
Available online at www.sciencedirect.com

Advances in Mathematics 235 (2013) 390–397
www.elsevier.com/locate/aim

Every point is critical
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Abstract

We show that, for any compact Alexandrov surface S (without boundary) and any point y in S, there
exists a point x in S for which y is a critical point. Moreover, we prove that uniqueness characterizes the
surfaces homeomorphic to the sphere among smooth orientable surfaces.
c⃝ 2013 Elsevier Inc. All rights reserved.
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1. Introduction

In this paper, by surface we always mean a compact 2-dimensional Alexandrov space with
curvature bounded below and without boundary, as defined by Burago, Gromov and Perelman
in [1]. It is known that our surfaces are topological manifolds (see [1, Section 11]). Let A be the
space of all surfaces.
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For any surface S, denote by ρ its metric, and by ρx the distance function from x , given by
ρx (y) = ρ(x, y). A point y ∈ S is called critical with respect to ρx (or to x), if for any direction
τ of S at y there exists a segment (i.e., a shortest path) from y to x whose direction at y makes an
angle not greater than π/2 with τ . For the definition of the set of directions at an arbitrary point
of an Alexandrov surface, see again [1]. A geodesic is a curve which is locally a segment. We
recall that geodesics of S do not bifurcate [1].

The survey [2] by K. Grove presents the principles, as well as applications, of the critical point
theory for distance functions.

Every point on a surface admits a critical point. It suffices, indeed, to take a point farthest
from it. Conversely, is it true that every point is a critical point of some other point? Certainly,
not every point on every surface is a farthest point from some other point: On an ellipsoid of
revolution with an NS-axis much longer than the other two, no point of the equator is farthest
from any other point. Concerning the set of all critical points, however, the answer is affirmative,
as Theorem 1 shows.

For the set-valued function associating to each point of a surface the set of all farthest points
on the surface, the relationship between being single-valued and being surjective is investigated
in [11].

Theorem 2 characterizes the smooth orientable surfaces homeomorphic to the sphere.
For any point x in S, denote by Qx the set of all critical points with respect to x , and by

Q−1
x the set of all points y ∈ S with x ∈ Q y . Let Mx , Fx be the sets of all relative, respectively

absolute, maxima of ρx . For properties of Qx and its subsets Mx and Fx in Alexandrov spaces,
see [3,11], and the survey [9].

A forthcoming paper, [4], will provide for orientable surfaces an upper bound for cardQ−1
y

depending on the genus, and use it to estimate the cardinality of diametrally opposite sets on S.
The case of points y in orientable Alexandrov surfaces, which are common maxima of several
distance functions, is treated in [10].

We denote by Ty the space of directions at y ∈ S; the length λTy of Ty satisfies λTy ≤ 2π [1].
If λTy < 2π then y is called a conical point of S. A surface without conical points is called
smooth.

There might exist a direction τ ∈ Ty such that no segment starts at y in direction τ . On most
convex surfaces, the set of such directions τ , called singular, is even residual in Ty , for each
y (see Theorem 2 in [12]). However, the set of non-singular directions is always dense in Ty .
For those τ , for which there is a geodesic Γ with direction τ at y, a so-called cut point c(τ )

is associated, defined by the requirement that the arc yc(τ ) ⊂ Γ is a segment which cannot
be extended further beyond c(τ ) (remaining a segment). This is well-defined, because in an
Alexandrov space of curvature bounded below segments (and geodesics) do not bifurcate. The
set of cut points in all non-singular directions at y is the cut locus C(y) of the point y.

Recall that a tree in S is a set T ⊂ S any two points of which can be joined by a unique Jordan
arc included in T . A set L ⊂ S is a local tree if each of its points x has a neighbourhood V in S
such that the connected component Kx (V ) of L ∩ V containing x is a tree. The degree of a point
x of a local tree is the cardinality of the set of components of Kx (V ) \ {x} if the neighbourhood
V of x is chosen such that Kx (V ) be a tree. A point of the local tree L is called an extremity of
L if it has degree 1, and a ramification point of L if it has degree at least 3.

It is known that C(y), if it is not a single point, is a local tree (see [8, Theorem A, p. 534]),
even a tree if S is homeomorphic to the sphere (which is easily seen). Theorem 4 in [14] and
Theorem 1 in [12] yield the existence of surfaces S on which the set of all extremities of any cut
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locus is residual in S. It is known, however, for any surface S and point y ∈ S, that C(y) has an
at most countable set C3(y) of ramification points (see [8, Theorem A, p. 534]).

If S is not a topological sphere, the cyclic part of C(y) is the minimal (with respect to
inclusion) subset Ccp(y) of C(y), whose removal from S produces a topological (open) disc.
It was introduced by some of us in [5]. Let Ccp

3 (y) be the set of points of degree at least 3 in
Ccp(y).

It is possible that, for some point x ∈ C(y), there exists a whole nondegenerate arc A ⊂ Ty
such that c(τ ) = x for all τ ∈ A, providing a pencil of segments from y to x . Let C∗(y) denote
the set of all such points in C(y). Also, let Ce(y) be the set of extremities of C(y).

The points in Cl(y) = C(y) \ (C3(y) ∪ C∗(y) ∪ Ce(y)) are called cleave points.

2. Main result

In order to prove the main result of the paper we need the following lemmas.

Lemma 1. Let y belong to a surface S not homeomorphic to the sphere. Then Ccp(y) is a local
tree with no extremities and with finitely many ramification points, each having finite degree in
Ccp(y).

This essentially follows from Myers’ early investigation of the topological properties of the
cut locus [7], and the observation that C(y) \ Ccp(y) is a (countable) union of disjoint trees.

Lemma 2. If y ∈ S, then all points of C(y) but at most countably many are cleave points
or extremities. Moreover, for any cleave point x, there are exactly two distinct directions
τ1(x), τ2(x) ∈ Ty with c(τ1(x)) = c(τ2(x)) = x.

The first part follows from the already mentioned at most countability of C3(y) and from the
obvious countability of C∗(y). The second part is straightforward.

Lemma 3. Let S ∈ A, y ∈ S, and x ∈ C(y). Assume that there are two segments σ1, σ2 from y
to x such that S \ (σ1 ∪ σ2) be disconnected, at least one of its components being a topological
open disc ∆. If the angle between σ1 and σ2 at y toward ∆ is larger than π , then y ∈ Qx or
there exists a point in C(y) ∩ ∆ with respect to which y is critical.

Proof. We will identify in this paper Ty with a circle of centre 0 and length λTy ≤ 2π in R2. Let
D ⊂ R2 be the compact disc bounded by Ty .

We want to find x ∈ C(y), for which y ∈ Qx . This is equivalent to 0 ∈ convc−1(x), by the
definition of a critical point.

Let A∗
⊂ Ty be the arc of all directions toward the closure of ∆.

If c(τ ) = x for all τ ∈ A∗, then y ∈ Qx . In the contrary case, if all components of A∗
\c−1(x)

have length at most π , then again y ∈ Qx . Suppose one component, A, has length λA > π.

For any non-singular τ ∈ A, c−1 (c(τ )) ⊂ A, because no segment starting at y in a direction
belonging to A meets again any segment starting at y in a direction not belonging to A (since
segments do not bifurcate). This follows from the Jordan curve theorem and the fact that ∆ is
homeomorphic to an open disc. Let Bτ be the shortest subarc of A including c−1 (c(τ )) (possibly
reduced to {τ }).

Choose a non-singular direction τ0 in the interior of A at distance (measured on Ty) less than
(λTy − λA)/2 from the mid-point of A. Then either

(i) 0 ∈ convc−1 (c(τ0)), or
(ii) Bτ0 = {τ0} (and c(τ0) is an extremity of C(y)), or else

(iii) 0 < λBτ0 < λTy/2.
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Put x ′
= c(τ0).

In the first case (i), y ∈ Qx ′ . In the last two cases, there is a single Jordan arc J ⊂ C(y) from
x to x ′. The multivalued mapping z → c−1(z) defined on J is upper semicontinuous. For this
reason, if z ∈ J \ C3(y) is close to x and τ ∈ c−1(z), then λBτ > π ≥ λTy/2. For the same
reason, if z ∈ J \ C3(y) is close to x ′ and τ ∈ c−1(z), then λBτ < λTy/2. Once again due to the
upper semicontinuity of the above mapping, we have the intermediate value theorem in the form
that, in between, there exists a point z0 ∈ J for which 0 ∈ convc−1(z0). �

Theorem 1. Every point on every surface is critical with respect to some point of the surface.

Proof. Let S ∈ A and y ∈ S. We keep the notation from the proof of Lemma 3.

Case 1. S is homeomorphic to the sphere.
If C(y) is a single point, the conclusion is true. Suppose C(y) is not a point, but remember it

is a tree.
Choose a point x ∈ C(y) different from an extremity of C(y). If all components of Ty \c−1(x)

have length at most π , then y ∈ Qx . If one component has length larger than π , then the
conclusion follows from Lemma 3.

Case 2. S is homeomorphic to the projective plane.
In this case Ccp(y) is a closed Jordan curve on S. If x ∈ Ccp(y) is a ramification point of

C(y), then at least three segments join x to y, at least two of which come locally from the same
side of Ccp(y) and thus bound a topological disc.

For any x ∈ Ccp(y) and α ∈ c−1(x), let I (α) = α−α+ ⊂ Ty be the maximal arc containing
α such that, for each non-singular τ ∈ I (α), either c(τ ) ∉ Ccp(y) or c(τ ) = x . (The indices
−,+ are taken according to a certain orientation of Ty . We will say that α− is the left endpoint
of the arc I (α), while α+ is its right endpoint.) In other words, I (α) is the maximal arc A′

⊂ Ty
containing α, so that c(A′′) ∩ Ccp(y) be a single point, where A′′ is the set of all non-singular
directions in A′. Of course, I (α) may well be reduced to the singleton {α}. Then α− = α+ = α.
This certainly happens if x is a cleave point, hence at all but at most countably many points of
Ccp(y). If α− ≠ α+, then there is a pencil of segments from x to y, or x is a ramification point
of C(y), or both.

If the arc I (α) has length more than π , either x ∈ Q−1
y in the case of the pencil, or we find a

point in Q−1
y on a branch (i.e. component of C(y) \Ccp(y)) of C(y) lying between the segments

from y to x in directions α− and α+, by Lemma 3.
Assume now that λI (α) ≤ π for all α ∈ c−1(x) and x ∈ Ccp(y).

For any x ∈ Ccp(y) ∩ Cl(y), there are precisely two directions τ1(x) and τ2(x) with
c(τ1) = c(τ2) = x , by Lemma 2. When x describes Ccp(y) ∩ Cl(y), moving from a position
x0 along Ccp(y) until it reaches again x0, then τ1(x) moves from τ1(x0) to τ2(x0), jumping over
arcs like I (α), and τ2(x) moves from τ2(x0) to τ1(x0), also jumping over similar arcs.

If 0 was, say, on the right hand side of the line-segment τ1(x)τ2(x) when x started its motion,
0 ends up being on its left side. Therefore, for some position x , either 0 is on τ1(x)τ2(x) or, more
generally, 0 ∈ conv(I (α) ∪ I (β)) for some subarcs I (α), I (β) of Ty with c(α) = c(β) = x . In
both cases y ∈ Qx .

Case 3. S is neither homeomorphic to the sphere, nor to the projective plane.
In the proof of this case, to simplify notation, we shall write C, Ccp, Cl, Ccp

3 instead of
C(y), Ccp(y), Cl(y), Ccp

3 (y), respectively, as the point y remains the same all the way. See
Figs. 1 and 2.
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Fig. 1. Cut locus C(y) of a point y on a torus. Here, C3(y) = {b, b1, c}, and Ccp
3 (y) = {b}. The cyclic part Ccp(y)

consists of two cycles. The degree of b in C(y) is 7, and in Ccp(y) is 4.

Fig. 2. This is Ty corresponding to Fig. 1. There are four distinct arcs I (α) with c(α) = b, denoted here simply by b,

three of which are non-degenerate. There are two distinct arcs I (α) with c(α) = b1, denoted here by b1, one degenerate
and one not.

Take a point x ∈ Ccp
\ Cl, and a direction α ∈ c−1(x). (We have Ccp

≠ ∅, as we are not in
Case 1.) Notice that Ccp

\ Cl ⊃ Ccp
3 .

Consider first the case that x ∉ Ccp
3 . We recall that I (α) = α−α+ ⊂ Ty is the maximal arc

containing α such that, for each non-singular τ ∈ I (α), either c(τ ) ∉ Ccp or c(τ ) = x . If I (α)

is not reduced to the singleton {α}, we connect α− to α+ by a line segment α−α+ in D. (There
must be some α ∈ c−1(x) with α− ≠ α+, since x is not a cleave point.)
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Consider now the case x ∈ Ccp
3 . (If Ccp

3 = ∅ then Ccp is a cycle and S is homeomorphic to
the projective plane, which we now exclude.)

For each such x we have finitely many arcs like I (α), perhaps degenerate, as many as the
degree of x in Ccp. For each arc I (α), we connect α− (resp. α+) to one endpoint of another arc
I (β) with β ∈ c−1(x), β ≠ α (resp. I (γ ) with γ ∈ c−1(x), γ ≠ α) in the following way.

By symmetry, it suffices to explain this for α−. Let z ∈ Ccp
∩ Cl converge to x in such a way

that τ1(z) converges to α− from the left. Then τ2(z) tends to some point f (α−) in c−1(x). It is
not hard to see that this point f (α−) is an endpoint of another arc I (β), moreover τ2(z) tends
to β− from the left if the endpoint f (α−) is β−, and to β+ from the right if f (α−) = β+. We
define this function f for α+ and for all other endpoints of arcs like I (α), with c(α) = x (while
x remains fixed).

Connect α− to f (α−) by a line-segment α− f (α−) and α+ to f (α+) by a line-segment
α+ f (α+).

When the same process is applied to the endpoint f (α−) of I (β), we obtain f ( f (α−)) = α−,
so its connection with the endpoint α− of I (α) is confirmed. This is due to the fact that for
z ∈ Ccp

∩ Cl the map τ1(z) → τ2(z) is an involution.

This shows that the union of the line-segments α−α+, α− f (α−), α+ f (α+) and their analogs,
for fixed x ∈ Ccp

3 , forms a cycle (closed polygonal line in D). Now we do this for all (finitely
many) x ∈ Ccp

3 . So, we obtain a finite set of cycles. Their vertices on Ty are endpoints of (perhaps
degenerate) arcs like I (α).

Let now I (α), I (β) be two arcs on Ty with c(α) = x1, c(β) = x2 and x1, x2 ∈ Ccp
3 , (where

x1 and x2 are different or not) so that α+, β− are consecutive on Ty . Then, as it is easy to check,
f (α+) and f (β−) are also consecutive on Ty . Consider the cycle made up by the arcs α+β− and
f (α+) f (β−), and the line-segments β− f (β−), α+ f (α+), and all analogous cycles, in addition
to the previous ones.

Moreover, consider the cycle formed by the arc α−α+ and the line-segment α−α+, plus all
analogous cycles, not only for c(α) ∉ Ccp

3 , but also for c(α) ∈ Ccp
3 .

Let C1, . . . , Cn be all the cycles defined above. Each of them is either a closed polygonal
line, or a 2-cycle formed by one subarc of Ty and one line-segment, or a 4-cycle formed by two
subarcs of Ty and two line-segments.

When τ runs along Ty, c(τ ) describes various parts of C .

When τ runs along an arc I (α), c(τ ) either is constant (in the case of a pencil of segments),
or runs through a tree in C , starting and ending at the ramification point c(α) of C . The presence
of a cycle which is a closed polygonal line indicates that its vertices are directions of segments
all ending at the same ramification point of Ccp.

If 0 ∈ ∪
n
j=1 C j , i.e. 0 lies not inside but on some cycle, then 0 belongs to one of the line-

segments, as 0 ∉ Ty . Hence c−1(x) contains, for some x ∈ Ccp
\ Cl, two diametrally opposite

points of Ty , and we are done.

If not, consider the odd–even winding number, or degree modulo 2 (as it is called in Milnor’s
book [6, p. 20]), w(C j ) = w(0, C j ) of the cycles C j with respect to 0. We have

n
i=1

w (Ci ) = w


n

i=1

Ci


= w


Ty


= 1,
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because each line-segment is used exactly twice and each arc in Ty exactly once. This shows that
w(Ci ) = 1 for some cycle Ci .

Assume this cycle Ci is of the form α+β− f (β−) f (α+), where c(α) = x1 and c(β) = x2.
We let z move on the arc connecting x1 to x2 in Ccp, avoiding non-cleave points, so c−1(z) =

{τ1(z), τ2(z)} is well-defined. Remember that c−1 is upper semi-continuous everywhere.
If α+β− and f (β−) f (α+) are of the same orientation on Ty , then the proof parallels that of

Case 1: τ1(z) ∈ α+β− and τ2(z) ∈ f (α+) f (β−) move in contrary directions.
If α+β− and f (β−) f (α+) are of opposite orientations on Ty , then τ1(z) and τ2(z) move in

the same direction, but 0 lies on different sides of the line-segment τ1(z)τ2(z) when z is close to
x1 and when it is close to x2; this and the argument of Case 2 yield the conclusion.

Assume next that Ci is a cycle α−α+ ∪ α+α−. Then the conclusion follows from Lemma 3.
Finally, if Ci is one of the other cycles (with all edges line-segments), then w(Ci ) = 1

means that 0 is surrounded by Ci , which is impossible if 0 ∉ convCi . By construction,
convCi = convc−1(x) for some x ∈ Ccp

3 .
The proof is complete. �

A characterization of the sphere. The following lemma shows that in general one cannot hope
for a better lower bound. It extends Theorem 3 in [11] and admits a similar proof, which will
therefore be omitted.

Lemma 4. Assume S ∈ A, y ∈ S is not conical, and x ∈ Q−1
y is such that the union U of two

segments from x to y separates S. If a component S′ of S \ U contains no segment from x to y
then Q−1

y ∩ S′
= ∅. In particular, if the union of any two segments from x to y separates S then

Q−1
y = {x}.

Theorem 2. A smooth orientable surface S is homeomorphic to the sphere if and only if each
point in S is critical with respect to precisely one other point of S.

Proof. If S is homeomorphic to the sphere, then cardQ−1
y ≥ 1 by Theorem 1. Using now

Lemma 4, we obtain cardQ−1
y = 1.

Next, we show that every orientable surface of positive genus contains a point y with
cardQ−1

y > 1.
To see this, let Ω denote a shortest simple closed curve which does not separate S. Then Ω

is a closed geodesic. Moreover, for any of its points z,Ω is the union of two segments of length
λΩ/2 starting at z and ending at zΩ . Consider the family C of all simple closed not contractible
curves C which cut Ω at precisely one point, such that Ω separates C locally at Ω ∩ C . Then
clearly C ≠ ∅, by the choice of Ω . Let Ω ′ be a shortest curve in C; it is a closed geodesic too.
Moreover, by the definition of C and by the choice of Ω ′, the latter is the union of two segments
starting at {y} = Ω ∩ Ω ′ and ending at yΩ ′ . It follows that Q−1

y contains at least two points, yΩ
and yΩ ′ . �

Open problem. Every smooth orientable surface of positive genus possesses points x, y such that
y is critical with respect to x and two segments from y to x have opposite directions at y (see
the proof of Theorem 2). Is the same true for all smooth surfaces homeomorphic to the sphere?
Or, at least, if A0 denotes the space of all Alexandrov surfaces homeomorphic to the sphere,
endowed with the Hausdorff–Gromov metric, is there a dense set in A0 with the above property?
For convex surfaces, this problem was raised in [13], and is still open.
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