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Abstract. Let p ≥ q ≥ d+1 be positive integers and let F be a finite family of

convex sets in Rd. Assume that the elements of F are coloured with p colours.
A p-element subset of F is heterochromatic if it contains exactly one element

of each colour. The family F has the heterochromatic (p, q)-property if in

every heterochromatic p-element subset there are at least q elements that have
a point in common. We show that, under the heterochromatic (p, q)-condition,

some colour class can be pierced by a finite set whose size we estimate from

above in terms of d, p, and q. This is a colourful version of the famous (p, q)-
theorem. (We prove a colourful variant of the fractional Helly theorem along

the way.) A fractional version of the same problem is when the (p, q)-condition

holds for all but an α fraction of the p-tuples in F . We show that, in the case
that d = 1, all but a β fraction of the elements of F can be pierced by p−q+1

points. Here β depends on α and p, q, and β → 0 as α goes to zero.

1. Introduction

Helly’s theorem states that if F is a finite family of convex sets in Rd such that
every at most (d+ 1)-element subfamily of F has nonempty intersection, then the
whole family F has nonempty intersection. The condition can be relaxed leading
to the so-called (p, q)-condition of Hadwiger and Debrunner [7] and the conclusion
varies accordingly: Assuming p ≥ q ≥ d+ 1, the family F has the (p, q)-property if
among every p elements of F there are q with nonempty intersection. For example,
in Helly’s theorem the family of convex sets satisfies the (d+ 1, d+ 1)-condition in
Rd.

A set of points with the property that every element of F contains at least one
of the points is said to pierce F . The minimum number of points that can pierce
F is called the piercing number of F , and is denoted by τ(F).

Hadwiger and Debrunner [7] asked in 1957 if the (p, q)-condition implies that
τ(F) is bounded as a function of d, p, and q. They proved this in [7] under the
condition that (d − 1)p < d(q − 1) in stronger from saying that τ(F) ≤ p − q + 1.
Note that the (d − 1)p < d(q − 1) condition is always satisfied when d = 1. The
general case had remained open for 35 years and was finally solved by Alon and
Kleitman [1] by an ingenious and very powerful method.

Theorem 1. (Alon and Kleitman [1]) Let p, q, d be positive integers with p ≥ q ≥
d+ 1. Then there exists a number m(p, q, d) such that τ(F) ≤ m(p, q, d) for every
finite family F of convex sets in Rd satisfying the (p, q)-condition.

We remark here that the necessity of the condition that p ≥ q ≥ d+ 1 is shown
by the example when F is a family of hyperplanes in general position. Note also
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that the (p, q)-property implies the (p, q− 1)-property. So the most important case
of the (p, q)-problem occurs when q = d+ 1.

In this paper we consider a colourful version of the (p, q)-problem. Let F1, . . . ,Fp
be finite families of convex sets in Rd. Their union is denoted by F . One can think of
Fi as containing the elements of F coloured by colour i. A heterochromatic p-tuple of
F is just a collection of p sets C1, . . . , Cp where Ci ∈ Fi for every i ∈ [p] = {1, . . . , p}.
Lovász [11] found a colourful version of Helly’s theorem in 1974, its proof appeared
first in Bárány [2] in 1982. The coloured version says the following.

Theorem 2 (Lovász [11] and Bárány [2]). Let F1, . . . ,Fd+1 be finite families of

convex sets (colour classes) in Rd with F = ∪d+1
j=1Fj. If every heterochromatic

(d + 1)-tuple of F has a point in common, then there exists a family Fi whose
elements have a point in common.

The assumption of the colourful Helly theorem can be weakened in a way similar
to that of the (p, q)-problem. The family F satisfies the heterochromatic (p, q)-
condition, to be denoted by (p, q)H , if every heterochromatic p-tuple of F contains
an intersecting q-tuple.

We will use the Alon-Kleitman method to show the following.

Theorem 3. Let p, q, d be positive integers with p ≥ q ≥ d + 1. Then there exists
a number M(p, q, d) such that the following holds. Given finite families F1, . . . ,Fp
of convex sets in Rd satisfying the (p, q)H-property, there are q − d indices i ∈ [p]
for which τ(Fi) ≤M(p, q, d).

The necessity of the condition p ≥ q ≥ d + 1 is shown by the example when
all the Fi consist of hyperplanes in general position. One cannot hope for more
than q − d classes with bounded piercing number: this is shown by q − d colour
classes consisting of many copies of Rd and each of the remaining classes consisting
of many hyperplanes in general position.

The (p, q)-property ((p, q)H -property) can be weakened by requiring that all
but an α fraction of the p-tuples (or heterochromatic p-tuples) of F satisfy the
(p, q)-property ((p, q)H -property). What can one hope for under this fractional
(p, q)-condition? Perhaps F contains a subfamily G of size γ|F| with τ(G) bounded
where γ depends only on α, d, p, q. It would be desirable to have γ → 1 when α→ 0.
We will make a first step in this direction, focusing on the main case q = d+ 1:

Theorem 4. Let α > 0 and let p, d be positive integers with p ≥ d + 1. Then
there exists a real number γ(α, p, d) > 0 such that the following holds. Given finite
families F1, . . . ,Fp of convex sets in Rd satisfying the (p, d+ 1)H-condition for all
but an α fraction of heterochromatic p-tuples of F , some family Fi contains an
intersecting subfamily of size γ|Fi|.

In the second half of the paper we will consider the same questions in dimension
one, that is, when the convex sets in F are intervals in R. In this case we prove
precise results on the piercing number.

Theorem 5. Let p ≥ q ≥ 2 be integers and F a finite family of intervals in R
coloured with p colours. If F has the (p, q)H-property, then there exists a colour

class Fi ⊂ F with the property that τ(Fi) ≤
⌊
p−1
q−1

⌋
. The bound is best possible in

the sense that there is a family F satisfying the conditions for which τ(Fi) ≥
⌊
p−1
q−1

⌋
for all i ∈ [p].
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Further, for coloured intervals in R the fractional (p, q)H -property implies the
desired conclusion discussed above. Namely, we prove the following result which
is a colourful and fractional version of the classical (p, q)-theorem of Hadwiger and
Debrunner for finite families of intervals in the real line.

Theorem 6. Let p ≥ q ≥ 2 be integers, set α0 = 1
2 (p − q + 3)−1/(p−q+2) and

let α ∈ [0, α0). Then there is a number β = β(p, q, α) ∈ [0, 1) and an integer
n0 = n0(p, q, α) such that the following holds. Let F be a finite and coloured family
of intervals in R with colour classes F1, . . . ,Fp where each |Fi| ≥ n0. If F satisfies
the (p, q)H-property with the exception of at most α

∏p
j=1 |Fj | heterochromatic p-

tuples, then there exists a colour class Fi ⊂ F such that the elements of Fi can be
pierced by at most p − q + 1 points with the exception of at most β|Fi| intervals.
Furthermore, β = O(α1/(p−q+2)).

We will give an example showing that the dependence β = O(α1/(p−q+2)) is best
possible. In Section 7 we state an extension of Theorem 6 where, under the same
conditions, some colour class Fi is pierced by k points except for a small fraction of

the intervals in Fi. Here k is any integer from
{⌊

p−1
q−1

⌋
, . . . , p− q + 1

}
. The proof

is given is Section 8.
Here comes the uncoloured (and fractional) version of Theorem 6. It follows

from Theorem 6 quite easily.

Theorem 7. Let p ≥ q ≥ 2 be positive integers, and let F be a finite family of n
intervals in R, and α ∈ [0, 1). Then there exists a number β = β(p, q, α) ∈ [0, 1)
with the property that if the family F has the (p, q)-property with the exception of
at most α

(
n
p

)
p-tuples, then the elements of F can pierced by p− q + 1 points with

the possible exception of at most βn elements. Furthermore β = O(α1/p).

As a consequence of Theorems 6 and 7, when q = 2, we obtain the following result
that shows how the monochromatic world, for intervals on the line, has influence
on the behaviour of the heterochromatic world.

Corollary 1. For every integer p ≥ 2 and every α > 0, there is β = β(p, α) > 0
such that the following holds. Suppose that F is a finite family of intervals in
R coloured with p colours. If for every colour i, the fraction of (monochromatic)
p-tuples in Fi that are pairwise disjoint is bigger than α, then the fraction of hete-
rochromatic p-tuples of F that are pairwise disjoint is larger than β.

For an overview of this field and for further information we refer to the textbook
by Matoušek [12] and the survey papers by Danzer, Grünbaum, and Klee [3], and
Eckhoff [4, 5].

2. Preparations

In the above theorems the family F consists of general convex sets. However, we
can assume that every C ∈ F is a polytope by the following standard argument.
Let G be a subfamily of F with

⋂G 6= ∅, and let z(G) be an arbitrary fixed point in⋂G. The set Z consisting of the points z(G) for all G ⊂ F with
⋂G 6= ∅ is finite.

Consider now a set K ∈ F and define P (K) as the convex hull of all points z(G) ∈ Z
with K ∈ G. Then P (K) is a polytope, and the family F∗ = {P (K) : K ∈ F}
has exactly the same intersection properties and same piercing number as F but
consists of polytopes only.
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As we have seen, the (p, q)-property implies the (p, q − 1)-property. So the base
case concerns the (p, d + 1)-property. We will mainly work with this case when
d > 1.

We will need a colourful version of the fractional Helly theorem. The original
fractional Helly is due to Katchalski and Liu [10] and says the following.

Theorem 8. (Katchalski and Liu [10]) Assume α ∈ (0, 1] and F is a family of n
convex sets in Rd. If at least α

(
n
d+1

)
of the (d + 1)-tuples of F are intersecting,

then F contains an intersecting subfamily of size α
d+1n.

The proof of Theorem 1 is based on the Alon-Kleitman lemma that will be stated
next. We need the following definition. Given a finite family G of convex sets in Rd,
let Z ⊂ Rd be a finite set that contains one point from every nonempty intersection
of elements of G (as described above). Now the fractional packing number, ν∗(G),
of G is defined as

ν∗(G) = max
∑
K∈G

x(K),

where the x(K) are real variables subject to∑
z∈K∈G

x(K) ≤ 1 (∀z ∈ Z), and x(K) ≥ 0 (∀K ∈ G).

In other words, the real variables x(K) assign weights between 0 and 1 to members
of G in such a way that the sum of weights does not exceed 1 at any point of Rd.
Since the sum of x(K) is the same at any point of the intersection of a subset of G,
the fractional packing number ν∗ does not depend on the choice of Z.

Here comes the Alon-Kleitman lemma [1].

Lemma 1. Let G be a finite family of convex sets in Rd. Then τ(G) is bounded by
a function of d and ν∗(G).

When G is a finite family of convex sets in Rd, a blown-up copy of G, Gb, is simply
the same as G with some sets repeated (possibly deleted). The size of Gb, |Gb| is the
number of sets in it counted with multiplicities. The following lemma, also from
[1], gives a simple and direct way to check whether ν∗(G) ≤ γ for some γ > 0.

Lemma 2. Let G be a finite family of convex sets in Rd and γ > 0. Then ν∗(G) ≤ γ
iff every blown-up copy of G, say Gb, contains an intersecting subfamily of size at
least γ−1|Gb|.

It will often be convenient to use the language of hypergraphs. A finite family
F of convex sets in Rd, which is partitioned into p colour classes F1, . . . ,Fp, gives
rise to a p-partite hypergraph H with partition classes F1, . . . ,Fp. The vertices of
H are the convex sets C ∈ F , its edges are of the form e = (C1, . . . , Cp), where
C1, . . . , Cp is a heterochromatic p-tuple of F satisfying certain conditions. For
instance e ∈ H if the heterochromatic p-tuple C1, . . . , Cp contains an intersecting
q-tuple. We mention further that a blown-up copy Fb of the family F gives rise to
a blown-up copy Hb of the corresponding hypergraph H: the partition classes are
simply Fbi and e = (C1, . . . , Cp) is an edge in Hb iff it is an edge in H.

3. Proof of Theorem 3

The proof uses the colourful version of the fractional Helly theorem.
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Lemma 3. Let F1, . . . ,Fd+1 be finite families of convex sets (colour classes) in Rd,
write F for their union and assume that α ∈ (0, 1). If an α fraction of heterochro-
matic (d + 1)-tuples of F are intersecting, then some Fi contains an intersecting
subfamily of size α

d+1 |Fi|.
Proof. The following is the standard method. Let H be the (d + 1)-partite

hypergraph with class i identified with Fi and edges e ∈ H corresponding to in-
tersecting heterochromatic (d + 1)-tuples of F . Thus e is simply (C1, . . . , Cd+1)

with Ci ∈ Fi and
⋂d+1

1 Ci 6= ∅. Set C(e) =
⋂d+1

1 Ci. Define a partial edge as
f = (C1, . . . , Ci−1, Ci+1, . . . , Cd+1) if the intersection, C(f), of these d convex sets
is nonempty. Assume as we may that all C ∈ F are polytopes. Then all C(e) and
C(f) are polytopes as well, and we can choose a vector a ∈ Rd so that the minimum
of the scalar product ax over all x in C(e) and the minimum over all x in C(f) is
reached at unique points x(e) and x(f).

To the best of our knowledge, the following claim was proved first by Wegner in
[13]. For the sake of completeness, we present a short and simple proof here.

Claim 1. For every e ∈ H there is a partial edge f ⊂ e with x(e) = x(f).

Proof. Let H = {x ∈ Rd : ax < ax(e)}, this is an open halfspace and the
definition of x(e) implies that

H ∩ C(e) = H ∩ C1 ∩ · · · ∩ Cd+1 = ∅.
So these d+ 2 convex sets have empty intersection. By Helly’s theorem some d+ 1
of them have empty intersection. This (d+ 1)-tuple cannot be C1, . . . , Cd+1 so it is
H,C1, . . . , Ci−1, Ci+1, . . . , Cd+1 for some i. This means that

⋂
j 6=i Cj is disjoint from

H. But it contains x(e) so x(f) = x(e) with f = (C1, . . . , Ci−1, Ci+1, . . . , Cd+1). �

Now let Ni = |Fi| for all i and let N = N1 . . . Nd+1. Write Hi for the d-
partite hypergraph whose edges are the partial edges f missing class i. Clearly,
|Hi| ≤ N/Ni. For f ∈ Hi let Fi(f) = {C ∈ Fi : x(f) ∈ C}. Note that Fi(f) is an
intersecting subfamily of Fi. We define αi by

αiNi = max
f∈Hi

|Fi(f)|.

We finish the proof by double-counting the pairs (e, f) with e ∈ H, f ⊂ e, f ∈ Hi
for some i, and x(e) = x(f). Claim 1 says that the number of such pairs is at least
αN1 . . . Nd+1 = αN . Hence

αN ≤ number of such pairs (e, f)

=

d+1∑
i=1

∑
f∈Hi

number of e ∈ H with (e, f) being such a pair

≤
d+1∑
i=1

∑
f∈Hi

|{C ∈ Fi : x(f) ∈ C}| ≤
d+1∑
i=1

∑
f∈Hi

αiNi

≤
d+1∑
i=1

αiNi
N

Ni
=

d+1∑
i=1

αiN.

This implies that α ≤∑d+1
1 αi and so αi ≥ α

d+1 for some i. �
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Proof of Theorem 3. We are going to use the Alon-Kleitman lemma (Lemma 1).
We set γ = (d + 1)

(
p
d+1

)
and want to show first that ν∗(Fi) ≤ γ for some i ∈ [p].

So we have to prove, by using Lemma 2, that in every blown-up copy Fb of F some
Fbi contains an intersecting subfamily of size γ−1|Fbi |.

We are going to use the complete p-partite hypergraph H associated with the
family F , and its blown-up copy Hb. When e = (C1, . . . , Cp) is an edge of Hb (or
what is the same, of H) and J is a subset of [p], we write e(J) for the partial edge

(Cj : j ∈ J). For I ∈
(

[p]
d+1

)
define the (d + 1)-partite hypergraph Hb(I) whose

classes are Fbi , i ∈ I, and f = (Ci : i ∈ I) is an edge of Hb(I) if
⋂
i∈I Ci 6= ∅.

Claim 2. Some Hbi has at least δ|Hbi | edges where

δ =

(
p

d+ 1

)−1

.

This follows from double-counting the pairs (e, f) with e ∈ Hb and f = e(I) ∈
Hb(I). Set |Fbi | = Ni (repeated sets counted with their multiplicity) and define
N = N1 . . . Np. The (p, d+ 1)H -condition implies that for every e ∈ Hb there is an

I ∈
(

[p]
d+1

)
such that e(I) ∈ Hb(I). This gives the first inequality below.

N ≤ number of such pairs (e, f)

=
∑
all I

∑
f∈Hb(I)

|{e ∈ Hb : f = e(I)}|

≤
∑
all I

∑
f∈Hb(I)

∏
j /∈I

Nj

= N
∑
all I

1∏
i∈I Ni

|Hb(I)|.

This implies that some Hb(I) indeed has at least δ|Hb(I)| edges. �

This finishes the proof quite quickly. The edge density in some Hb(I) is at
least δ. By the coloured fractional Helly theorem (Lemma 3), some Fbi with i ∈ I
has an intersecting subfamily of size δ/(d + 1)|Fbi |. Consequently, by Lemma 2,
ν∗(Fi) ≤ (δ/(d+ 1))−1 = γ.

This was the proof for the base case q = d+1. For the general case of Theorem 3
we need to find q−d families Fi with bounded piercing number. This is quite easy:
We find the first one, say F1, with the previous proof. Then the family F \ F1 is
p − 1 coloured, and satisfies the (p − 1, q − 1) condition. The previous proof gives
another family, say F2 with bounded τ . We repeat this process q− d times and get
q − d families with bounded piercing number. �

4. Proof of Theorem 4

The proof is simple and short. Let H be the p-partite hypergraph whose classes
are F1, . . .Fp and where e = (C1, . . . , Cp) is an edge if the p-tuple C1, . . . , Cp
contains an intersecting (d+ 1)-tuple. Set Ni = |Fi| and N = N1 · · ·Np as before.

Also, for I ∈
(

[p]
d+1

)
let H(I) be the (d+ 1)-partite hypergraph with classes Fi, i ∈ I

and where f = (Ci : i ∈ I) is an edge if
⋂
i∈I Ci 6= ∅. Apply the previous double
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counting to the hypergraph H (instead of Hb). The (p, d + 1)H -condition with α
fraction exceptions guarantees that H has (1− α)N edges. The rest of the double
counting is the same and we conclude that some H(I) has at least (1−α)δ

∏
i∈I Ni

edges with the same δ as before. The colourful fractional Helly theorem implies
that some Fi (with i ∈ I) has an intersecting subfamily of size (1−α)δ/(d+ 1)|Fi|.
�

5. Coloured families of intervals in R

Let p be a positive integer, and let F be a finite family of intervals in R, coloured
with p colours. The intervals with colour i form the subfamily Fi. We may assume
(after applying the standard method from Section 2) that all intervals in F are
closed. Clearly, there is a δ > 0 such that any two disjoint intervals in F are at
least at distance δ from each other. Now replace each interval I ∈ F by an open
interval I∗ containing I and contained in a δ/3 neighbourhood of I. This gives
rise to a new family F∗. It is evident that this can be done in such a way that
no two intervals in F∗ have a common endpoint. It is also clear that F∗ has the
same intersection pattern and the same values for τ(F∗) and τ(F∗i ) as F . From
now on we assume that F consists of bounded open intervals no two of which have
a common endpoint.

The following lemma, in a slightly different setting, was proved by Gyárfás and
Lehel in [6]. For the sake of completeness, we present the short and simple proof.

Lemma 4. (Gyárfás and Lehel [6]) Assume that F is a finite family of intervals in
R, coloured with p colours such that each colour class contains at least p pairwise
disjoint intervals. Then there exists a pairwise disjoint heterochromatic p-tuple in
F .

The proof goes by induction on p. The case p = 1 is obvious. For the induction
step p−1→ p, (p ≥ 2) let a be the leftmost right endpoint of all intervals in F . We
assume, without loss of generality, that a is the right endpoint of some interval I1
from the first colour class F1. Delete all intervals from F \ F1 that contain a. The
resulting family F ′ of intervals is coloured with p− 1 colours, and each colour class
F ′j contains at least p− 1 disjoint intervals as only intervals containing the point a
have been deleted from Fi. The induction hypothesis guarantees the existence of
disjoint intervals Ij ∈ F ′j ⊂ Fj , j ∈ {2, . . . , p}. All of these p−1 intervals are to the
right of a, and so I1, I2, . . . , Ip is a heterochromatic p-tuple consisting of disjoint
intervals. �

We need the following lemma.

Lemma 5. Let p ≥ q ≥ 2 be integers and F a finite family of intervals in R
coloured with p colours. If F has the (p, q)H-property, then there is a colour class
Fi such that τ(Fi) ≤ p− q + 1.

Note that for p = 2, Lemma 5 is the colourful Helly theorem (Theorem 2) in one
dimension.

The proof is indirect, elementary and constructive. We describe the argument
in detail because the construction will be used later to improve the upper bound
on τ(Fi).
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Assume, on the contrary, that τ(Fi) ≥ p−q+2 for each i = 1, . . . , p. We will find
a heterochromatic p-tuple in F in which no q elements intersect, and thus reach a
contradiction.

The indirect assumption implies that each colour class Fi must contain at least
p − q + 2 pairwise disjoint intervals. Lemma 4 yields the existence of a pairwise
disjoint heterochromatic (p− q+ 2)-tuple of intervals {I1, . . . , Ip−q+2} with Ij ∈ Fj
for j = 1, . . . p− q + 2.

Select one arbitrary interval Ik ∈ Fk from each one of the remaining colour classes
k = p − q + 3, . . . , p. Clearly, the set of intervals {I1, . . . , Ip} is a heterochromatic
p-tuple with the property that any q-element subset of it must contain two disjoint
intervals from the set {I1, . . . , Ip−q+2} and thus cannot be intersecting. �

Note that in the case q = 2, the upper bound in Lemma 5 is best possible. This
fact is shown by the following example.

Example 1. Let p ≥ q = 2 be positive integers. For every i ∈ [p] the family Fi
consists of the same p−1 pairwise disjoint intervals I1, . . . , Ip−1. So F consists of p
copies of each Ij . The pigeonhole principle shows that F has the (p, 2)H -property.
At the same time, τ(Fi) = p− 1 for each colour class.

6. Proof of Theorem 5

Lemma 5 implies that τ(Fi) ≤ p− q − 1 for at least one colour class. It is easy
to see (we omit the details) that⌊

p− 1

q − 1

⌋
= max

{
m ∈ N| q ≤

⌈ p
m

⌉}
. (1)

Set

m := min{τ(Fi) : i = 1, . . . , p}.
This implies that there are at least m pairwise disjoint intervals in each colour class
Fi ⊂ F . According to Lemma 5, 1 ≤ m ≤ p− q + 1. Let

p = km+ r, where k, r ∈ N and 0 ≤ r < m.

For each 0 ≤ l ≤ k − 1, Lemma 4 yields the existence of m pairwise disjoint
intervals {Ilm+1, . . . , I(l+1)m} of mutually different colours with Ilm+j ∈ Flm+j for
j = 1, . . . ,m.

If r > 0, then, again by Lemma 4, there exist r pairwise disjoint intervals
{Ikm+1, . . . , Ip} of mutually different colours, one from each of the remaining r
colour classes Fkm+1, . . . ,Fp. The set {I1, . . . , Ip} just constructed is a pairwise
disjoint heterochromatic p-tuple of intervals, which consists of dp/me groups and
each group contains m disjoint intervals (all of them of distinct colours) except the
last group which contains r disjoint intervals.

If q > dp/me, then the pigeonhole principle guarantees that any q-element subset
of {I1, . . . , Ip} contains two intervals from the same group and so they are disjoint.
This contradicts the hypothesis of the theorem, implying that q ≤ dp/me. Formula

(1) then shows that indeed m ≤
⌊
p−1
q−1

⌋
. �

The following example shows that upper bound in Theorem 5 is best possible.
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Example 2. Let p ≥ q ≥ 2 be positive integers and let m =
⌊
p−1
q−1

⌋
. Let the family

F consist of m pairwise disjoint intervals I1, I2, . . . , Im, each taken with multiplicity
p, and let the colour classes be Fi := {I1, . . . , Im}, for all i = 1, . . . , p.

It is clear that F satisfies the (p, q)H -property because any heterochromatic p-
tuple of intervals must contain at least q copies of one of the intervals I1, . . . , Im,

again by the pigeonhole principle. Further, τ(Fi) =
⌊
p−1
q−1

⌋
for all i = 1, . . . , p.

Remark 1. There is no similar theorem in the uncoloured case: the (p, q)-condition
implies τ(F) ≤ p − q + 1 (by the Hadwiger-Debrunner results [7]) and this bound
is best possible, as shown by p − q + 1 disjoint intervals, one of them taken with
arbitrary (large) multiplicity, and the others with multiplicity one. This means
that, not surprisingly, the (p, q)H -condition on p repeated copies of F is stronger
than the (p, q)-condition on F .

Remark 2. Under the hypotheses of Theorem 5, there exists a colour class, say

F1 ⊂ F , with τ(F1) ≤
⌊
p−1
q−1

⌋
. Then the subfamily F\F1 satisfies the (p−1, q−1)H

property and Theorem 5 guarantees the existence of a colour class, say F2 ⊂ F\F1,

with τ(F2) ≤
⌊
p−2
q−2

⌋
. Repeating this argument q − 2 times, we obtain q − 2 colour

classes, say Fk, k = 1, . . . , q − 2, with τ(Fk) ≤
⌊
p−k
q−k

⌋
.

Let p ≥ 3. Assume that the family F is coloured with p colours and has the
(p, p − 1)H -property. Applying the above argument to F , we obtain that p − 3 of
the colour classes of F have piercing number one and one colour class has piercing
number at most two.

7. An extension of Theorem 6 and a construction

Theorem 5 says that, under the (p, q)H -condition, some colour class of the family

F of intervals can be pierced by
⌊
p−1
q−1

⌋
points. Thus, it is not surprising that

Theorem 6 can be generalized so that all intervals of some colour class are pierced

by k points, where k ∈ {
⌊
p−1
q−1

⌋
, . . . , p− q + 1}:

Theorem 9. Let p ≥ q ≥ 2 be integers, k another integer with
⌊
p−1
q−1

⌋
≤ k ≤

p− q+ 1, h = q− 1 + b(q− p− 1)/kc, and α ∈ [0, α0) where α0 = 1
2 (k+ 2)−1/(p−h).

Then there is a number β = β(p, q, k, α) ∈ [0, 1) and an integer n0 = n0(p, q, k, α)
such that the following holds. Let F be a finite and coloured family of intervals in
R with colour classes F1, . . . ,Fp where each |Fi| ≥ n0. If F satisfies the (p, q)H-
property with the exception of at most α

∏p
j=1 |Fj | heterochromatic p-tuples, then

there exists a colour class Fi ⊂ F such that the elements of Fi can be pierced
by at most k points with the exception of at most β|Fi| intervals. Furthermore,
β = O(α1/(p−h)).

Note that this is exactly Theorem 6 when k = p − q + 1 and h = q − 2. We
mention further that, as one can easily see, the h defined above is the largest integer

l satisfying
⌊
p−l
q−l

⌋
≤ k.

In the next section we shall prove Theorems 9 and 6 simultaneously. The proof
will use the following construction. Assume that G is a finite family of bounded
open intervals in R with no two intervals having the same endpoint. Suppose that



10 I. BÁRÁNY, F. FODOR, L. MONTEJANO, D. OLIVEROS, AND A. PÓR

a is the right endpoint of some interval from G. We construct a subfamily G(a) of
G as follows. Denote by T (a) the collection of all intervals I ∈ G lying to the left
of a and by G(a) the collection of all intervals to the right of a.

Now let G = {I1, . . . , In}, each Ii is open and no two intervals have a common
endpoint. Define t := dγne where γ > 0 is a parameter.

The right endpoints of the Ijs form an increasing sequence of n distinct numbers.
Let a1 be its tth element, in other words, a1 is the tth smallest right endpoint of the
intervals in G. Then T1 = T (a1) consists of exactly t intervals and every interval in
G1 = G(a1) is to the right of a1.

Assume that the families Gj ⊂ Gj−1 ⊂ · · · ⊂ G have already been constructed.
Assuming that |Gj | ≥ t, let aj+1 the tth smallest right endpoint of the intervals
in Gj . Then Tj+1 = T (aj+1) consists of exactly t intervals, and we set Gj+1 =
Gj(aj+1). We can continue this construction as long as |Gj | ≥ t.

T1 Gk

a1 a2 · · · akR

Tk

ak−1

· · ·T2

Figure 1

Fact. The points a1, . . . , ak pierce all but kt+ |Gk| intervals from G.

8. Proof of Theorems 9 and 6

We assume again that all intervals in F are open and no two of them have a
common endpoint. Let ni = |Fi|, ti = dγnie where γ = (2α)1/(p−h), and define
β = (k + 2)γ. Note that β < 1 follows because α < α0.

For each colour class Fi ⊂ F , i ∈ [p] we apply the above construction giving
points ai1, . . . , a

i
j and sets T i1, . . . T

i
j , and call the class short if the construction

cannot be continued up to j = k. We note that we are done if some Fi is short; the
Fact from Section 7 shows that points ai1, . . . , a

i
j pierce all but at most jti + |F ji | <

(j + 1)ti < (k + 1)dγnie < βni intervals from Fi. Here the last inequality follows
from the choice of β and ni ≥ n0 and α < α0.

So we assume that there are no short colour classes, that is, aik exists for all
i. Let T i denote the set of intervals in Fi that are to the right of aik. It follows
that |T ij | = ti for j = 1, . . . , k and any two intervals from two different sets among

T i1, . . . , T
i
k, T

i are disjoint.
We are going to show that |T i| < ti for some i. This will finish the proof since

then Fi is pierced by the points ai1, . . . , a
i
k except for at most kti+ |T i| < (k+1)ti =

(k+ 1)dγnie < βni intervals where, again, the last inequality follows the same way
as above. So assume, on the contrary, that |Ti| ≥ ti for all i.

For i ∈ [p− h] we define a family of intervals Gi by setting

Gi := {(−∞, ai1), (ai1, a
i
2), . . . , (aik,∞)},

their union, G, is a family of intervals coloured with p− h colours.
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Claim 3. For each i ∈ [p− h] there is an interval Ij(i) ∈ Gi such that no q − h of
the Ij(i)s intersect.

Proof. If k = p− q + 1, then h = q − 2, and Lemma 4 guarantees the existence
of a pairwise disjoint heterochromatic (k+1)-tuple in G. If k < p−q+1, then no Gi
can be pierced by k points, and so by Theorem 5, G does not have the (p−h, q−h)H -
property. (This is where we use the choice of h.) Consequently, there are intervals
Ij(i) ∈ Gi for each i ∈ [p− h] such that no q − h of the Ij(i)s intersect. �

Define Si as the set of intervals from Fi that are contained in Ij(i), so Si coincides

with some T ij or T i. Consequently, |Si| ≥ ti for all i.
We count those heterochromatic p-tuples that contain one interval from every

Si, i ∈ [p−h]. Such a p-tuple cannot contain an intersecting q-tuple. Their number
is at least

p−h∏
i=1

|Si|
p∏

j=p−h+1

|Fj | ≥
p−h∏
i=1

ti

p∏
j=p−h+1

nj ≥ γp−h
p∏
i=1

ni = 2α

p∏
i=1

ni,

a contradiction, as F contains at most α
∏p

1 ni heterochromatic p-tuples with no
intersecting q-tuple. �

Remark 3. This proof gives a little more, namely the following. Under the con-
ditions of the theorem there are at least h+ 1 colour classes Fi that can be pierced
by k points except for βni intervals. The argument is easy: assume there are l
short colour classes. We are done if l ≥ h + 1. Suppose then that l ≤ h. There
are p − l ≥ p − h non-short colour classes and any p − h of them can be used in
the above proof to give another non-short colour class with the required piercing
property. We can repeat the argument getting further and further non-short colour
classes until we have a total of h+ 1 colour classes, each pierced by a set of size at
most k except for a β fraction of the intervals in the class.

The following example shows that the order of magnitude of β in Theorem 9 is
optimal.

Example 3. Let p ≥ q ≥ 2 be positive integers, define k and h as above, let
0 < β < 1/(p− h+ 1) be a real number to be specified later, and set δ = (k + 1)β.
Fix pairwise disjoint intervals I1, . . . , Ik+1 and a big interval I containing their
union. The family Fi is the same for all i ∈ [p]: it contains each of I1, . . . , Ik+1

with multiplicity βn, and the interval I with multiplicity (1− δ)n. Hence such an
Fi is pierced by k points except for βn intervals.

Suppose that a given heterochromatic p-tuple P of F is bad in the sense that it
does not contain an intersecting q-tuple. Say, the p-tuple contains exactly l copies of
I and sj copies of Ij , j ∈ [k+1]. We check that l ≤ h. This is trivial if k = p−q+1
since then h = q − 2 and l > h would imply l ≥ q − 1. Thus P would contain an
intersecting p-tuple. If k < p − q + 1 and l > h, then sj ≤ q − 1 − l for all j, and
the definition of h would give

p = s1 + · · ·+ sk+1 + l ≤ (k + 1)(q − 1− l) + l = k(q − 1− l) + q − 1 < p,

a contradiction.
We call the sequence s1, . . . , sk+1, l the profile of P . The number of possible

profiles of bad p-tuples with l copies of I is an integer f(p, q, l), independent of n.

Set f(p, q) =
∑h

0 f(p, q, l).
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The number of bad p-tuples with a fixed profile s1, . . . , sk+1, l is

((1− δ)n)l(βn)s1(βn)s2 · · · (βn)sk+1 = (1− δ)lβp−lnp.
As β < 1/(p− h+ 1) the total number of bad p-tuples is

h∑
l=0

f(p, q, l)(1− δ)lβp−lnp ≤
h∑
l=0

f(p, q, h)(1− δ)hβp−hnp

= f(p, q)(1− (k + 1)β)hβp−hnp = αnp,

when we define β by requiring f(p, q)(1− (k+1)β)hβp−h = α. It is easy to see that
for α small enough there is a unique solution β in the interval (0, 1/(p−h+1)) and
β = Ω(α1/(p−h)). The order of magnitude β = O(α1/(p−h)) in Theorem 9 is indeed
best possible.

9. Proof of Theorem 7

Set |F| = n, t = dγne where γ = (q−1)(p−1)/pα1/p, and k = p− q+ 1. We apply
the construction of Section 7 to F . If it stops before reaching ak, then we are done
the same way as before. So assume the construction produces points a1, . . . , ak and
families of intervals T1, . . . , Tk, T from F . Then |Ti| = t for all i and we are done,
again, if |T | < t. So assume, for a contradiction, that |T | ≥ t.

Next we derive a lower bound on the number of p-tuples in F that contain no
intersecting q-tuple. We only consider the following specific types of p-tuples: all
intervals are from T1∪· · ·Tk∪T with at least one interval and at most q−1 intervals
from every set T1, . . . , Tk and T . We will call such a p-tuple bad. Every q-tuple from
a bad p-tuple contains intervals from at least two of the sets T1, . . . , Tk, T and thus
its intersection is empty. Therefore a bad p-tuple does not have the q-intersection
property.

A bad p-tuple has, say, si intervals from Ti for i = 1, . . . , k, and l intervals from
T . Then p = s1 + · · · + sk + l and s1, . . . , sk and l are integers from [q − 1]. Call
the sequence s1, . . . , sk, l the profile of the given p-tuple, and let g(p, q, l) be the
number of profiles of bad p-tuples with |T | = l. The number of bad p-tuples with
given profile s1, . . . , sk, l is(|T |

l

) k∏
i=1

(
t

si

)
≥

( |T |
l

)l k∏
i=1

(
t

si

)si
>

( |T |
q − 1

)l k∏
i=1

(
t

q − 1

)si
=

( |T |
q − 1

)l(
t

q − 1

)p−l
.

Let N denote the total number of bad p-tuples. As g(p, q, l) ≥ 1,

N >

q−1∑
l=1

g(p, q, l)

( |T |
q − 1

)l(
t

q − 1

)p−l
≥ 1

(q − 1)p

q−1∑
l=1

|T |ltp−l,

which is a non-decreasing function of |T |. As |T | ≥ t, we have

N > (q − 1)
1

(q − 1)p
tp ≥ 1

(q − 1)p−1

(
(q − 1)

p−1
p α

1
p

)p
np = αnp > α

(
n

p

)
.

This contradicts the assumption of Theorem 7, and so |T | < t must be true.
Further, a1, . . . , ak pierce all but at most (k + 1)t intervals from F and so β =
O(α1/p). �
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Under the conditions of Theorem 7 one can give a better bound, namely, β =
O(α1/(p−q+2)) provided n > pp/α. To prove this one should take each set in F
with multiplicity p giving colour classes F1, . . . ,Fp and apply Theorem 6 to this
new family. We omit the details. We mention that the monochromatic version of
Example 3 shows that this β is of order α1/(p−q+2) when α is small and n > pp/α.
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