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For two polyhedra associated with packing subtrees of a tree, the structure of the vertices 
is described, and efficient algorithms are given for optimisation over the polyhedra. For the related 
problem of covering a tree by subtrees, a reduction to a packing problem, and an efficient algorithm 
are presented when the family of trees is "fork-free". 

1. Introduction 

Given a tree R with vertex set V and a family of  its subtrees o ~ ,  consider the 
problem of  packing these subtrees into the tree: 

(P0) Max Z {c(V)x(T):  TEo~} 

subject to ~ ' { x ( T ) :  T)v} _-< 1 (vEV), 

x(r)~{0, 1} (rc~), 
where c(T) is a weight function on -~. 

It  is known that this problem can be solved by a polynomial-time algorithm 
as the intersection graph of o~ is triangulated [3] and the maximum weighted stable 
set problem on a triangulated graph can be solved efficiently [2], see also [4]. 

In this paper we consider various generalisations of  problem P0. For  related 
problems involving all subtrees of  a tree, see [5]. 

In order to state our  results we need some preparation. First we assume 
that the tree is rooted (with root  rE V). This induces a partial ordering of Vin  the 
usual way: we say that u<v (u, vE V) if  u C v  and u belongs to the unique path  
connecting r and v. We are also given a monotone non-decreasing real valued func- 
tion a: V ~ R ,  i.e., u, vEV, u<v implies a(u)~a(v). 

The first problem we consider is the linear program 

(P1) Max ~ ,  {c(T)x(r) :  TEo~}: xEQ1 

where Q1cR]+~I is described by the inequalities: 

Z { x ( T ) :  T3v}<-a(v) (vEV), 

x (T )  ~ 0 (TE~-). 

AMS subject classification (1980): 68 E 10, 05 C 05, 05 B 40 
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We describe a dual greedy algorithm for P1, which can also be viewed as a 
dynamic programming algorithm. This is one way to obtain a characterisation of 
the vertices of Q1, which are integer whenever a: V-~R is an integer valued mono- 
tone nondecreasing function. 

The second problem we consider is also a packing problem, except that the 
family ~ of subtrees is replaced by the family of all subtrees, and a somewhat special 
objective function. We consider the linear program : 

(P2) Max ~ c(u, v)x(u, v): xEQ~_ 
u, vEV 

where Q ~  R ivl~ is described by the inequalities 

x(u, v) <= a(v) 
uEV 

x(u,v)-x(u,  w) <- 0 if wE[u, v] (u, vEV) 

x(u, v) >= 0 (u, vEV), 

where there is a variable x(u, v) for each pair u, vE V, and where [u, v] denotes the 
vertices on the path connecting u and v. 

Take a solution x(u, v) to P2. Fix u and set ~0=min {x(u, v): vE V, x(u, v)>0} 
and S~={vEV: x(u, v)>0}. If S ~ 0 ,  then S~ is a tree containing u. Now define 
inductively S~={vEV: x(u, v)>~i-1} and ~i=min {x(u, v): x(u, v)>~i-1} un- 
less S~'=0. Clearly S~' is a tree containing u and x(u,v)=aos~(v)+(al-~o) 
s~(v) + ( ~ - ~ )  s~(v) +... where s~ is the characteristic function of S?, i.e., s~(v)= 1 
if vES~ and 0 otherwise. So we may think of a solution x(u, v) of P~ as a weighted 
sum of subtrees S~' of R, each S~ being "rooted" at u. Relative to problem (P1), 
here ~ is the set of all subtrees but the objective value associated with a subtree T is 

max {~' c (u, v): vET}. 
uET 

Here again we obtain a characterisation of the vertices of Q~, and a dual greedy 
algorithm to solve the linear program. The problem P2 with a(v)= 1 for all vE V 
was the major motivation for this work, as it generalises the tree packing problems 
considered in [1]. 

The third problem we consider is that of covering the tree R by subtrees from 
~'. This can be formulated as the integer program: 

(Co) min ~ '  {c(T)x(T): TE,.9 z'} 

Z {x(r): l 
x(T)E {0,1} 

While Co is generally NP-hard, we show that when the family ~- of subtrees 
has a certain property, denoted fork free, which generalises a property of distance 
subtrees, problem Co can be reduced to problem P2 and hence solved efficiently. 

We mentioned already that Po is a maximum weighted stable set problem on 
a triangulated graph. It is shown in Section 5 that the two problems are equivalent. 

It is known that when the constraint matrix appearing in Co is totally balan- 
ced, Co can be solved by linear programming. What is the relationship between 
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totally balanced matrices and node versus subtree incidence matrices when the 
subtree family is forkfree? This and similar questions are discussed in Section 5. 
In addition we return to P2 via the problem that was the starting point of this rese- 
arch, the economic lot sizing problem with backlogging. 

2. Packing with a given family of subtrees 

Some notation is needed. A subtree and its set of  vertices are denoted by 
the same letter. For  any subtree T of R we call r ( T ) = M i n  {v: vE T} the root  of  T. 
This is clearly well-defined. For  vE V we denote R(v) the subtree spanned by the 
vertices {uEV:u>-v}. Note that if u<v, then [u, v]= {wE V: u<:w<-v}. The 
predecessor p(v) of  node v is the first vertex on the path going from v to r. The suc- 
cessor set S(v) of vertex v is the set of  vertices wE V having v as a predecessor. 
The successor set S(T) of a tree Tis  the set of vertices we T with p(w)ET. 

We assume that a(v)>=O for each vE V, as otherwise Q1 and Qz are empty. 
Finally, for vE V we write .~ (v)=  {TE~-: r(T)=v}. 

Here we consider the problem P1, and the associated polytope Qx. We shall 
also need the linear programming dual of Px : 

(D1) min .~ a (v) y(v) 
vEV 

Z {y(~): vET} =-_ c(T) (T<~-) 

y(O --> 0 (rE V). 

First we describe an algorithm for D1. 

The dual greedy algorithm for D1 

All vertices are initially unmarked. Set d(T) --- c(T) for TE ~ .  
i) Choose a vertex vE V that is unmarked but all wER(v)\{v} are marked. 

ii) Fix dual variables 
Set y(v) ,--max {0, max {d(T): TE~Z-(v)}} 

S0 if ~ ( v ) = 0  or d(T)<-<_O for all TE~-(v) 
= [d(To) for some TvE~-(v) otherwise. 

Mark v. For  later use we fix TvE~(v) with y(v)=d(T~) if y (v)>0 ,  ties 
are broken arbitrarily. 
iii) Update d( T), TE ~ .  

Set d(T)~d(T) if  T E ~ ,  v~T. 
Set d(T)~d(T)-y(v) if  T E ~ ,  vET. 

iv) If  r is unmarked, return to i). 
Otherwise, stop. 

Observe that the vector y constructed this way does not depend on the dual 
objective function, a(v), vE V. Note also that on termination of the algorithm y 
is dual feasible and d(T)<=O for each T E ~ .  These facts follow by an easy induc- 
tion argument. 
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The greed), algorithm for P1 

Here we make use of the subtrees T~. that were fixed during the dual greedy 
algorithm. 

All vertices are initially unmarked. Set b(v)~- a(v) for vE V. 
i) Choose a vertex vE V that is 

a) unmarked 
b) for which there is no unmarked vertex w< v. 

ii) Fix primal variables. 
If  y(v)=0,  set x ( T ) = 0  for all TE~(v).  
If  y(v)>0,  set x(To)=b(v), x ( T ) = 0  for TE.~(v)\Tv. 
Mark vertex v. 

iii) Update b(u), uE V. 
If y(v)=0,  b is unchanged. 
If  y(v)>0,  set b(u)~b(u)-x(Tv), uETv. 

b (u) ~ b (u), otherwise. 
iv) If all nodes are marked, stop. 

If  not, return to i). 

Theorem 1. I f  yERl+Vl and xERI+~I are constructed by the dual greedy and the 
greedy algorithm respectively, y is opthnal in D1 and x is optimal in P1. 

Proof. It is easily seen that y and x are dual and primal feasible as d(T)<-O, TE.~, 
and b(u)>=O, uE V respectively. From step iii) of the greedy algorithm for P1, we 
see that y (v)>0  only if b(v)=0. Also x ( T ) > 0  only if d (T)=0.  Hence comple- 
mentary slackness holds and both solutions are optimal. | 

An alternative view of the algorithm used in solving P1 and D~ will be useful 
later. Let G(v) be the optimal value of P~ when a(u) =0  for all uE V\R(v),  a(u) = 1 
for all uER(v). The associated solutions are called 1-packings of R(v). In other 
words G(v) is the optimal value of a 1-packing of R when restricted to the trees 
T E ~  that lie in R(v). 

A recursionfor P1 

G(v) = Max "gg({". ~ ' )  G(w), TMax~ s~(~) (c(T)+ ,~ eZs(r) G(w))}. 

This says that there are essentially two possibilities. Either the optimal solution 
contains no tree TEo~- including the vertex v. In this case the solution must con- 
sist of optimal 1-packings of each of the trees R(w), wES(v). Alternatively if some 
tree T containing v is used in the optimal solution, the remainder of the solution 
must consist of optimal 1-packings of the trees R(w), wES(T). 

The connection between the recursive algorithm and the dual greedy algo- 
rithm is readily seen by observing, that 

(1) y(~,) = c ( v ) -  X G(w) 
w E S(t,) 
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satisfies 
y(v) = Max{O, Max (c(T)-  2 y(w))} 

T E o~(t,) w ~ T \ { v }  

which coincides with the dual variables given by the dual greedy algorithm. 
Now let x v denote an optimal 1-packing of R(v) with value G(v). 

Claim. Let 
x = Z x ° ( a ( v ) - a ( p ( v ) ) )  

v £ V  

where a(p(r))=O by definition, and y be definedby (1), then xERI{I and yERl+Vl are 
optimal solutions to P1 and D~ respectively. 

Proof. Clearly x>=O as xO(T)>=O and a(v)>=a(p(v)) for vEV. To see that x 
satisfies ~ '{x(T) :  T3w}<=a(w), note that ~'{xV(T): r?w}<_-I and X{x"(T):  T3w}= 
=0  if vNw and hence 

Z Q~x~(T)(a(v)-a(p(v))): T)w} = ~_~r~  ~ z~ x~(T)(a(v)-a(p(v))) <= 

<- Z [a(v)-a(p(v))] ~= a(w). 

Its value is Z G(v)(a(v)-a(p(v))). 
vCV 

To show its optimality note that y(v) is a dual feasible solution of value 

Z = Z Z = Z I 
vE V vE V w.C_ S(t,) vE g 

We have now shown 

Theorem 2. Every vertex of Q~ is of the form 

x =  Z x~(a(v)-a(p(v))). ! 
vEV 

3. Packing with all possible subtrees 

Here we consider problem P2. The approach is similar to that of the pre- 
vious section. We use a dual greedy or recursive algorithm to calculate the optimal 
value H(v)ofa packing for P2when a (u )= l  for uER(v) and a (u)=0  otherwise, 
and let xVERl< '-' be the associated optimal 1-packing. The family of 1-packings 
x v, vE V is then used to construct an optimal packing for P2 for any a: V~R* that 
is nondecreasing outwards from r. 

A recursive algorithm for P2 

In order to calculate H(v) recursively starting from the leaves and working 
inward towards the root, we use an auxiliary function ¢pu(v) which is essentially 
the optimal value of a 1-packing of R(v) with the extra condition x(u, v)= 1. But 
these is another point of view in looking at q),(v) that will be useful. Remember 
that the tree R is rooted at r but, as we mentioned in the introduction, it is conve- 
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nient to think of a solution x(u, v) of P2 as a weighted sum of subtrees S[' "rooted" 
at node u. If the solution x(u, v) takes 0-1 values only (which will be the case with 
the 1-packing of R(v)), then where is at most one subtree S u rooted at u and SU~ 
OS  v=0 for u~v .  In this case we say that the subtree S u covers the node v pro- 
vided x(u, v)= I. More precisely, we define q~,(v) as follows: If  u>-v, ~ou(v) is the 
optimal weight of  a 1-packing of R(v) where v is covered by a subtree S" rooted 
at u. If u~v, then ~0,(v) is the optimal weight of  a 1-packing of R(v)U[u, v] where 
v is covered by a subtree S u rooted at u, and only the values of  covering vertices of  
R(v) are counted. The formal definition is this: 

if u~=v,~o.(v)=max ~ • c(w,z) x(w,z):xEQ2, 
wE R(v) z E R(v) 

x(u, v ) = l ,  x ( w , z ) = 0  if wER(v) o r i f  zCR(v) 
x(w, z)E {0, 1 } otherwise 

if u~v, ~0,(v)=max ~ ~ c(w, z) x(w, z): xEQz, 
w~R(v)lJ{u} zER(v) 

x(u,v)=l,x(w,z)=O if wCR(v)U{u} or zCR(v) 
x(w, z)E{O, 1 } otherwise. 

Now we obtain: 
n(o)  = Ma× { 27 Ma× 

w ~ S(v) u E R(v) 

because in an optimal 1-packing of  R(v) either no subtree covers vertex v, or vertex 
v is covered by a subtree rooted at u where uER(v). 

The recursion for q~u(V) is given by: 

q~.(v) = c(u, v)+ Z Max{q~.(w), H(w)} if uCR(v)\{v}, 
w ~ S(v) 

q~,(v) = c(u, v)+ ~ Max{q~,(w), H(w)}+~o.(w') if uER(v)\{v} 
C s (v ) \ (w '}  

where w'=S(v)N[u, v] is the first vertex after v on the path [v, u]. 
To justify this recursion, we decompose the value of  the 1-packing of  R(v) 

into c(u, v) plus the value of the packing of  the trees R(w), wES(v). When u¢ 
¢ R(v)\{v}, the value of the packing of  R(w) is ~o,(w) if x(u, w)= I, and H(w) 
if x(u, w)=O, wES(v). When uER(v)\{v}, the argument is the same except that 
x(u, v)=l implies x(u, w)=l for all wE[u, v], and hence the value of  the packing 
of  R(w') is ~o.(w'). 

To compute these values we work through the vertices vE V moving in from 
the leaves to the root, and for v fixed we first calculate q~,(v) for all uE V and then 
H(v). After computing H(v) we compute x ~, the associated optimal 1-packing of 
R(v) having value H(v). To calculate x ~, we set x"(Uo, v) = 1 if H(v)= Max q~,(v) = 

u E R(v) 

=Cp,o(V) and trace back through cp,0(v), and we set x"(z, v)=0  for all zE V if H(v) = 
= ~ H(w) and then trace back through H(w) for all wES(v). 

w~S(v)  

Theorem 3. x =  ~ x"(a(v)-a(p(v))) is an optimal solution to P~. 
u E V  

Proof. It is readily checked that x belongs to P2 and its value is ~ '  H(v)(a(v)- 
v ~ V  

-a(p(v))). 
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Now we exhibit a dual feasible solution with the same value. The dual of P2 is 

Min .~  a(v)y(v) 
v E V  

y(V)+Z(U, V)-- Z Z(U, W) >= C(R, I.)) (U, v~V, u ~ v) 
w C O(u, v) 

(D2) y(u)-- Z z(u, w) ~- c(u, u) (u~V) 
w E Q(u) 

y(v), z(u, v) ~- 0 

where Q(u, v) is the set of vertices w such that v lies on the path from u to w and is 
a neighbour of w, and Q(u)= Q(u, u) is the set of neighbours of u. In fact, we again 
construct the dual solution by a greedy algorithm. Set 

y(v) = H(v)-  .~ H(w). 
w E S(v) 

With this definition Pz and D~ have the same value. Now for each uE V, ignore 
the initial ordering of the vertices, and consider a new ordering in which u is the 
root. Working in from the leaves to the root u, define 

z(u,v)=Max{O,c(u,v)-y(v)+ • z(u,w)} for vCV. 
w E QCu, v) 

Clearly, y, z->O and, by construction, the first inequalities of  D~ are satisfied. To 
show that the second set is satisfied, consider the largest subtree TC={u}U 
U {v6 V: z(u, v)>O} containing u. Now 

c(., u ) - y ( . ) +  Z zCu, w) = Z (cCu, w)-y(w)). 
wE Q(u) w E T  

But 
H(r(T)) >= Z c(u, v)+ Z H(w) 

v E T  wES(T) 
and hence 

(c(u, v)--y(v)) = Z c(u, v)-- Z y(w) 
v E T  v E T  w E T  

= Z c(u, v)-(H(~(7~))- Z H(w)) ~_ o. 1 
v~ T wE S(T)  

We mention here that essentially the same method works if in P2 one or 
more of the inequalities ~ x(u, v)<-a(v) is replaced by the equality ~ x(u, v)= 

u E V  u E V  

=a(v). If  such a change occurs at a vertex vE V, the recursion for H just changes to 

H(v) = Max ~o.(v). 
u ~ R(v) 
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4. Covering with a given family of  subtrees 

Now we consider the problem of finding a minimum value cover of R by 
subtrees. 

Z 0 = Min {.~Y c(T)x(T): TEY} 

(c0) Z [ x ( r ) :  7~v)--> 1 (v~v) 

x(T)>=O and integer (TE~'). 

We assume throughout that c(T)>=O as otherwise Z o = - ~  or Co has 
no feasible solution. 

We also consider two related problems: 

(Ca): Find a minimum wdue partition of R using subtrees S ~  T, (TC~-) where 
the cost c(S, T) of each subtree S =  T is c(T). In C1 one tree TE-~- may contain 
several subtrees S taking part in the partition. Let Z1 be the optimal value of Ca. 
Formally 

Z~ = rain {~'{c(S, T)x(S, T): S~T,  TE~} subject to x(S, T)E{0, 1} and 

{x(S,T): yES, S c= T, TE~} = 1 for each vEV}. 

(C2): Find a minimum value partition of R using at most one subtree S ~  T from 
each T E ~  with cost c(S, T)=c(T). Let Z.., be the optimal value of C2. Formally 

Z2 = min{~{c(S,  T)x(S, T): SC=T, T ~ }  subject to x(S, T)E{0, 1} and 

~{x(S ,T)"  yES, SGT, TE-~}= 1 for each vEV, and 

{x(S,T): S ~  T } ~  1 for each TE~}. 

Observation. Z 0 ~ Zt <- Z2. 

We first show that there is a good algorithm for Cz with the more general 
subtree cost function c(S, T)=c(T)+ ~ cr,~ if S~T.  In fact we reduce C1 

t~E S 

to the problem P2- 

Reduction qfCa to P2 

For each pair (v, T) with TE~  and vET, add a dummy vertex uo, r to R, 
and an edge (v, uv. ~) between the dummy vertex and v. On the resulting tree, define 
the values as follows: 

c(uv,,r, uv, T) = - c ( T )  (v.;.T, TE-~) 

C(U,,,T, W) =--CT, w (vET, TE~', wET) 

c(u, v) = -  ~ otherwise. 

The packing problem P~ on the extended graph with equalities (= 1) on the vertices 
of R and inequalities (-<_ 1) on the dummy nodes solves Ca. 
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Now consider the solution of  Ca. We say that a set of  subtrees ~ * ~  
is a cover for R if U{T: TEf f*}=R.  A family ~- of  subtrees is said to be parti- 
tionable if for every cover - ~ * ~ o  ~ one can find a subtree S(T)C=T for each 
TE.~-* such that U S(T)=R, and if T1, To.E.N* with TI¢T2 then S(T~)A 

T C ~ *  

NS(T2)=0.  

Proposition 4. Co is well-solved for partitionable families, and Zo = ZI = Z2. 

Proof. As ~- is partitionable, every feasible solution of  Co gives rise to a solution 
of C2 of the same value and so Zo=Z~=Z~. Hence to solve Co it suffices to solve 
C1 and take as a cover ~-* the set of  trees TE.fi used in the solution of C~. I 

Therefore we are interested in the existence of partitionable families. 

Definition. Trees T1 and T~ of R have a fork if there are vertices xl,  3'1 E TI\T2 and 
xo, y2E T2\T1 such that [xl, y~] and [x2, Y.2] have a point in common. A family ~" 
of subtrees of  R is fork-free if no pair T~, T2Eo~ has a fork. 

Figure 1 shows a tree R, and two subtrees with a fork. 

r, : (o,~,21 

r2 : [o~3,~} 

Fig. 1. T~= {0, 1,2}, T2= {0, 3, 4} 

We will prove soon that a fork-tree family is partitionable. The converse 
is clearly not true. But given a tree R and a family o~ of  its subtrees and a fixed 
subtree R' of  R, we say that f f  is partionable on R" if ~ ' = { T N R ' :  TE°~ -} is a 
partitionabte family of  subtrees of  R'. Then one can see easily that -~ is fork-tree 
if  it is partitionable on all subtrees R" of  R. 

Theorem 5. There exists a "good" algorithm for the covering problem Co when the 
family o~ o f  subtrees is fork-free. 

Proofl It suffices to show that every fork-flee family ~- is partitionable. 
Consider a fork-tree fanfily ~- that covers R but no proper subfamily of  

covers R. Consider then problem C1 with each cost c(S, T ) = I  for any S ~  TEo~. 
We call a subtree S of  a tree TEo~ a block if x(S, T) = 1 in the given minimum 
value partition of R. In the given minimum value partition each block comes from 
a subtree TEo~ and this subtree T is thought to be fixed together with the block. 

If the theorem is true then the value of C1 is just [ff]. We argue by contra- 
diction so we take a family ~- so that the number of blocks in the minimum value 
partition is larger than [~l- For  this ~-, any minimum value partition contains two 
blocks SI(T) and S2(T) coming from the same tree TE~-. Denote by SI(To) and 
S2(To) two such blocks whose distance apart is minimal. Consider now that mi- 
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nimum value partition of R for which this minimal distance (between St(To) and 
S2(To)) is minimum. 

This minimum distance is realized by a path (in R or in To) P = {v0, vl . . . .  , v,} 
where voESl(To), v, ES2(To). Clearly n > l  as otherwise the block SI(To)USZ(To) 
could replace the two blocks St(To), S2(To) and the value of  this partition would 
be less. 

The point vl is covered by a block S(T1) coming from some TIE~-. T1 is 
different from To for otherwise the distance between S(TO and S2(To) would be 
less than that between S~(To) and S~(To). 

Claim 1. SI(To)~ T1, S2(To)~ T1, S(T1)~ To. 

Proof. If, for instance, SI(To)C=T1, then SI(To)US(T~) would be a block of  T1 
in a partition of  R with smaller value. The other two cases are similar and left to 
the reader. 1 

Denote now by B 1, ..., B p the branches of S(Tx) that stem from v~ but do 
not  contain v~ and set B°=S(T~)\({vl}UB~U... UBP). (B o may be empty.) Clearly 
v~ETo and by Claim !, B ~  To cannot hold for every i=0 ,  1 . . . . .  p. 

Claim 2. There is exactly one iE {0, ..., p} with B i ~ To. 

Proof. Assume, on the contrary, that Bi~ To and BJ~ To and choose a point 
xlEB~\To, x2EBJ\To. By Claim 1 there are points y~ESI(To)\T1 and y~E 
ES2(To)\To . Then the two trees To, T a E ~  have a fork because the paths [x~, xz] 
and [y~,y2] meet at v~. 1 

Now we are going to construct two new blocks from S~(To)US(TO which 
will form (together with the other blocks) a minimum value partition of R with 
minimal distance less than n. Let B ~ be the unique branch with B ~  To. Then 
(SI(To)US(T1))\B i and B i are two new blocks, the first coming from To and the 
second from 7"1. The distance from S2(To) to the new block (SI(To)LJS(TO)\F 
is less than n. This is a contradiction. | 

5. Further observations 

A 0-1 matrix A is called a tree-matrix if it is the node versus subtree incidence 
matrix of  a subtree family of a tree. A clique in a graph is the vertex set of  a maximal 
complete subgraph. 

Proposition 6..4 is a tree-matrix i f  and only i f  A is the clique-node incidence matrix 
o f  a triangulated graph, including possibly some dominated rows. I 

This is easily proved using the Helly property of the subtrees of  a tree and 
a theorem of Gavril [3] saying that the intersection graphs of  subtrees of  a tree are 
exactly the triangulated graphs. The proof  is left to the reader. 

It follows that we can consider the primal and dual variables for P1 as node 
packing and clique weights in the corresponding triangulated graphs. If  one checks 
now how our algorithm for Pa works on the corresponding triangulated graph, 
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one can see that it does essentially the same thing as a perfect elimination scheme 
(see Golumbic [4]). In this sense what is new in Theorem 1 is the replacement of  
a(v) = - 1 by a monotone function. 

As triangulated graphs can be recognised by a polynomial time algorithm it 
is of no surprise that the same is true for tree-matrices. 

An Algorithm to Recogn&e Subtree Matrices  

Let M be a 0-1 matrix 
a) I f M h a s  a unit column ei, set M * - M \ e j .  
b) If M has no unit columns and m,j <_-m~j for all j, set M * - M ' x ,  mt (drop 

row t from M) 
c) If  M has no unit columns and the rows form a clutter, stop. M is not a 

tree matrix. 
d) Repeat steps a), b), c) until M = 0 ,  then M is a tree matrix. 

The validation of the algorithm is left to the reader, we only prove c): any 
tree representation of M must have a leaf t. Either there exists a tree T=  {t} giving 
rise to a unit column or every tree containing t contains its neighbour s. In other 
words msj>=mti for a l l j  where s is the neighbour of t. 

We now consider the covering problem Co. In general it is NP-hard as 
any 0-1 covering problem reduces to it by adding a row of l's. Therefore it is not 
surprising that its linear programming relaxation does not in general have a 0-1 
solution. The simplest example showing this is the tree R depicted in Figure 2. 

$ 

\ 
- 2 

Fig. 2. ,.~'= {7"1, T2 , Ta), 
7"1={0, 1,2}, T2={0, 2, 3), 

T~= {0, 3, t}, c(T~)=c(T~)=c(T~)= 1 

Given that Co is well-solved for fork-free families, one might ask whether 
in such cases the linear programming relaxation has a 0-1 solution. But the three 
subtrees appearing in Figure 2 are fork-free, so this is not the case. However it is 
known that the associated linear program has an integer solution when dealing 
with distance subtrees Tu={v~ V: d(v, u)<-~}, and more generally when the 0-1 
incidence matrix of the subtrees is totally balanced (see Kolen [7], Hoffman, Kolen, 
Sakarovitch [6] for details). It is readily shown using for instance the above algorithm 
that every totally balanced matrix is a subtree matrix. 

Now both totally balanced (TB) matrices and fork-free (FF) families give 
rise to subtree matrices (SM). Are (TB) and (FF) related? The example of Figure 2 
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is forkfree, but cannot be totally balanced as the LP relaxation is noninteger. On 
the other hand, there exists a totaUy balanced matrix, for which there exists a unique 
representation as a family of subtrees and the family is not forkfree. Finally it is 
readily checked that the distance subtrees defined above are forkfree, so FF (~ TB # 0. 

Finally we return to problem P2- We consider the economic lot sizing prob- 
lem with backlogging, which was one of  the problems motivating this research. 
The problem can be formulated as a simple plant location problem where the plants 
are located on an interval, (or in the terminology of  this paper: at the vertices of 
a tree R having vertex set V={I . . . . .  n} and edges ( i , i+1) ,  i=1 ,  . . . , n - l ,  so 
the tree is a simple path). 

The formulation is: 

Min ~ ~ c(u, v)x(u, v) 

x(u, 0 = 1 {1 , . . . , ,0 )  
(ELS) ~=1 

x ( . ,  v ) - x ( . ,  u) 0 ( . ,  {1, . . ,  n}, u 

X(U, v) >-- 0 (u, vE {1, ..., n}), 

where x(u, v) is the fraction of the demand in period v produced in period u, c(u, u) 
is the fixed cost of  setting up in period u plus pud~, c(u, v)=p~+c, + +... +c~+_l)do 
if u>o, c(u, v)=(p~+c~ +... +cV+x)d~ if v<u, where p~ is the price of unit pro- 
duction in period u, c~ + _~0 and c~- _~0 are the price of  unit transportation from 
u to u + l  and u + l  to u respectively and do is the demand in period v. It is typi- 
cally imposed that x(u, u)E{0, 1}. Now we can show 

Theorem 7. ELS has an optimal 0-1 solution. 

Outline of proof. It is easily shown that optimal solutions to ELS satisfy the inequ- 
alities 

X(U, u) ~-- X(U, U+ 1) ~ X(U, u+ 1) ~ ... 
and 

x(u, u) >=x(u, u - l )  ~_x(u, u - 2 )  _~ ..., for all uE{l . . . .  , n}. 

Adding these inequalities to ELS, and removing the dominated inequalities, the 
resulting linear program is of the form Pz, with R an interval graph, a(v)----1 for 
vE V, and equality constraints at each node. It follows from Theorem 3 that ELS 
has an optimal integer solution. II 
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