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ON A COMMON GENERALIZATION OF BORSUK'’S
AND RADON’S THEOREM

By
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1. The well-known theorem of RADON [3] says that if ACR! and |4|=d+2,
then there exist B, Cc A, B(NC= such that conv B(lconv C is not empty.
It is clear that for each finite set A={a;, ..., q,} in R? with n=d+2 one can
find a linear map f: R4**—~R? and a set A"={ay, ..., a;}C R*** such that f(a})=q;
i=1,2,...,n and intconv A" is not empty and vert conv A"=A4". In view of this
fact, Radon’s theorem can be stated in the following way.

RADON’S THEOREM. Let PC R*Y be a convex polytope with non-empty interior.
Put A=vert P. If f: R***+R? is a linear map, then there exist two disjoint sets
B, Cc A such that f(conv B)(\f(conv C) is non-empty.

The surprising fact here is that the word ““linear” can be replaced by “con-
tinuous”, namely, a continuous analogue of Radon’s theorem is true;

THEOREM 1. Let P RY*Y be a convex polytope with non-empty interior. Given
an f: OP—~R* continuous map, there exist two disjoint faces, B and C, of P such that

FBNFIO)=.

COROLLARY. Let T be a {d+1)-dimensional simplex. Denote its d-faces by
d+2

Li,Ly, ....Lios. If f: 0T—R® is a continuous map, then Ol F(L) is non-empty..

If f is a linear map, then this statement is an easy consequence (in fact, equiv-
alent) of Helly’s theorem (see [3]). The interesting fact here is that in this particular
case a continuous version of Helly’s theorem holds true.

Let us now introduce some notions. Given a convex compact set Cc R+
with non-empty interior and a vector a€ R4*%, a#0, we write

C(a) = {x€C: {a, xy = max (a, 1)}

Two points, x and y, of C are said to be opposite if for some a€ R***, x€C(a) and
y€C(—a). If C happens to be a polytope, then C(a) is a proper face of C. In this
case we say that the two faces C(a) and C(—a) are opposite.

THEOREM 2. Given a polytope PCR®*‘ with non-empty interior and a con-
tinuous map f: OP—~RY, there exist two opposite faces, B and C, of P such that
FBYNF(C) is non-empiy.

It is evident that opposite faces of P are disjoint. Thus Theorem 2 implies
Theorem 1.

Speaking about points instead of faces Theorem 2 can be formulated as follows.
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THEOREM 2’. Given a polytope PCR**' with non-empty interior and a con-
tinuous map f: 9P —~R®, there exist two opposite points, x and y, of P with f (x)=f ().

We shall prove this Theorem 2" which yields a generalization of Borsuk’s the-
orem [1]. In order to state Borsuk’s theorem put S%={x€ R4*!: || x| =1}.

Borsuk’s THEOREM. If f: S¢~R4 is a continuous map, then there is a point

x€S? with f(x)=f(—x).

THEOREM 3. Let CCR%*' be a convex compact set with nonempty interior. If
f: 0C—R? is a continuous map, then there exist two opposite points, x and y, of C

with f(x)=f(y).

Again, Theorem 3 implies Theorem 2’. However, we shall get Theorem 3 from
Theorem 2’ by a simple continuity argument.

Further, our Theorem 3 contains Borsuk’s theorem (put simply C=conv 59).
‘On the other hand, Theorem 2’ is proved using Borsuk’s theorem.

2. We need a simple proposition.

ProrosiTION. If P is a polytope in R® and x, y, x,6P n=1,2, ... and lim x,=x,
then there is an &=0 and N such that x,+¢&-(y—x)€P for n=N.

Proor. This proposition is true for any cone C (instead of P) whose vertex
is x (with arbitrary &>0 and n), so it is true for CN B(x, 6) where B(x, J) is the
ball with center x and radius 6. But PN B{(x, §)=CMNB(x,0) for a sufficiently
small 6>0 where

C={z6R": z=x+A(w—x), >0, weP}
is a cone with vertex x.

PrOOF OF THEOREM 2’. Put O=P—P. Q is a polytope with non-empty interior.
It is centrally symmetric with respect to the origin. For x¢Q write

h(x) = max {z: x = z—w, z, wEP}

where max is meant in the lexicographic ordering of R*1. Clearly h: QP is well-
defined. An easy computation shows that the vector w corresponding to z=/A(x)
equals A(—x).

We claim that /4 is continuous. Indeed, let x, x,€0, x=lim x, and x,=z,—w,
where z,=h(x,). We can choose a subsequence n; so that z,, and, consequently
w,, converge. Put z=limz, and w=limw,; clearly x=z—w. We claim that
Z= h(x) If not, then z<h(x) in the lex1cograph1c ordering. By the Proposition,
for a suﬁi01ently small positive ¢ and large 7

7 =z, +e(h(x)~z)eP and w =w,+e(h(—x)—w)EP.
Now z'—w’=x, and z'>z, contradicting z,=h(x,). This means that z=h(x).
Thus, every convergent subsequence of z, tends to h(x). Now by compactness

lim z,=Ah(x), ie., & is continuous.
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Next we claim that x€Q(a) implies A(x)c P(a) and A(—x)€P(—a). Indeed, if
x€Q(a) then max {a, t)=(a, x). Of course, x=h(x)—h(—x) and A(x), hi{(—x)EP.
<0

Whence
{a, h(x))+{(—a, h(—x)) = {a,x) = max (a, ty =

= (=0 = g ) g

and so A(x)€P(a) and h(—x)€P(~—a). This further implies that for x€9Q h(x)
and h(—x) belong to JP.

Now we define a map g: 00 —~R? in the following way: for x£9Q let g(x)=
=f(h(x)). This map is welldefined and continuous. Let us observe now that the
conditions of Borsuk’s theorem are fulfilled for the map g (instead of $¢ we have
00 here but this is indifferent). In this case Borsuk’s theorem says that there is a
point x€0Q with g(x)=g(—x). Now there exists a€ R+, a0 such that x€Q(a).
Then z=h(x)cP(a) and w=h(—x)EP(—a), i.e., z and w are opposite points
of P and f(2)=f(h(x))=gx)=g(—x)=f(h(—x))=F(w). And this is what we
wanted to prove.

Proor of THE COROLLARY. Itis easy to check that if B and C are disjoint faces
of the simplex 7, then for any /=1,2, ...,d+2 either BCL; or CcL, (or both).
This fact proves the Corollary.

ProOOF OF THEOREM 3. Without loss of generality we may suppose that O¢int C.

Now let P be a polytope inscribed in C, i.e., vert PCdC and suppose further
that O€int P. Then a continuous map fp: dP->R* can be defined as f,(x)=£(}x),
where 24 is the unique positive number with Jx¢dC. By Theorem 2, there are
opposite points of P, z, and wp with fo(zp)=fp(Wp).

Now choose a sequence of inscribed polytopes Py, P,, ... with O¢int P,. Suppose

further that vert P,cvert P,.; and dCN|J P, is dense in 8C. Again, for each

1
n there exist opposite (for P,) points z, and w, with f,(z,)=f,(w,) where f,= fp,-
Since z, and w, are opposite points in P, there is a vector ,£5% such that
Z,,EP,,(CZ,,) and Wnépn(_an)
By the compactness of C and S¢ we may suppose that z,, w, and g, converge,
their limits are z, wedC and a€.S? respectively. It is easy to sec that z and w are
opposite points of C (with normal a) and f(z)=7(w).

3. REMARKS. 1. Theorem 1 can be interpreted in the following way. Let
PCR*' be a convex polytope with non-empty interior. Then it is not possible
to make a drawing of 9P in R’ so that disjoint faces of P be disjoint in the drawing.

2. We can give a second proof of Theorem 2 which is more involved than the
above one but does not make use of Borsuk’s theorem. It relies on a suitably modi-
fied version of the main lemma of [2].

3. The following generalization of Theorem 3 holds true.

THEOREM 4. Let CCR'*' be a convex compact set with non-empty interior.
Let f be a point to set map from 0C to the family of all compact convex subsets of
a compact set of R%. If f is upper semi-continuous (i.e., X,~x, y,€ f(x,), and y,—>y
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implies yef(x)), then there exist two opposite points, z and w, of C with
fONfw)=a.

This theorem follows from Theorem 3 nearly the same way as Kakutani’s
fixed-point theorem follows from Brouwer’s one.

4. We conclude with a conjecture. There is a generalization of Radon’s theorem
which is due to H. TVERBERG [5]. In the spirit of our formulation of Radon’s theorem
this generalization runs as follows:

THEOREM. Let PCR" be a convex polytope with non-empty interior. Here
n=(—1D(d+1). Given an f: R*—~R* linear map there are disjoint proper faces

By, By, ..., B, of P, such that ) f(B;) is non-empty.
i=1

We think (but can neither pfove nor disprove) that in this theorem it is enough
to assume that f: dP—R? is a continuous map.

ACKNOWLEDGEMENT. We are indebted to Prof. M. Bognar for his valuable
comments on an earlier version of this paper and to L. Lovasz for the question
that led us from Theorem 2’ to Theorem 3.

References

1] P. ALexaNDrOFF, H. Hopr, Topologie, Springer (Berlin, 1935).

[2] 1. BARANY, A#n algorithm to compute fixed points (unpublished).

[3] B. GRUNBAUM, Convex Polytopes, Interscience (LLondon, 1967).

[4] S. KARKUTANI, A generalization of Brouwer’s fixed-point theorem, Duke Math. J., 8 (1941),
457—458.

[5] H. TvERBERG, A generalization of Radon’s theorem, J. London Math. Soc., 41 (1966), 123—
128.

( Received February 17, 1978)

OTSZK, COORDINATION AND SCIENTIFIC SECRETARIAT
1132 BUDAPEST, VICTOR HUGO U, 18-22.

Acta Mathematica Academiae Scientiorum Hungaricae 34, 1979



