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A VECTOR-SUM THEOREM IN TWO-DIMENSIONAL SPACE

1. BARANY (Budapest) and V. S. GRINBERG (Harkov)

Abstract
Given a finite set X of vectors from the unit ball of the max norm in the two-
dimensional space whose sum is zero, it is always possible to write X —= {x,, . .., z,}
k
in such a way that the first coordinates of each partial sum X z; lie in [ —1, 1] and the
1

second coordinates lie in [ —C, 0] where C is a universal constant.

*

R? denotes, as usual, the d-dimensional REuclidean space with a fixed
basis, @/ is the j-th coordinate of » € R%. | X| denotes the cardinality of X.
For the sake of brevity we write s(X) = J{x:x ¢ X} if X € R, |X| < oo.
Cy, C,, ... will denote independent constants.

A well-known theorem of Steinitz [4] asserts that if X ¢ B < RY,
B is convex and compact, | X| = n and s(X) = 0, then there exists an indexing
X = {z;, %, ...,2,} such that

% + % + ...+ 2, €AB = {Ab€ R b¢ B}

for each £k =1, ..., n, where 1> 0 depends only on 4 and B.

This result was significantly improved in [3]: it is shown there that
A = d will do for any convex, compact B. Using this theorem we are going
to give a coordinate-dependent bound for the partial sums in two-dimensional
space. More precisely, we will prove the following

TaEOREM. Let
Xc{zeR: o <1, 22 <1}, | X]| =n,s(X) =0.
Then there is an indexing X = {x,, z,, . . ., x,,} such that, for each k,
i+ ...+ wi<loand o3+ ... + a3 <C

where C ts a universal constant.
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It is clear that the bound for the first coordinates of the partial sums
cannot be improved so in this sense our theorem is best possible.

We mention further that our theorem will be proved with an effective
O(n?) algorithm, so it may turn out to be useful in applications of the Steinitz
lemma in scheduling theory (cf. [1], [2]).

We split the proof into four steps. We start with a definition. A set

Y= {y5% - Yny C B
m
is called a bounded grouping of X < R? if there is a partition | X; of X
i=1
(X; N X; =0 for i 5= j) with |X,| <O, and y, = s(X)).

LemMma 1. If Z < [—1,1], |Z| < oo, then it has a bounded grouping Y
whose diameter is not larger than 1.

Proor. Adding zeros to Z if necessary, we may assume that Z = Z+ |J
UZ-,2* NZ~-=9,Z-c[-1,0], Z* c [0,1] and |ZT| =|Z~| = n. Let
us order Z~ = {2;,2,,...,2,} with 2 <z, <...<z, and Z* = {uy, u,,

, #,} with u; > uy > ... > u,. Consider the partition

{zv )} U {25 %} U ... U {20 un}
of Z. This gives a bounded grouping Y = {y, ..., y,} with y;, =z + u,
The diameter of Y does not exceed 1 because

Iyi“'yj|=|z1_zj+“i‘“uj|£1- O

Lemma 2. If Z ¢ [—26,1 — 28] with 6 € [0, 1/4] and |Z| < oo, then
Z has a bounded grouping ¥ < [—2e, 1 — 3e] with some ¢ € [0, 1/4].

Proor. Define
“={2€Z:-20<2< —0}and ZT ={2€Z:1 — 36 <2 <1 — 26}.

Observe that z€Z~ and w € Z* imply —6 <<z + u <1 — 34. Form disjoint
pairs {z, } with 2 € Z~ and » € Z* until possible — this will be the partition
for Y plus the non-paired elements of Z taken as singletons. Then Y is a bounded
grouping and if |Z—| < |Z*|, then ¥ c [—48,1 — 28] so we may take ¢ = §/2
and if |Z—] > |Z*|, then ¥ < [—26,1 — 38] s0 ¢ = ¢ will do. |

LemMa 3. Zc [-1,1], |Z|=mn, |y <1 and |8(Z) + y| < 1. Then
there is an indexing Z = {2y, 25, . . ., 2,} suchthat |y + 2z, + 2 + ... + z,| <1,
(k=1,2,.. .,n).

Proor. For » = 1 this is evident. To use induction for » > 1 it is suffi-
cient to find z, € Z with [z, + y| < 1. Assume y > 0 (the other case is sym-



BARANY, GRINBERG: A VECTOR-SUM THEOREM 137

metric). Then one can take any non-positive element of Z for z, and if
each element of Z is positive, then one can take any of them for z, because

2o+ y<sZ)+y<1 [

LeEMMA 4. Let
X={zeRrR: || <1, 22 <1}, | X|=mn

and Y = {y,, .. ., Y} be a bounded grouping of X with |y} + ... + 43| <1
and |y; + ... + yi| <O (k= 1,...,m). Then there is an indexing of X =
= {Z), &y, . .., x,} such that |z} + ... + xp| <1 and |a] + ... + 23] <O,
k=1,...n).

Proor. X will be ordered in the same way as Y, so we have to give the
ordering inside the groups X; where y; = s(X;). To do so we apply Lemma 3
for the first coordinates. This shows that the first coordinates of each partial
sum lie in [—1, 1]. Boundedness of the second coordinates of the partial
sums follows from the boundedness of the grouping. O

Proovr of the Theorem. First, apply Lemma 1 for the first coordinates
of X. For symmetry reasons, we may suppose that the bounded grouping
we get lies in [—24, 1 — 24] for some ¢ € [0, 1/4]. Applying Lemma 2, we
get a bounded grouping

YcB={x€R: —2ea' <1~ 3¢, 22| <Oy}

with some ¢ € [0, 1/4]. Using the result from {3] mentioned in the introduc-
tion, we find an indexing ¥ = {y;, ¥p, - - - Y} With 9y + ¥, + ... + Y, € 2B
k=1,2,... m).

Now we are going to find an indexing for Y such that the first coordi-
nates of each partial sum lie in [—1, 1]. If this is not so for the indexing y,,
Yor -« Ym» then &<1/6 and y; +y3 + ... + y, > 1 for some p. Then
8(Y) = 0 and —2e < y; imply the existence of ¢ > p with 1 — 6¢ <yl +
+ ...4, <1 — 4e Set now z =y, (¢ + g is meant modulo m). Then for
the indexing Y = {2;,2,,...,%,} We have

A+ ... +2<land |22+ ... +2f <G,
(k=1,...,m). To finish the proof one has to apply Lemma 4. |
Carrying out the calculations one gets that the Theorem holds with

C = 18. We think this bound is not sharp. We mention finally that the same
method works in R? (d > 2) and gives the following result. If

Xc{zeR: 2t <L1,..., 29 <1}, |X| =n and s(X) =0,
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then there is an indexing X = {a, ..., #,} such that

]w}+...+x}‘[g%and o + .. .ah| < Cd
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