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Abstract. We show by a construction that there are at least
exp {cV(dfl)/(dH)} convex lattice polytopes in R? of volume V that are dif-
ferent in the sense that none of them can be carried to an other one by a lattice
preserving affine transformation.

1. Introduction and main result

In 1980 Arnol’d [2] asked the following question: How many convex lat-
tice polytopes are there in R%? Infinitely many, of course. So Arnol’d refined
the question. He calls two convex lattice polytopes equivalent if one can be
carried to the other by a lattice preserving affine transformation. This is an
equivalence relation and equivalent polytopes have the same volume. Let
N4(V') denote the number of equivalence classes of convex lattice polytopes
in R of volume V. Of course, d!V is a positive integer. Arnol’d showed that

V3 < log No(V) < V3 10g V.

Actually, Arnol’d proved the stronger statement that log Ny (V) <
V1/31ogV where N; (V) denotes the number of equivalence classes of
convex lattice polytopes in R? of volume at most V. He asked what
happens in higher dimensions and Konyagin and Sevastyanov proved [7]
that log N (V) < V(@=1/(@+ ) ]og V. This was subsequently improved to
log Nf (V) < V@=D/(d+1) by Bardny and Pach [5] (for d = 2) and by Barany
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and Vershik [6] (for d =22). The proof of the lower bound log N; (V)
> V0@=1/(d+1) g quite easy as we will see soon. The main result of this
paper is the same lower bound for log Ng(V'):

THEOREM 1.1. V@=D/@+1) « log Ny(V).

In [2] Arnol’d proved this theorem for d = 2. For higher dimensions he
only says: “Proof of the lower bound: let % + -+ 22 | <24 < A”. The

construction for the lower bound to be presented here uses an idea of Arnol’d
and several further ingredients. Of course Theorem 1.1 has the following

COROLLARY 1.1. V@=D/(+1) « Jog NF (V).

A proof is sketched in [3], and another proof is given by Chuanming
Zong [9]. We also give a short argument for this corollary.

Some remarks are in place here about notation and terminology. A con-
vex polytope P C R? is a lattice polytope if its vertex set, vert P is a subset
of Z%, the integer lattice. Write P or P, for the set of all convex lattice
polytopes in R¢ with positive volume. The number of vertices of P € P is
denoted by fo(P). Throughout the paper we use, together with the usual
“little oh” and “big Oh” notation, the convenient < symbol, which means,
for functions f,g: Ry — Ry, that f(V) < g(V) if there are constants Vy > 0
and ¢ > 0 such that f(V) < cg(V) for all V> V. These constants, to be

denoted by c¢,c1,...,0,b1,... may only depend on dimension. The stan-
dard basis of R? is ey,...,eq, and |z| = \/2? + -+ 22 is the Euclidean
norm of = (x1,...,24) € R?, and B? is the Euclidean unit ball of R?, and

vol By = wy. Also Ri denotes the set of z € R? with z; > 0 for every i € [d].
Here [d] ={1,2,...,d}.

The paper is organized as follows. The integer convex hull and some of
its properties are given in the next section. A quick proof of Corollary 1.1
is the content of Section 3. Section 4 presents some auxiliary results. The
construction of many non-equivalent convex lattice polytopes is in Section 5.
We finish with concluding remarks.

2. The integer convex hull

Suppose K C R? is a bounded convex set. Its integer convex hull, I(K),
is defined as

I(K) = conv (K NZ%),

which is a convex lattice polytope if nonempty. One important ingredient of
our construction is

Q. = I(rB%) = conv (24 nrBY).
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Trivially vol Q, < wgr?. It is proved in Bardny and Larman in [4] that

d—
vol (rBg\ Qr) < r4iT | The last exponent will appear so often that we write

D= dZ—H. The number of vertices of @, is estimated in [4] as

(2.1) P < fo(Qr) < rP.

The upper bound is a result of Andrews [1] stating that fo(P) <

(vol P4~ @) g5r all P € Py with vol P > 0.
We are to establish further properties of @Q,, always assuming that r is
large enough.

LemMMA 2.1. (r —Vd)B? C Q,.
PROOF. A cap C of B? is the intersection of B¢ with a halfspace H.

If int CNZ% =, then int C cannot contain a translate of the unit cube,
implying that the width of C' is at most v/d. [

LEMMA 2.2. (r —2Vd)B? C I(Q, \ vert Q).

PROOF. The previous lemma implies that no vertex of @, lies in
(r —+/d)B®. Consequently (r —+/d)B?C Q,\vertQ,. Taking the in-
teger convex hull of both sides and applying Lemma 2.1 to Q,_ vi=

I((r — \/E) Bd) finishes the proof. [
For a lattice polytope P € P with x € vert P we define
A(z) =P\ I(vert P\ {z}).
It is evident that vol A(z) is an integer multiple of 1/d!.
I;EIMMA 2.3. For every x € vert ), volA(z) < rs and | A(z) NZ%
Lr e,

PROOF. Set P’ :=I(vert P\ {z}) and let F be a separating facet of P’
meaning that the hyperplane aff F' strictly separates x and P’. This hyper-
plane cuts off a small cap Cr from 7B® whose width is less than 2v/d by the
previous lemma. Then the diameter of Cr is at most

21/ (2r — 2Vd) 2vd < 4d"/4 /7.

It follows that all such caps C are contained in a cap C, centered at rz/|z|,
and of radius 4d'/*\/r. Then /A(z) is contained in C, and the volume of this

cap is < 72 . The second statement follows from the fact that | A(z) N Z4]
is at most the volume of the Minkowskid sum of C and the unit cube. It is
not hard to see that this volume is < r 2z . O
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3. A quick proof of Corollary 1.1

We are to construct many non-equivalent convex lattice polytopes of vol-
ume at most V (when V is large). Choose r so big that volrB? is slightly
smaller than V and set s = |r]. Then Q, has > rP vertices. Set G = {+sey,
..., Eseq}.

Here comes Arnol’d idea from [2]. For a subset W of vert Q, \ G define
Q(W) =I(Q,\ W). This is 2/vert@1=2¢ > exp {cV(@=D/(@D Y convex lat-
tice polytopes (with a suitable ¢ > 0, depending only on d). We show that
at most 2%d! of the Q(W) are in the same equivalence class.

Assume the lattice preserving affine transformation 7" maps Q(W) to
Q(W"). T is of the form T'(x) = Az + a where A is an integral matrix of
determinant +1 and a € Z¢. We claim |Ae;| =1 for all i € [d]. Assume
Ae; = z € Z%, then either |z| =1 or |z| = V2. As £se; € Q(W), | T(Ese;)|
< r. Squaring and expanding gives (+sAe; + a)2 = 5222+ 2s2-a+a® < r2.
Summing the two inequalities gives s222 +a? < 72. Here s = |r| = 0.9r, and
if 22 > 2, we have 1.62r2 + a? < r? which is impossible. So |z| = 1 and then
z = +e; for some j € [d]. Thus there is a permutation 7 of [d] with Ae; =
+eq;). As x; = £s are supporting hyperplanes to both Q(W) and Q(W’),
a = 0 follows. There are 2%d! such lattice preserving affine transformations,
so indeed the equivalence class of Q(W) contains at most 2%d! convex lattice
polytopes of the form Q(W'). O

REMARK. The same method works for the rotational paraboloid given
by inequalities 2% + -+ + 22 | < x4 < r? from Arnol’'d paper [2]. Its integer
convex hull, P,, is a convex lattice polytope with wd_lrd_l(l +0(1)) ver-
tices, and its volume is of order 741, Deleting all subsets W of the vertices
gives many, namely at least exp {crdil}, convex lattice polytopes of the
form I(P,\ W), and every equivalence class contains at most 2¢~*(d — 1)! of
them.

4. Auxiliary results

We are going to use a beautiful result of Reizner, Schiitt, Werner [8]. For
a vertex x of a polytope P € P we define A*(z) = P\ conv (vert P\ {z}).

THEOREM 4.1. For every integer d = 2 there are constants by, by > 0
such that the following holds. For every € € (0,1/2) and for every P € P
with fo(P) = bl /e there is a set X C vert P of size | X| = (1 — 2¢) fo(P) such
that for every x € X

vol A*(z) _ a1

olp = bi(efo(P)) .
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Note that, for a lattice polytope P, A(z) C A*(x) so the last inequality
holds with A(z) in place of A*(z).

The main building block of our construction is K, = ]Ri NrB% The
estimate (2.1) shows that r? < fo(I(K,)) < rP. Applying the above the-
orem to P = I(K,) with € = 0.24, say, shows that at least 52 percent of the
vertices of I(K,) satisfy

_d+1

1 d—1
vol A(z) < by (Z‘vert I(KT)\) Vol I(J,) < 1.

This implies that for this set of vertices vol A(z) =< d, where b is a positive in-
teger that depends only on d. Let X be a subset of these vertices, excluding
the origin (for reasons that will be clear later), with |X| = L%fg(I(KT)) |.
So what we have now is that

(4.1) vol A(z) < for all z € X.

b
d!
The next lemma is fairly simple.
LEMMA 4.1. If a segment [u,v] C 2K, contains more than 1.97 lattice
points, then it is parallel with some e; or with some e; —e;, i # j. In the
latter case |%(u +v)| £ 15

PROOF. Let z be the primitive vector in the direction of the segment
[u,v]. Then u —v = Az with A > 1.9r. Further,

diam 2K, = 2diam K, = 2V2r > |u — v| = \|z| = 1.97|2|

implying that |z| < 2‘[ < 1.5. Such an integer vector can have one or two
coordinates equal to il the rest of the coordinates is zero. It is easy to
check that the case z = e; + e; cannot occur. Equally easy is to see that if
z = e; — e;, then u is close to 2re; and v is close to 2re;, and then the mid-
point w of [u,v] is close to the midpoint of [2re;, 2re;] which is at distance
2r /+/2 from the origin. This implies |w| < 1.5r. We omit the straightforward
details. O

We need one more fact which is probably known. Let b be a fixed posi-
tive integer. Assume kq,...,ky, € [b] and > 7" k; = M. For W C [m] define
o(W) =3 ewkj. We want to give an exponential in m lower bound on
the number of sets W C [m] with o(W) € [BM — b, BM] where § € (0,1/2).
The interval [M — b, M| contains b integers. Note that a shorter interval
would not suffice in general, for instance when all k; = b.

LEMMA 4.2. For all positive integers b,m and for all 5 € (0,1/2) the fol-
lowing holds. Given a sequence ki, ..., kp with all k; € [b] and Y1 k;j = M
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the number of sets W C [m] satisfying o(W) € [BM — b, BM] is at least
[h2sm,

PROOF. Fix € (0,1/2). The sets P, = {j € [m]: k;j =i} form a par-
tition of [m]. Set p; = |P;| and ¢; = |Bpi]. We are going to choose ¢ ele-
ments from P; with ¢; < ¢f < ¢; 4 1 for all 4 so that Y5 iq} € [8M — b, BM].
As Z’f iq; S BM < ZI{ i(¢; + 1), and the difference of the upper and lower
bounds here is (g), there is such a choice of ¢;. We fix such a choice.

The number of sets W C [m] with exactly ¢ elements from P; is [ (f;)

Here (g) > (2) since 3 < 1/2, and (g) > (f]’—:)qi. Moreover % > % = %

Thus
(1(5)2 (5)" 2 (5) 2 (5) ">

5. The construction

The building block of the construction is the convex lattice polytope
I(K,)=I(rB‘NR4). As r grows, more and more lattice points enter the
ball 7B? and so I(K,), sometimes many of them with the same r. That
is why we modify our construction a little. Order the lattice points in Ri
as o, r1,x2,... with the only condition that |z;| < |z;| for ¢ £ j. Define
K™ = conv {zg,x1,...,2,}.

Set r = |x,|. Then K™ is close to K, and n = wgr?(1+0(1)) and vol K™
= war?(1+o(1)). Moreover, all the estimates and lemmas of Section 2 re-
main valid for K™ because no proof (not even in [4]) considers whether a
particular lattice point is on the boundary of »B? or not.

The function n — vol I(K™) is increasing, of order r¢, with jumps at
least 1/d! and at most O(T(dfl)/Q) in view of Lemma 2.3. The function
n — fo(I(K™)) is of order 7P with jumps at most 1 and at least —crld=1)/2
for a suitable ¢ > 0 depending only on d, again by Lemma 2.3. Consequently
for every large enough V' there is n such that with r = |z,

1
0<2%vol K"~V — s oK) < pd=1)/2.

We fix this n and the corresponding r = |z, | and define Q = 2K™, which
is a homothetic copy of K™ by blow-up factor 2 and center 0. Further, z is
a vertex of @ iff /2 is a vertex of I(K™). The estimate (2.1) shows that

r? < fo(Q) = fo(K™) < rP.
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For x € vert () define

Ax) = Do(r) = QN I(Q\{x}).

A(z) is a translate of Agn(x/2) (by the vector x/2). This implies that for
all x € vert @

1 d—1
7l SvolAz) < r = .

The advantage of the blow-up factor 2 in the definition of @ is that for
distinct =,y € vert @, A(x) and A(y) are internally disjoint, that is, int A(x)
Nint A(y) = 0 when z,y € vert Q) are distinct.

We use next the Reizner—Schiitt—Werner theorem in the form of (4.1):
There is X C vert @, | X| = L%fo(Q)J, and 0 ¢ X such that vol A(x) < b/d!
for all x € X where b is a positive integer depending only on d. Set | X| =m
and M =3 cy volA(z). Clearly m/d! = M < bm/d.

Our target is to find many lattice polytopes contained in @ that have
volume very close to, and slightly larger than, V. To this end we define H
as the collection of all W C X with

vol (Q\ U A(w)) € [V,V—i- %] ;

zeW
or, what is the same, >y vol A(z) € [volQ —V —b/d!,volQ — V.

Cram 5.1. There is ¢ >0, depending only on d such that |H|=
exp {cV(d_l)/(d+1)}.

ProOOF. We are going to use Lemma 4.2, this time not with integral £;
but with vol A(z), x € X instead. These numbers are not integers but pos-
itive integer multiples of 1/d! which makes no difference. We define ( via
BM = vol@ — V and check, first, that § < 1/2.

As (d—1)/2< D=d(d—1)/(d+1) for all d = 2, r(@=D/2 = o(rP), and

we have

1 1

V= _— n (d=1)/2y —

volQ =V = - fo(K™) + O(r-D/2) = —

On the other hand M =2 m/d! = I_%fO(K”)J /d!. Thus 3 = (volQ — V)/M
< 1/2, indeed.

We show next that 8 = %. Just as before

Jo(K™)(1+0(1)).

volQ—V = %fo(K”)(l +o(1)), and M < bm/d =b Bfo(K")J Jd!,

showing that 8 = % > 0 indeed.
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An application of Lemma 4.2 shows that [H| = p°26™ > (Sb)_me/3b. We
are done since b depends only on d and m > rP > V@-D/(d+]) O

Here comes the last step of the construction. Given W € H, let t = t(W)
be defined by

t
vol (Q\ U A@)) =V+
zeW
Then 0 < ¢ < b. The simplex S(t) = conv {0, te1, ea,...,eq} has volume ¢/d!.
We assume r is large, much larger than b. For W € H define

P(W) = (Q\ xUW A(x))\S(t).

We have now constructed the set P(W) for every W € H. It is evident
that each P(W) is a convex lattice polytope of volume V.

We show finally that a positive fraction of these convex lattice polytopes
are non-equivalent. Let s = |r]. It is clear that @ has d edges, namely
[0, 2se;], i € [d], that contain 2s 4 1 lattice points. Some of these edges be-
come shorter in P(W), yet each P(W) contains an edge E; C [0,2se;] with
at least 2s — b = 1.9r lattice points on it (i € [d]).

Cramm 5.2. P(W) has no edge containing 1.9r lattice points apart from
Ey, ... By

PROOF. If [u,v] is such an edge, then its midpoint lies in 1.5rB%, by
Lemma 4.1. In view of Lemma 2.2

2(r —2vVd)BT*NRL ¢ P(W) U L(t),

and so [u,v] cannot be an edge. [

Suppose now that P(W) and P(W’) are equivalent (W, W’ € H), and T
is the lattice preserving affine transformation carrying P(W) to P(W’). By
the claim, 7" maps the edges Ei,...,Eq of P(W) to the edges Ef, ..., E)
of P(W’). Thus T must permute these edges. Moreover, T'(0) = 0 follows
from Naff E; = Naff E/ = {0}. Thus T is a lattice preserving linear transfor-
mation that permutes the elements of the basis eq,...,e4. There are exactly
d! such lattice preserving linear transformations.

This proves that there are at most d! convex lattice polytopes of the form
P(W), W € 'H that are equivalent. Consequently

log Ng(V) = log <;,|H> > VA-D/A+1) _ge gl s YD/ O
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6. Concluding remarks

There is a modification of this construction in which no two polytopes
are equivalent, showing directly that Ng(V') = |H|. To describe it we define
G1 = {se1}, Go = {sea, (s — L)ea}, ..., Gg = {seq,...,(s —d—1)eq}. For
each W € 'H we consider the convex lattice polytope

W) = I(P(W) \ L?G)

We claim that no two of these convex lattice polytopes are equivalent.
Suppose T is a lattice preserving affine transformation carrying P*(W)
to P*(W'). Again, Ef = I(E;\ G;) is an edge of P*(W), and the same
way as before, T'(0) = 0 and T' must permute the e;. But now the last point
(away from the origin) of the edge E} is (s —i)e; and so T' must carry E
to E/* for all i € [d]. Thus T is the identity, and then W = W".

We mention further that Arnol’d’s suggestion, the paraboloid x% + - --
+ x?lfl < 24 < A, would work in a similar way. Also, an analogous construc-
tion applies to centrally symmetric (or, what is the same in this context,
O-symmetric) convex lattice polytopes. Define My(V) as the number of
equivalence classes of O-symmetric convex lattice polytopes. In this case, of
course, V' is a positive integer multiple of 2/d!

THEOREM 6.1. V=D/(d+1) « Jog My (V) « VE=D/(d+1),

SKETCH OF PROOF. The upper bound follows from My(V) < Ny(V).
For the lower bound let E be the ellipsoid

1 2 2

a2l — (E_ﬁ) (z1+ - +x4)* S 7

The longest axis of E is in direction e = (1,1,...,1), and is of length v/d. All
other axes are of length \/2/d. Let K be the intersection of E with the cube
{reRY: —1<12;<1,i€[d}. The integer convex hull of rK is the start-
ing point of the construction. Theorem 5 of [4] shows that r? < fo(I(rK))
< rP. Set Q = 2I(rK). For an 0-symmetric subset W of vert @, I(Q \ W)
is an O-symmetric convex lattice polytope and r¢ < vol Q < r?. Choosing
r carefully, and using Lemma 4.2, one can show again that exponentially
many of them have volume between V and V' + b. Each such P(W) near the
vertices £|r]e looks like a coordinate octant. To reach exactly V' volume
one should delete copies of a suitable S(t) at these vertices. [
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