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1. Main results

This paper is about the sum of vectors in a normed plane. We fix a norm ‖ . ‖ in R
2

whose unit ball is B; so B is a 0-symmetric convex body. There are some interesting
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results about sums of unit vectors in normed planes. For instance, it is proved by
Swanepoel in [5] (and reproved later in [1]) that for every subset V = {v1, . . . , vn} ⊂ B of 
unit vectors, with n an odd number, we may choose numbers ε1, ε2, . . . , εn from {1, −1}
such that ‖

∑
vi∈V εivi‖ ≤ 1. This time we are interested in unit vectors whose sum has 

length at least 1.
We write u ·v for the usual scalar product of u, v ∈ R

2 and [n] for the set {1, 2, . . . , n}. 
Here comes our first result.

Theorem 1. Assume n ≥ 3 is an odd integer and V = {v1, v2, . . . , vn} ⊂ R
2 is a set of 

unit vectors. If u · vi ≥ 0 for every i ∈ [n] with a suitable non-zero vector u ∈ R
2, then

‖v1 + v2 + ... + vn‖ ≥ 1.

Here and in what follows we can assume that V is a multiset, that is, vi = vj can 
happen even if i �= j. Perhaps one should think of V as a sequence of n vectors from R

2.
In accordance to the celebrated Helly’s theorem (see [3]), results of the type “if every m

members of a family of objects have property P then the entire family has the property P” 
are called Helly-type theorems. Our main results are two unusual Helly type theorems 
whose proof uses Theorem 1. For information about Helly type results the reader may 
consult [4].

Theorem 2. Assume n ≥ 3 is an odd integer and V = {v1, v2, . . . , vn} ⊂ R
2 is a set of 

unit vectors. If the sum of any three of them has norm at least 1, then

‖v1 + v2 + ... + vn‖ ≥ 1.

Theorem 3. Assume n ≥ 3 is an odd integer and V = {v1, v2, . . . , vn} ⊂ B. If the sum 
of any three elements of V has norm larger than 1, then

‖v1 + v2 + ... + vn‖ > 1.

To our surprise Theorem 3 fails in the following form: If V ⊂ B, |V | is odd, and the 
sum of any three of its elements has norm at least 1, then ‖v1 + v2 + ... + vn‖ ≥ 1. 
The example is with the max norm and the vectors are v1 = (1, 1), v2 = (−1, 1), and 
v3 = v4 = v5 = (0, −1/2). This is also an example showing that Theorem 2 does not 
hold if we require V ⊂ B instead of ‖vi‖ = 1 for all i.

Note that in these theorems n has to be odd. Indeed, let w1 and w2 be two antipodal 
unit vectors. Set n = 2k, v1 = . . . = vk = w1 and vk+1 = . . . = vn = w2. The conditions 
of Theorems 1 and 2 are satisfied (except that n is even now) but ‖v1 +v2 + ... +vn‖ = 0. 
A minor modification of this example shows that n has to be odd in Theorem 3 as well. 
Namely, let the segment [z1, z2] be a Euclidean diameter of B, and choose w1, w2 very 
close to z1, z2 so that w1 + w2 has norm < 1/k and is orthogonal to z1. This is clearly 
possible. Then with n = 2k, v1 = . . . = vk = w1 and vk+1 = . . . = vn = w2 the conditions 
of Theorem 3 are satisfied but 

∑n
1 vi ∈ B.
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For simpler writing let 
([n]

k

)
denote the set of all k-element subsets of [n], and given 

S ∈
([n]

k

)
define

σ(S, V ) =
∑
i∈S

vi,

and we call it a k-sum of V . Note that σ(∅, V ) = 0 by definition. Theorem 3 has the 
following immediate

Corollary 1. Assume n ≥ 5 is an integer, V = {v1, v2, . . . , vn} ⊂ B, k ∈ [n] is odd and 
k > 3. If every 3-sum of V is outside B, then so is every k-sum of V .

Theorems 1 and 2 have similar corollaries and the interested reader will have no 
difficulty stating or proving them.

We close this section with a neat proof of Theorem 1 for the case of the Euclidean 
norm. The method (unpublished) is due to Boris Ginzburg who used it for the Euclidean 
case of Theorem 1 from [1].

We may assume w.l.o.g. that u = (0, 1). The proof is in fact an algorithm that produces 
a sequence V = V0, V1, . . . , Vn of sets of n unit vectors, satisfying u · v ≥ 0 for all v ∈ Vi, 
i ∈ [n] so that the norm of si =

∑
v∈Vi

v decreases as i increases and ‖sn‖ ≥ 1. Call an 
element v ∈ Vi fixed if it equals (1, 0) or (−1, 0), and let Fi be the set of fixed elements 
in Vi, and let Mi = Vi \ Fi be the set of moving elements in Vi.

At the start V = V0 = M0 and F0 = ∅. Assume Vi has been constructed, and set 
fi =

∑
v∈Fi

v and mi =
∑

v∈Mi
v. One can rotate the vector mi so that ‖fi + mi‖

decreases during the rotation (because of the cosine theorem). We rotate mi in this 
direction, together with all vectors in Mi as long as one of its elements, say v∗, reaches 
(1, 0) or (−1, 0). Let M∗

i be this rotated copy of Mi. Define Mi+1 = M∗
i \ {v∗} and 

Fi+1 = Fi ∪{v∗}. We indeed have ‖si‖ ≥ ‖si+1‖. By construction Vn = Fn, Mn = ∅ and 
‖fn‖ is an odd integer, so ‖sn‖ = ‖fn‖ ≥ 1. �
2. Proof of Theorem 1

Proof of Theorem 1. We assume again that u = (0, 1). Let n = 2k−1 and let v1, . . . , v2k−1
be our unit vectors in clockwise order on the boundary of B in the upper halfplane. Let 
w1 and w2 be two unit vectors on the horizontal line through 0 with w1 to the left of the 
origin 0. The tangent line L to B at vk bounds the half-plane H, the one not containing 
the origin. Set s = v1 + . . . + v2k−1.

Let � be the line through 0 and vk. For v ∈ R
2 let v′ be the signed length of its 

projection in direction L onto �, that is, v′ is positive if v′ has the same direction as vk
and negative otherwise. Since the projection of the sum of vectors is equal to the sum of 
their projections, it suffices to prove that

v′1 + v′2 + . . . + v′2k−1 ≥ 1
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as this implies s ∈ H and so ‖s‖ ≥ 1. We have that v′k = ‖vk‖ = 1 and

v′1 + . . . + v′k−1 ≥ (k − 1)w′
1

v′k+1 + . . . + v′2k−1 ≥ (k − 1)w′
2.

As w′
1 + w′

2 = 0, the proof is now complete. �
Remark 1. Using this proof the case of equality can be characterized but the conditions 
are clumsy. The case when the boundary of B contains no line segment is simple: equality 
holds iff (n − 1)/2 of the vi are equal to some unit vector v and another (n − 1)/2 are 
equal to −v. This follows easily from the proof above.

We mention further that replacing the condition u · vi ≥ 0 by u · vi > 0 for every 
i ∈ [n] in Theorem 1 does not imply ‖v1 + v2 + ... + vn‖ > 1. For instance when ‖ . ‖ is 
the max norm and v1 = . . . = vk = (−1, ε) and vk+1 = . . . = v2k−1 = (1, ε) and ε > 0 is 
small enough, ‖s‖ = 1 although u · vi > 0 for all i.

Remark 2. Theorem 1 has no analogue in dimension 3 and higher. For the example 
showing this let B be the Euclidean unit ball in R3, let L be a plane at distance ε from 
the origin with unit normal u, and let Pn be a regular n-gon inscribed in the circle L ∩B, 
with vertices v1, . . . , vn. It is clear that u · vi > 0 for all i ∈ [n] but 

∑n
1 vi = εnu whose 

norm is as small as you wish. The parity of n does not matter.

Remark 3. The following is a direct consequence of Theorem 1: let V = {v1, v2, . . . , vn}
be a set of unit vectors in a normed plane. Then it is always possible to choose numbers 
ε1, ε2, . . . , εn from {1, −1} such that for every subset W ⊂ V of odd size, we have that 
‖
∑

vi∈W εivi‖ ≥ 1.

3. Proof of Theorem 2

We need some preparations before the proof. We start with a small piece from Eu-
clidean plane geometry. Let a, b, c be distinct unit vectors in the Euclidean plane and 
define � = conv{a, b, c}. It is well known that h = a + b + c is outside � (indeed, outside 
the unit circle) if the triangle is obtuse, and is inside � if the triangle is acute. (We 
ignore right angle triangles here.) This is equivalent to saying that h ∈ � iff 0 ∈ � since 
� is acute or obtuse depending on whether 0 ∈ � or not.

Is this statement true for any norm in R2? As we see from the following lemma the 
answer is yes.

Lemma 4. Assume a, b, c ∈ ∂B and set � = conv{a, b, c}. Then 0 ∈ � if and only if 
h = a + b + c ∈ �.

Proof. If 0 /∈ �, then by separation there is a vector u such that u · a, u · b, u · c > 0. 
Theorem 1 with V = {a, b, c} applies and shows that h /∈ intB. As int� ⊂ intB, h ∈ �
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implies h ∈ ∂�, say h ∈ [a, c]. Then a + b + c = ta + (1 − t)c for some t ∈ [0, 1] and 
so

1 − t

2 a + 1
2b + t

2c = 0,

a convex combination of a, b, c, showing that 0 ∈ �. So indeed, h /∈ �. We remark here 
for later use that h ∈ ∂� implies that 0 is on the boundary of the medial triangle of �
(because the coefficient of b is 1/2 above).

Assume next that 0 ∈ �. Since 0 is the center of the unit ball, it must be contained 
in the medial triangle of �, that is, 0 = α( b+c

2 ) + β(a+c
2 ) + γ(a+b

2 ), with α, β, γ ∈ [0, 1]
and α + β + γ = 1. We have that

0 + α

2 · a + β

2 · b + γ

2 · c = (α + β + γ)
(
a + b + c

2

)
= a + b + c

2 ,

then a + b + c = αa + βb + γc, that is, h = a + b + c ∈ �. �
Proof of Theorem 2. We assume first the extra condition that V contains no antipodal 
pair of points. For distinct i, j, k ∈ [n], the vector h = vi + vj + vk is not in intB. Then, 
as � = conv{vi, vj , vk} ⊂ B, h /∈ int�. So either h /∈ � for all i, j, k or h ∈ ∂� for 
some i, j, k ∈ [n].

Assume first that h /∈ � for all i, j, k ∈ [n] which is the simpler case. Then 0 /∈ �
follows from Lemma 4. Carathéodory’s theorem (see [2]) shows that 0 /∈ convV , too. By 
separation, there is a vector u �= 0 with u · v > 0 for every i ∈ [n]. Theorem 1 applies 
and gives ‖v1 + . . . + vn‖ ≥ 1.

So we are left with the case when h ∈ ∂� for some i, j, k ∈ [n]. For simpler writing set 
a = vi, b = vj , c = vk and suppose h ∈ [a, c] as in the proof of Lemma 4. As h /∈ intB
and � ⊂ B, we have h ∈ ∂B. Thus a, h, c ∈ ∂B. As h = a (resp. h = c) would imply 
b + c = 0 (and a + b = 0), the whole segment [a, c] is contained in ∂B. Now let � be 
the line through a and c and set L = � ∩ B. L is a segment on the boundary of B and 
so is −L. If every vi is contained in L ∪−L, then 

∑n
1 vi cannot be between in the strip 

delimited by � and −� as n is odd. Suppose now that some vi /∈ L ∪ −L and let L′ be 
the chord of B parallel with � and containing vi, see Fig. 1.

Here L′ is at least as long as L, while a + b and c + b are parallel with �, they point 
in opposite directions, and both are shorter than L (because 0 is in the relative interior 
of the medial segment [(a + b)/2, (c + b)/2]). Consequently either v = vi + a + b or 
v = vi + c + b lies in intB, and so one of them has norm less than one. A contradiction.

The general case goes by induction on n. The starting case n = 3 is trivial. In the 
induction step n − 2 → n (when n ≥ 5) V = {v1, . . . , vn} either satisfies the extra 
condition and we are done, or V contains an antipodal pair, vn−1, vn say. By induction, 
‖v1 + . . . + vn−2‖ ≥ 1, and the equality 

∑n
1 vi =

∑n−2
1 vi finishes the proof. �
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Fig. 1. If h ∈ ∂� then υ is contained in intB.

Remark 4. Theorem 2 has no direct analogue in R3. For instance if V is the set of 
vertices of a regular tetrahedron centered at the origin and inscribed in the Euclidean 
unit ball, then every triple sum has (Euclidean) norm 1 yet the sum of the vectors is zero. 
A second example is when u is a unit vector in R3, v1, v2, v3 are the vertices of a regular 
triangle in the plane orthogonal to u and center at u and vi+3 = vi − 2u (i = 1, 2, 3), 
V = {v1, . . . , v6} and B = conv{±v1, . . . , ±v6}. The sum of any three vectors from V
has norm at least one but 

∑6
1 vi = 0. The same example works for Theorem 3, this time 

every 4-sum has norm larger than one but 
∑6

1 vi = 0 again.

4. Preparations for the proof of Theorem 3

We need a lemma about 6 vectors in the plane.

Lemma 5. Assume z1, . . . , z6 ∈ B and 
∑6

1 zi = 0. Then there are distinct i, j, k with 
zi + zj + zk ∈ B.

Proof. Assume for the time being that there are two linearly independent vectors among 
the zi. We will deal with the remaining case soon. Define D = conv{±z1, . . . , ±z6}, D is 
a 0-symmetric convex polygon with at most 12 vertices. Clearly Z = {z1, . . . , z6} ⊂ D

and D ⊂ B. This implies that it suffices to prove Lemma 5 when B = D.
Let vertD denote the set of vertices of D. We distinguish two cases:

Case 1. When |Z∩vertD| = 2. Then D is a parallelogram with vertices a, b, −a, −b where 
a, b ∈ Z ∩ vertD. As the assumptions and statement of the lemma are invariant under 
a non-degenerate linear transformation we may assume that a = (1, 1) and b = (−1, 1). 
This is in fact the case of the max norm. We need the following

Claim 1. If the sum of real numbers z1, . . . , z6 is zero and all of them lie in I = [−1, 1], 
then there are at least 12 distinct triplets among them whose sum lies in I as well.
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Fig. 2. There is a point c = (c1, c2) ∈ Z ∩ vertD with c1 ∈ (−1, 1) and c2 > 1.

The proof is postponed to Section 6. We note first that Claim 1 justifies our assumption 
about the existence of two linearly independent vectors among the zi. Indeed, if all the zi
are on a line through the origin, then they can be thought of as real numbers. Claim 1
says then that there are three among them with the required property (actually, 12 such 
triplets).

We show next how the claim finishes Case 1. Both the first and the second components 
of the zi satisfy the conditions of Claim 1. So there are 12 triplets whose first component, 
and 12 further triplets whose second component, sum to a number in I. As there are 20 
triplets altogether, there is a triplet whose first and second components sum to a number 
in I, that is, there are distinct i, j, k with zi + zj + zk ∈ D.

Case 2. When |Z ∩ vertD| ≥ 3. If there are a, b, c ∈ Z ∩ vertD such that a + b + c ∈ D, 
then we are done. Otherwise Lemma 4 (together with Carathéodory’s theorem) says that 
0 /∈ conv(Z ∩ vertD). So we may assume that every point of Z ∩ vertD is in the open 
upper halfplane. Let a be the first and b be the last vertex as we walk around ∂D in the 
upper halfplane in anticlockwise direction. By a non-degenerate linear transformation 
we can achieve a = (1, 1) and b = (−1, 1). Clearly, [a, −b] and [b, −a] lie on ∂D. Note 
that there is c = (c1, c2) ∈ Z ∩ vertD, different from a, b implying that c1 ∈ (−1, 1) and 
c2 > 1 (see Fig. 2).

For simpler writing let u1, u2, u3 be the zi distinct from a, b, c. We are going to show 
that a + b + ui ∈ D for some i. Otherwise ui /∈ D − a − b for all i. In other words, 
u1, u2, u3 ∈ D \ (D − a − b). It is easy to see that the second component of every vector 
in D \ (D − a − b) is larger than −1. Thus the second component of u1 + u2 + u3 is 
larger than −3. The second component of a + b + c is 2 + c2 > 3. This contradicts the 
assumption z1 + . . . + z6 = 0. �

To close this section we prove Theorem 3 in the case when V does not contain two 
linearly independent vectors. In this case V can be thought of as real numbers x1, . . . , xn
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with x1 ≥ . . . ≥ xn. By symmetry and scaling we may assume that x1 = 1 ≥ |xn| and 
B = [−1, 1]. There is nothing to prove if xn ≥ 0. Also, x1 = −xn is impossible since then 
x1 + x2 + xn = x2 ∈ B, contrary to the conditions. Thus x1 + xn > 0 and xn−1 > 0 as 
otherwise x1 + xn−1 + xn ∈ B. Consequently x1 + . . . + xn ≥ x1 + xn−1 + xn > 1.

5. Proof Theorem 3

The result is trivially true for n = 3. Next comes the case n = 5: Set zi = vi, 
i = 1, 2, 3, 4, 5 and z6 = −(v1 + . . . + v5). If ‖z6‖ ≤ 1 were the case, then Lemma 5
implies that a 3-sum, zi +zj +zk say, lies in B. This contradicts the condition if z6 is not 
present among zi, zj , zk. But if it is, then the complementary 3-sum goes without z6, 
and its norm equals ‖zi + zj + zk‖ ≤ 1, a contradiction again.

Assume now that the theorem fails and let V = {v1, . . . , vn} be a counterexample 
with the smallest possible n and let B be the unit ball of the corresponding norm. Here 
n ≥ 7 clearly and V contains two linearly independent vectors. Define v0 =

∑n
1 vi. 

Then D = conv{±v0, ±v1, . . . , ±vn} is a 0-symmetric convex body (actually a convex 
polygon) that is the unit ball of a norm ‖ . ‖. As D ⊂ B, V is a counterexample with 
this norm. This means that ‖vi‖ ≤ 1 for all i = 0, 1, . . . , n and all 3-sums have norm 
> 1. From now on we keep this norm fixed and consider V a counterexample with this 
norm.

We choose λ < 1 but very close to 1 so that λv1, . . . , λvn is still a counterexample, 
this time with ‖

∑n
1 λvi‖ < 1. By continuity there is an ε > 0 so that if ‖ui − λvi‖ < ε

for all i ∈ [n], then U = {u1, . . . , un} is still a counterexample meaning that ‖ui‖ < 1
for all i ∈ [n], ‖σ(S, U)‖ > 1 for all S ∈

([n]
3
)
, and ‖

∑n
1 ui‖ < 1. Here of course σ(S, U)

stands for 
∑

i∈S ui.

Claim 2. One can choose U so that for all S ∈
([n]

3
)

and all T ∈
([n]

3
)
∪
([n]

5
)
, ‖σ(S, U)‖ =

‖σ(T, U)‖ implies S = T .

The technical proof is postponed to Section 6. Now we return to the proof by fixing U

as in the claim.
The numbers ‖σ(S, U)‖ with S ∈

([n]
3
)
∪
([n]

5
)

are all larger than one. Let μ > 1 be the 
smallest among them. We claim that μ = ‖σ(S, U)‖ for some unique S ∈

([n]
3
)
. Indeed, if 

the minimal S is a 5-tuple, S = {1, 2, 3, 4, 5} say, then the five vectors μ−1u1, . . . , μ−1u5
are all in D, all of their 3-sums are outside D but their sum is in D, contradicting case 
n = 5 of the theorem.

Consequently μ = ‖σ(S, U)‖ for a unique S ∈
([n]

3
)
. We assume w.l.o.g. that S =

{1, 2, 3}. Choose ν < μ−1 < 1 so that ν‖σ(T, U)‖ > 1 for all T ∈
([n]

3
)
∪
([n]

5
)

except for 
T = S and ν‖σ(S, U)‖ < 1. Set w0 = ν(u1 + u2 + u3), wi = νui for i > 3, and define 
W = {w0, w4, . . . , wn}.

We show finally that W is another counterexample with the norm ‖ . ‖. This would 
contradict the minimality of n as |W | = n − 2 < n and so finish the proof.
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It is clear that W ⊂ D and w0 + w4 + . . . + wn ∈ D. All 3-sums of W that do not 
contain w0 are outside D since such a 3-sum equals ν(ui + uj + uk) with 4 ≤ i < j < k

which is outside D by the definition of ν. A 3-sum of the form w0 +wi +wj for 4 ≤ i < j

is equal to ν(w1 +w2 +w3 +wi +wj) which is again outside D because of the definition 
of ν. �
6. Proofs of the claims

Proof of Claim 1. Write x1, x2, . . . , xs resp −y1, . . . , −yt for the positive and non-positive 
elements of our set Z of real numbers, here s + t = 6 and we assume w.l.o.g. that s ≤ t. 
We assume further that x1 ≥ x2 ≥ . . . ≥ xs and y1 ≥ . . . ≥ yt. The case s = 0 is trivial, 
and so is case s = 1: then all 3-sums of Z lie in I = [−1, 1].

If s = 2, then x1 − yi − yj ∈ I for all distinct i, j. Indeed, this is clear if x1 ≥ yi + yj
since then 0 ≤ x1−yi−yj ≤ x1 ≤ 1. Assume next that x1 < yi+yj and yi ≥ yj say, then 
−1 ≤ −yi ≤ −yi + (x1 − yj) < 0 provided x1 ≥ yj . But case x1 < yj is impossible: then 
we’d have x1, x2 < yi, yj and x1 +x2 < yi + yj , so the sum of our six numbers cannot be
zero. Thus there are 

(4
2
)

= 6 distinct 3-sums in I and no two of them are complementary. 
The 6 complementary 3-sums lie in I, too.

Finally s = 3. By symmetry we assume that x1 ≥ y1. If x1, x2 ≥ y1, then xk − yi −
yj ∈ I for k = 1, 2 and for all distinct i, j. This follows in the same way as above. This is 
already 6 distinct 3-sums in I (with no two complementary), giving 12 distinct 3-sums 
that lie in I.

So suppose y1 > x2. Again x1 − yi− yj ∈ I for all distinct i, j and both −y1 +x1 +x2
and −y1 + x1 + x3 lie in I as both are non-negative and each smaller than x1. This is 
five distinct (and non-complementary) 3-sums. We only need to find one more.

The missing one is −y1 + x2 − y2 if x1 ≥ y1 > x2 ≥ y2, and x1 − y2 + x2 if x1 ≥ y1 ≥
y2 ≥ x2. �
Proof of Claim 2. Our unit ball D is a 0-symmetric convex polygon with edge set E. 
For an edge e = [x, y] define �e as the (unique) linear function R2 → R such that 
�e(x) = �e(y) = 1. It follows that for all z ∈ R

2, ‖z‖ = min{�e(z) : e ∈ E}.
Recall the definition of 

([n]
k

)
and σ(S, V ) from Section 1. We are going to choose the 

vectors u1, u2, . . . , un in this order where ui is in the ε-neighborhood Nε(λvi) of λvi
(i ∈ [n]) so that the following holds. The sets Uk = {u1, . . . , uk} for k ∈ [n] satisfy

(1) �e(σ(S, Uk)) �= �f (σ(T, Uk)) for all distinct e, f ∈ E and all s, t ∈ {0, 1, . . . , 5} and 

all S ∈
([k]

s

)
and T ∈

([k]
t

)
with S �= T ,

(2) �e(σ(S, Uk)) �= �e(σ(T, Uk)) for all e ∈ E, for all s, t ∈ {0, 1, . . . , 5} and all S ∈
([k]

s

)
and T ∈

([k]
t

)
with S �= T .

These conditions guarantee that in U = Un all 3-sums have different norms and no 
3-sum and 5-sum have the same norm. This is the requirement in Claim 2.
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The proof goes by induction. The first vector u1 is chosen from Nε(λv1) so that 
�e(u1) �= 0 for all e ∈ E. So the forbidden region for u1 is the union of finitely many 
lines, and consequently there is a suitable u1. Assume Uk has been constructed satisfying 
conditions (1) and (2) and k ≥ 1.

We start with condition (1). For a fixed pair e, f ∈ E (e �= f), and for a fixed 
S ∈

([k+1]
s

)
and fixed T ∈

([k+1]
t

)
, (1) says something for uk+1 ∈ Nε(λvk+1) only if 

k+ 1 ∈ S ∪T , otherwise it is satisfied by the induction hypothesis. If k+ 1 only appears 
in S (resp. in T ), then (1) says that �e(uk+1) �= α (and �f (uk+1) �= α) for a particular 
value of α depending only on e, f , S, T . So the forbidden region is a line L = L(e, f, S, T ). 
When k + 1 ∈ S ∩ T then the condition is �e(uk+1) − �f (uk+1) �= α. So the forbidden 
region is a line again as �e − �f is a non-identically zero linear function.

Checking condition (2) is similar. For a fixed e ∈ E, and for fixed S ∈
([n]

s

)
and 

T ∈
([n]

t

)
, condition (2) says something for uk+1 only if again k + 1 ∈ S ∪ T , otherwise 

it is satisfied by the induction hypothesis. If k + 1 ∈ S ∩ T , then condition (2) says that 
�e(σ(S \ {k + 1}, Uk+1)) �= �e(σ(T \ {k + 1}, Uk+1)). This follows from the induction 
hypothesis. Finally, if k + 1 is in S \ T , condition (2) says that �e(uk+1) �= α with a 
particular value of α depending only on e, f , S, T . So the forbidden region is a line, 
again. The same applies when k + 1 ∈ T \ S.

As there are finitely many such forbidden lines for uk+1, the Lebesgue measure of the 
forbidden region is zero. Thus almost all choices of uk+1 avoid the forbidden region. �
7. Characterization of central symmetry

Theorem 2 is about a norm whose unit ball is a 0-symmetric convex body B. In the 
particular case n = 3 it says that if a, b, c are unit vectors and their convex hull is sepa-
rated from 0, then their sum has norm at least 1. The next theorem is a kind of converse.

Theorem 6. Let K ∈ R
2 be a convex body with 0 ∈ intK. Then K is centrally symmetric 

with center at 0 under either one of the following conditions.

(i) For any three distinct vectors a, b, c ∈ ∂K contained in a closed halfplane whose 
bounding line goes through 0, the vector a + b + c /∈ intK.

(ii) For any three distinct vectors a, b, c ∈ ∂K with 0 ∈ int conv{a, b, c}, the vector 
a + b + c ∈ intK.

Proof of (i). Suppose on the contrary that K is not centrally symmetric. Then we can 
choose a chord ac (of K) containing 0 with a + c �= 0. Further let b be a vector on ∂K, 
very close to a, and let bw be the chord which is parallel to ac. It is very easy to see 
that h = a + b + c ∈ relint(bw) if b is close enough to a. This implies that h ∈ intK, 
a contradiction (see Fig. 3). �
Proof of (ii). Again, let ac be a chord of K containing 0 such that a + c �= 0 and further, 
let b be the point on ∂K where the tangent line � at b to K is parallel to ac. We choose 
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Fig. 3. If K is not centrally symmetric then there are three points a, b, c ∈ ∂K contained in a closed half-space 
with h = a + b + c in intK.

Fig. 4. If K is not centrally symmetric then there are three points a, b, c ∈ ∂K with 0 ∈ int convK and such 
that h = a + b + c is not in K.

a and c so that this b is a single point (on either side of the chord ac). This is clearly 
possible.

This way h = a +b +c ∈ � and consequently h is outside K (see Fig. 4). Now, replace a
resp. c, by a1 and c1 very close to a and c so that the chord a1c1 is parallel to � and so that 
the line through a and c separates b and a1, c1. In this case 0 ∈ int(conv{a1, b, c1}). Since 
the norm of the sum of vectors is a continuous function, we have that h1 = a1 + b + c1
is not in intK provided the line through a1c1 is close enough to the chord ac. �
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