set S(v) of vertex v is the set of vertices wE V having v as a predecessor.
The successor set S(T) of a tree Tis the set of vertices we T with p(w)ET.

We assume that a(v)>=O for each vE V, as otherwise Q1 and Qz are empty.
Finally, for vE V we write .~ (v)= {TE~-: r(T)=v}.

Here we consider the problem P1, and the associated polytope Qx. We shall
also need the linear programming dual of Px :

(D1) min .~ a (v) y(v)
vEV

Z {y(~): vET} =-_ c(T) (T<~-)

y(O --> 0 (rE V).

First we describe an algorithm for D1.

The dual greedy algorithm for D1

All vertices are initially unmarked. Set d(T) --- c(T) for TE ~ .
i) Choose a vertex vE V that is unmarked but all wER(v)\{v} are marked.

ii) Fix dual variables
Set y(v) ,--max {0, max {d(T): TE~Z-(v)}}

S0 if ~ (v) = 0 or d(T)<-<_O for all TE~-(v)
= [d(To) for some TvE~-(v) otherwise.

Mark v. For later use we fix TvE~(v) with y(v)=d(T~) if y (v)>0 , ties
are broken arbitrarily.
iii) Update d(T), TE ~ .

Set d(T)~d(T) if T E ~ , v~T.
Set d(T)~d(T)-y(v) if T E ~ , vET.

iv) If r is unmarked, return to i).
Otherwise, stop.

Observe that the vector y constructed this way does not depend on the dual
objective function, a(v), vE V. Note also that on termination of the algorithm y
is dual feasible and d(T)<=O for each T E ~ . These facts follow by an easy induc-
tion argument.

224 I. B.&P~NY, J. EDMONDS, L. A. WOLSEY

The greed), algorithm for P1

Here we make use of the subtrees T~. that were fixed during the dual greedy
algorithm.

All vertices are initially unmarked. Set b(v)~- a(v) for vE V.
i) Choose a vertex vE V that is

a) unmarked
b) for which there is no unmarked vertex w< v.

ii) Fix primal variables.
If y(v)=0, set x (T) = 0 for all TE~(v).
If y(v)>0, set x(To)=b(v), x (T) = 0 for TE.~(v)\Tv.
Mark vertex v.

iii) Update b(u), uE V.
If y(v)=0, b is unchanged.
If y(v)>0, set b(u)~b(u)-x(Tv), uETv.

b (u) ~ b (u), otherwise.
iv) If all nodes are marked, stop.

If not, return to i).

Theorem 1. I f yERl+Vl and xERI+~I are constructed by the dual greedy and the
greedy algorithm respectively, y is opthnal in D1 and x is optimal in P1.

Proof. It is easily seen that y and x are dual and primal feasible as d(T)<-O, TE.~,
and b(u)>=O, uE V respectively. From step iii) of the greedy algorithm for P1, we
see that y (v)>0 only if b(v)=0. Also x (T) > 0 only if d (T)=0. Hence comple-
mentary slackness holds and both solutions are optimal. |

An alternative view of the algorithm used in solving P1 and D~ will be useful
later. Let G(v) be the optimal value of P~ when a(u) =0 for all uE V\R(v), a(u) = 1
for all uER(v). The associated solutions are called 1-packings of R(v). In other
words G(v) is the optimal value of a 1-packing of R when restricted to the trees
T E ~ that lie in R(v).

A recursionfor P1

G(v) = Max "gg({". ~ ') G(w), TMax~ s~(~) (c(T)+ ,~ eZs(r) G(w))}.

This says that there are essentially two possibilities. Either the optimal solution
contains no tree TEo~- including the vertex v. In this case the solution must con-
sist of optimal 1-packings of each of the trees R(w), wES(v). Alternatively if some
tree T containing v is used in the optimal solution, the remainder of the solution
must consist of optimal 1-packings of the trees R(w), wES(T).

The connection between the recursive algorithm and the dual greedy algo-
rithm is readily seen by observing, that

(1) y(~,) = c (v) - X G(w)
w E S(t,)

P A C K I N G / C O V E R I N G TREES 2 2 5

satisfies
y(v) = Max{O, Max (c(T)- 2 y(w))}

T E o~(t,) w ~ T \ { v }

which coincides with the dual variables given by the dual greedy algorithm.
Now let x v denote an optimal 1-packing of R(v) with value G(v).

Claim. Let
x = Z x ° (a (v) - a (p (v)))

v £ V

where a(p(r))=O by definition, and y be definedby (1), then xERI{I and yERl+Vl are
optimal solutions to P1 and D~ respectively.

Proof. Clearly x>=O as xO(T)>=O and a(v)>=a(p(v)) for vEV. To see that x
satisfies ~ '{x(T) : T3w}<=a(w), note that ~'{xV(T): r?w}<_-I and X{x"(T): T3w}=
=0 if vNw and hence

Z Q~x~(T)(a(v)-a(p(v))): T)w} = ~_~r~ ~ z~ x~(T)(a(v)-a(p(v))) <=

<- Z [a(v)-a(p(v))] ~= a(w).

Its value is Z G(v)(a(v)-a(p(v))).
vCV

To show its optimality note that y(v) is a dual feasible solution of value

Z = Z Z = Z I
vE V vE V w.C_ S(t,) vE g

We have now shown

Theorem 2. Every vertex of Q~ is of the form

x = Z x~(a(v)-a(p(v))). !
vEV

3. Packing with all possible subtrees

Here we consider problem P2. The approach is similar to that of the pre-
vious section. We use a dual greedy or recursive algorithm to calculate the optimal
value H(v)ofa packing for P2when a (u)= l for uER(v) and a (u)=0 otherwise,
and let xVERl< '-' be the associated optimal 1-packing. The family of 1-packings
x v, vE V is then used to construct an optimal packing for P2 for any a: V~R* that
is nondecreasing outwards from r.

A recursive algorithm for P2

In order to calculate H(v) recursively starting from the leaves and working
inward towards the root, we use an auxiliary function ¢pu(v) which is essentially
the optimal value of a 1-packing of R(v) with the extra condition x(u, v)= 1. But
these is another point of view in looking at q),(v) that will be useful. Remember
that the tree R is rooted at r but, as we mentioned in the introduction, it is conve-

226 I. BARANY. J. EDMONDS. L. A. WOLSEY

nient to think of a solution x(u, v) of P2 as a weighted sum of subtrees S[' "rooted"
at node u. If the solution x(u, v) takes 0-1 values only (which will be the case with
the 1-packing of R(v)), then where is at most one subtree S u rooted at u and SU~
OS v=0 for u~v . In this case we say that the subtree S u covers the node v pro-
vided x(u, v)= I. More precisely, we define q~,(v) as follows: If u>-v, ~ou(v) is the
optimal weight of a 1-packing of R(v) where v is covered by a subtree S" rooted
at u. If u~v, then ~0,(v) is the optimal weight of a 1-packing of R(v)U[u, v] where
v is covered by a subtree S u rooted at u, and only the values of covering vertices of
R(v) are counted. The formal definition is this:

if u~=v,~o.(v)=max ~ • c(w,z) x(w,z):xEQ2,
wE R(v) z E R(v)

x(u, v) = l , x (w , z) = 0 if wER(v) o r i f zCR(v)
x(w, z)E {0, 1 } otherwise

if u~v, ~0,(v)=max ~ ~ c(w, z) x(w, z): xEQz,
w~R(v)lJ{u} zER(v)

x(u,v)=l,x(w,z)=O if wCR(v)U{u} or zCR(v)
x(w, z)E{O, 1 } otherwise.

Now we obtain:
n(o) = Ma× { 27 Ma×

w ~ S(v) u E R(v)

because in an optimal 1-packing of R(v) either no subtree covers vertex v, or vertex
v is covered by a subtree rooted at u where uER(v).

The recursion for q~u(V) is given by:

q~.(v) = c(u, v)+ Z Max{q~.(w), H(w)} if uCR(v)\{v},
w ~ S(v)

q~,(v) = c(u, v)+ ~ Max{q~,(w), H(w)}+~o.(w') if uER(v)\{v}
C s (v) \ (w '}

where w'=S(v)N[u, v] is the first vertex after v on the path [v, u].
To justify this recursion, we decompose the value of the 1-packing of R(v)

into c(u, v) plus the value of the packing of the trees R(w), wES(v). When u¢
¢ R(v)\{v}, the value of the packing of R(w) is ~o,(w) if x(u, w)= I, and H(w)
if x(u, w)=O, wES(v). When uER(v)\{v}, the argument is the same except that
x(u, v)=l implies x(u, w)=l for all wE[u, v], and hence the value of the packing
of R(w') is ~o.(w').

To compute these values we work through the vertices vE V moving in from
the leaves to the root, and for v fixed we first calculate q~,(v) for all uE V and then
H(v). After computing H(v) we compute x ~, the associated optimal 1-packing of
R(v) having value H(v). To calculate x ~, we set x"(Uo, v) = 1 if H(v)= Max q~,(v) =

u E R(v)

=Cp,o(V) and trace back through cp,0(v), and we set x"(z, v)=0 for all zE V if H(v) =
= ~ H(w) and then trace back through H(w) for all wES(v).

w~S(v)

Theorem 3. x = ~ x"(a(v)-a(p(v))) is an optimal solution to P~.
u E V

Proof. It is readily checked that x belongs to P2 and its value is ~ ' H(v)(a(v)-
v ~ V

-a(p(v))).

PACKING/COV'HRINO TREES 227

Now we exhibit a dual feasible solution with the same value. The dual of P2 is

Min .~ a(v)y(v)
v E V

y(V)+Z(U, V)-- Z Z(U, W) >= C(R, I.)) (U, v~V, u ~ v)
w C O(u, v)

(D2) y(u)-- Z z(u, w) ~- c(u, u) (u~V)
w E Q(u)

y(v), z(u, v) ~- 0

where Q(u, v) is the set of vertices w such that v lies on the path from u to w and is
a neighbour of w, and Q(u)= Q(u, u) is the set of neighbours of u. In fact, we again
construct the dual solution by a greedy algorithm. Set

y(v) = H(v)- .~ H(w).
w E S(v)

With this definition Pz and D~ have the same value. Now for each uE V, ignore
the initial ordering of the vertices, and consider a new ordering in which u is the
root. Working in from the leaves to the root u, define

z(u,v)=Max{O,c(u,v)-y(v)+ • z(u,w)} for vCV.
w E QCu, v)

Clearly, y, z->O and, by construction, the first inequalities of D~ are satisfied. To
show that the second set is satisfied, consider the largest subtree TC={u}U
U {v6 V: z(u, v)>O} containing u. Now

c(., u) - y (.) + Z zCu, w) = Z (cCu, w)-y(w)).
wE Q(u) w E T

But
H(r(T)) >= Z c(u, v)+ Z H(w)

v E T wES(T)
and hence

(c(u, v)--y(v)) = Z c(u, v)-- Z y(w)
v E T v E T w E T

= Z c(u, v)-(H(~(7~))- Z H(w)) ~_ o. 1
v~ T wE S(T)

We mention here that essentially the same method works if in P2 one or
more of the inequalities ~ x(u, v)<-a(v) is replaced by the equality ~ x(u, v)=

u E V u E V

=a(v). If such a change occurs at a vertex vE V, the recursion for H just changes to

H(v) = Max ~o.(v).
u ~ R(v)

228 I, B & R A N Y , .L E D M O N D S , L. A. WOLSEY

4. Covering with a given family of subtrees

Now we consider the problem of finding a minimum value cover of R by
subtrees.

Z 0 = Min {.~Y c(T)x(T): TEY}

(c0) Z [x (r) : 7~v)--> 1 (v~v)

x(T)>=O and integer (TE~').

We assume throughout that c(T)>=O as otherwise Z o = - ~ or Co has
no feasible solution.

We also consider two related problems:

(Ca): Find a minimum wdue partition of R using subtrees S ~ T, (TC~-) where
the cost c(S, T) of each subtree S = T is c(T). In C1 one tree TE-~- may contain
several subtrees S taking part in the partition. Let Z1 be the optimal value of Ca.
Formally

Z~ = rain {~'{c(S, T)x(S, T): S~T, TE~} subject to x(S, T)E{0, 1} and

{x(S,T): yES, S c= T, TE~} = 1 for each vEV}.

(C2): Find a minimum value partition of R using at most one subtree S ~ T from
each T E ~ with cost c(S, T)=c(T). Let Z.., be the optimal value of C2. Formally

Z2 = min{~{c(S, T)x(S, T): SC=T, T ~ } subject to x(S, T)E{0, 1} and

~{x(S ,T)" yES, SGT, TE-~}= 1 for each vEV, and

{x(S,T): S ~ T } ~ 1 for each TE~}.

Observation. Z 0 ~ Zt <- Z2.

We first show that there is a good algorithm for Cz with the more general
subtree cost function c(S, T)=c(T)+ ~ cr,~ if S~T. In fact we reduce C1

t~E S

to the problem P2-

Reduction qfCa to P2

For each pair (v, T) with TE~ and vET, add a dummy vertex uo, r to R,
and an edge (v, uv. ~) between the dummy vertex and v. On the resulting tree, define
the values as follows:

c(uv,,r, uv, T) = - c (T) (v.;.T, TE-~)

C(U,,,T, W) =--CT, w (vET, TE~', wET)

c(u, v) = - ~ otherwise.

The packing problem P~ on the extended graph with equalities (= 1) on the vertices
of R and inequalities (-<_ 1) on the dummy nodes solves Ca.

PACKING/COVERING TREES 229

Now consider the solution of Ca. We say that a set of subtrees ~ * ~
is a cover for R if U{T: TEf f*}=R. A family ~- of subtrees is said to be parti-
tionable if for every cover - ~ * ~ o ~ one can find a subtree S(T)C=T for each
TE.~-* such that U S(T)=R, and if T1, To.E.N* with TI¢T2 then S(T~)A

T C ~ *

NS(T2)=0.

Proposition 4. Co is well-solved for partitionable families, and Zo = ZI = Z2.

Proof. As ~- is partitionable, every feasible solution of Co gives rise to a solution
of C2 of the same value and so Zo=Z~=Z~. Hence to solve Co it suffices to solve
C1 and take as a cover ~-* the set of trees TE.fi used in the solution of C~. I

Therefore we are interested in the existence of partitionable families.

Definition. Trees T1 and T~ of R have a fork if there are vertices xl, 3'1 E TI\T2 and
xo, y2E T2\T1 such that [xl, y~] and [x2, Y.2] have a point in common. A family ~"
of subtrees of R is fork-free if no pair T~, T2Eo~ has a fork.

Figure 1 shows a tree R, and two subtrees with a fork.

r, : (o,~,21

r2 : [o~3,~}

Fig. 1. T~= {0, 1,2}, T2= {0, 3, 4}

We will prove soon that a fork-tree family is partitionable. The converse
is clearly not true. But given a tree R and a family o~ of its subtrees and a fixed
subtree R' of R, we say that f f is partionable on R" if ~ ' = { T N R ' : TE°~ -} is a
partitionabte family of subtrees of R'. Then one can see easily that -~ is fork-tree
if it is partitionable on all subtrees R" of R.

Theorem 5. There exists a "good" algorithm for the covering problem Co when the
family o~ o f subtrees is fork-free.

Proofl It suffices to show that every fork-flee family ~- is partitionable.
Consider a fork-tree fanfily ~- that covers R but no proper subfamily of

covers R. Consider then problem C1 with each cost c(S, T) = I for any S ~ TEo~.
We call a subtree S of a tree TEo~ a block if x(S, T) = 1 in the given minimum
value partition of R. In the given minimum value partition each block comes from
a subtree TEo~ and this subtree T is thought to be fixed together with the block.

If the theorem is true then the value of C1 is just [ff]. We argue by contra-
diction so we take a family ~- so that the number of blocks in the minimum value
partition is larger than [~l- For this ~-, any minimum value partition contains two
blocks SI(T) and S2(T) coming from the same tree TE~-. Denote by SI(To) and
S2(To) two such blocks whose distance apart is minimal. Consider now that mi-

230 I. B~.R~NY, J. EDMONDS, L. A. WOLSEY

nimum value partition of R for which this minimal distance (between St(To) and
S2(To)) is minimum.

This minimum distance is realized by a path (in R or in To) P = {v0, vl , v,}
where voESl(To), v, ES2(To). Clearly n > l as otherwise the block SI(To)USZ(To)
could replace the two blocks St(To), S2(To) and the value of this partition would
be less.

The point vl is covered by a block S(T1) coming from some TIE~-. T1 is
different from To for otherwise the distance between S(TO and S2(To) would be
less than that between S~(To) and S~(To).

Claim 1. SI(To)~ T1, S2(To)~ T1, S(T1)~ To.

Proof. If, for instance, SI(To)C=T1, then SI(To)US(T~) would be a block of T1
in a partition of R with smaller value. The other two cases are similar and left to
the reader. 1

Denote now by B 1, ..., B p the branches of S(Tx) that stem from v~ but do
not contain v~ and set B°=S(T~)\({vl}UB~U... UBP). (B o may be empty.) Clearly
v~ETo and by Claim !, B ~ To cannot hold for every i=0 , 1 p.

Claim 2. There is exactly one iE {0, ..., p} with B i ~ To.

Proof. Assume, on the contrary, that Bi~ To and BJ~ To and choose a point
xlEB~\To, x2EBJ\To. By Claim 1 there are points y~ESI(To)\T1 and y~E
ES2(To)\To . Then the two trees To, T a E ~ have a fork because the paths [x~, xz]
and [y~,y2] meet at v~. 1

Now we are going to construct two new blocks from S~(To)US(TO which
will form (together with the other blocks) a minimum value partition of R with
minimal distance less than n. Let B ~ be the unique branch with B ~ To. Then
(SI(To)US(T1))\B i and B i are two new blocks, the first coming from To and the
second from 7"1. The distance from S2(To) to the new block (SI(To)LJS(TO)\F
is less than n. This is a contradiction. |

5. Further observations

A 0-1 matrix A is called a tree-matrix if it is the node versus subtree incidence
matrix of a subtree family of a tree. A clique in a graph is the vertex set of a maximal
complete subgraph.

Proposition 6..4 is a tree-matrix i f and only i f A is the clique-node incidence matrix
o f a triangulated graph, including possibly some dominated rows. I

This is easily proved using the Helly property of the subtrees of a tree and
a theorem of Gavril [3] saying that the intersection graphs of subtrees of a tree are
exactly the triangulated graphs. The proof is left to the reader.

It follows that we can consider the primal and dual variables for P1 as node
packing and clique weights in the corresponding triangulated graphs. If one checks
now how our algorithm for Pa works on the corresponding triangulated graph,

PACKING/COVERING TREES 231

one can see that it does essentially the same thing as a perfect elimination scheme
(see Golumbic [4]). In this sense what is new in Theorem 1 is the replacement of
a(v) = - 1 by a monotone function.

As triangulated graphs can be recognised by a polynomial time algorithm it
is of no surprise that the same is true for tree-matrices.

An Algorithm to Recogn&e Subtree Matrices

Let M be a 0-1 matrix
a) I f M h a s a unit column ei, set M * - M \ e j .
b) If M has no unit columns and m,j <_-m~j for all j, set M * - M ' x , mt (drop

row t from M)
c) If M has no unit columns and the rows form a clutter, stop. M is not a

tree matrix.
d) Repeat steps a), b), c) until M = 0 , then M is a tree matrix.

The validation of the algorithm is left to the reader, we only prove c): any
tree representation of M must have a leaf t. Either there exists a tree T= {t} giving
rise to a unit column or every tree containing t contains its neighbour s. In other
words msj>=mti for a l l j where s is the neighbour of t.

We now consider the covering problem Co. In general it is NP-hard as
any 0-1 covering problem reduces to it by adding a row of l's. Therefore it is not
surprising that its linear programming relaxation does not in general have a 0-1
solution. The simplest example showing this is the tree R depicted in Figure 2.

$

\
- 2

Fig. 2. ,.~'= {7"1, T2 , Ta),
7"1={0, 1,2}, T2={0, 2, 3),

T~= {0, 3, t}, c(T~)=c(T~)=c(T~)= 1

Given that Co is well-solved for fork-free families, one might ask whether
in such cases the linear programming relaxation has a 0-1 solution. But the three
subtrees appearing in Figure 2 are fork-free, so this is not the case. However it is
known that the associated linear program has an integer solution when dealing
with distance subtrees Tu={v~ V: d(v, u)<-~}, and more generally when the 0-1
incidence matrix of the subtrees is totally balanced (see Kolen [7], Hoffman, Kolen,
Sakarovitch [6] for details). It is readily shown using for instance the above algorithm
that every totally balanced matrix is a subtree matrix.

Now both totally balanced (TB) matrices and fork-free (FF) families give
rise to subtree matrices (SM). Are (TB) and (FF) related? The example of Figure 2

232 I. B~.R&NY, I. EDMONDS, L. A. WOLSEY

is forkfree, but cannot be totally balanced as the LP relaxation is noninteger. On
the other hand, there exists a totaUy balanced matrix, for which there exists a unique
representation as a family of subtrees and the family is not forkfree. Finally it is
readily checked that the distance subtrees defined above are forkfree, so FF (~ TB # 0.

Finally we return to problem P2- We consider the economic lot sizing prob-
lem with backlogging, which was one of the problems motivating this research.
The problem can be formulated as a simple plant location problem where the plants
are located on an interval, (or in the terminology of this paper: at the vertices of
a tree R having vertex set V={I n} and edges (i , i+1) , i=1 , . . . , n - l , so
the tree is a simple path).

The formulation is:

Min ~ ~ c(u, v)x(u, v)

x(u, 0 = 1 {1 , . . . , ,0)
(ELS) ~=1

x (. , v) - x (. , u) 0 (. , {1, . . , n}, u

X(U, v) >-- 0 (u, vE {1, ..., n}),

where x(u, v) is the fraction of the demand in period v produced in period u, c(u, u)
is the fixed cost of setting up in period u plus pud~, c(u, v)=p~+c, + +... +c~+_l)do
if u>o, c(u, v)=(p~+c~ +... +cV+x)d~ if v<u, where p~ is the price of unit pro-
duction in period u, c~ + _~0 and c~- _~0 are the price of unit transportation from
u to u + l and u + l to u respectively and do is the demand in period v. It is typi-
cally imposed that x(u, u)E{0, 1}. Now we can show

Theorem 7. ELS has an optimal 0-1 solution.

Outline of proof. It is easily shown that optimal solutions to ELS satisfy the inequ-
alities

X(U, u) ~-- X(U, U+ 1) ~ X(U, u+ 1) ~ ...
and

x(u, u) >=x(u, u - l) ~_x(u, u - 2) _~ ..., for all uE{l , n}.

Adding these inequalities to ELS, and removing the dominated inequalities, the
resulting linear program is of the form Pz, with R an interval graph, a(v)----1 for
vE V, and equality constraints at each node. It follows from Theorem 3 that ELS
has an optimal integer solution. II

PACKING/COVERING TREES 233

References

[1] I. BAgAraY, T. J. VAN ROY, and L. A. WOLSEY, Uncapacitated Lot-Sizing: The Convex Hull-
of Solutions, Mathematical Programming Study, 22 (1984), 32---43.

[2] A. FRANK, Some Polynomial Algorithms for Certain Graphs and Hypergraphs, Proceedings
o f the 5th British Combinatorial Conference, Congressus Numerantium XV, Utilitas Math.,
Winnipeg (1976).

[3] F. GAvam, The intersection Graphs of Subtrees in Trees are Exactly the Chordal Graphs,
Journal o f Combinatorial Theory, B 16, (1974), 47--56.

[4] M. C. GOLUMmC, Algorithmic Graph Theory and Perfect Graphs, Academic Press, (1980).
[5] H. GR6FL~ and T. M. L~BLtNG, Connected and Alternating Vectors: Polyhedra and Algo-

rithms, Mathematical Programming, 20 (1981), 233---244.
[6] A. J. HOrFMAN, A. W. J. KOLEN and M. SAKAROVaTCH, Totally Balanced and Greedy Matrices,

Prepring BW 165/82, Stictu'ng Mathematisch Centrum, Amsterdam, (1982).
[7] A. W. J. KOLEN, Solving Covering Problems and the Uncapacitated Plant Location Problem

on Trees, Preprint BW 163/82, Stichting Mathematisch Centrum, Amsterdam (1982).

I. B~r~iny
Mathematical Institute of the
Hungarian Academy of Sciences
Redltanoda u. 13--15.
1053, Hungary

L. A. Wolsey
Center Op. Res, Econometrics
Universitd Catholique de Louvain
1348 Louvain-la-Neuve
Belgium

J. Edmonds
Dept. o f Combinatorics and
Optimization
University of Waterloo
Ontario, Canada

