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INFINITE PATHS WITH NO SMALL ANGLES

IMRE BARANY AND ATTILA POR

Abstract. It is shown here that given a discrete (and infinite) set of points in the
plane, it is possible to arrange them on a polygonal path so that every angle on the
polygonal path is at least 9°. This has been known to hold for finite sets (with 20°).
The main result holds for discrete sets in higher dimensions as well, with a smaller
bound on the angle.

§1. Introduction and the main result. A set X C R? is discrete by definition
if every disk contains only finitely many elements of X. Of course, X is finite
or countable. An ordering of the points of X is either x1, x2, ... (a one-way
infinite sequence) or ..., x_1, Xg, X1, X2, . . . (a two-way infinite sequence) or
X1, X2, . . ., X, (when X is finite). Such an ordering is identified with a polygonal
path P on X: its edges are the segments connecting x; to x;41. The angle of P at
X; is just Zx;_1x;x;+1. The path is called «-good if all of its angles are at least «
where o > 0. In answer to a question of Fekete [3] from 1992 (see also [4]) and
of Dumitrescu [2] from 2005, we proved in [1] the following result.

THEOREM 1. If X is a finite set in the plane, then there is an o-good path
on X witho =m /9.

The aim of this paper is to extend the above result of [1] to infinite, discrete
sets X C R2. The condition of discreteness is quite natural. For instance,
when X is the set of rational points on the x-axis, the ordering is either increasing
or decreasing but it is unclear how to define angles along this path. Even worse,
it is equally unclear what the definition of a path or an angle could be when X is
the image of the rational points on the Peano curve. The following is our main
result.

THEOREM 2. Assume that 0 < o < /18 and that X is a discrete set in the
plane. Then there exists an a-good path on the points of X.

Here one cannot guarantee that the path is one- or two-way infinite. The
example showing this is when X is the set of positive integer points, and integer
points, respectively, on the x-axis. The next example is interesting as it highlights
the difficulties of finding an «-good path. Let ¢ € R be large and define
Xy = (q3n+1’ 0) € R2’ yn = (0, q3n+2) e RZ’ n = (_q3n+3’ 0) € R2’ and X =
USO {X1, Yu, zn}. Every pair of points in X determines a segment that is either
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almost vertical or almost horizontal. In view of Theorem 1 there is a good path
on every finite subset of X. But how to extend such a path to an infinite one?
What is an «-good path on X? How many «-good paths are there on X?

We observe that Kyncl [5] has recently improved the bound in Theorem 1
from /9 to 7 /6, which is actually the best possible value of «. The details are
not yet available, but most likely his result combined with our proof would imply
that Theorem 2 holds for every o < 7r/12.

§2. Auxiliary lemmas. The proof of Theorem 2 consists of several steps. We
now introduce some notation and terminology and state the two main lemmas
needed for the proof. For a point z € R?, |z| denotes its distance from the origin
and 7 denotes the unit vector z/|z| (assuming that z #0). Soz € S ! where S!
is the unit circle, so it can be thought of as a direction or angle. It will be
convenient to use the notation z € I, meaning that / is an arc on S!. Such an
arc is just I = (B, y) where B, y are angles and (8, ) means the anticlockwise
arc from g to y. Given distinct points u, v € R? we let v denote the unit vector
W —w)/lv—ul.

From now on we assume that X C R? is infinite and discrete and « €
(0, w/18). We assume, without loss of generality, that the origin, to be denoted
by 0, is not contained in X and also that |x| and |y| are different for each pair
x,ye X, x #y.

Fix B € (0, w/18) and define K to be the cone consisting of vectors z with
z€[—B, B]. As usual, let —K be the reflection of K with respect to 0 and
K* = K U (—K) be the corresponding double cone. Here is the cone lemma, an
auxiliary result needed for Theorem 2.

LEMMA 1. If X\K* is finite, then there is an «-good path on X.

The same conclusion holds, of course, if X\ K 8‘ is finite where K, 6‘ is a rotated
copy (around the origin) of K*. We now slightly reformulate the cone lemma.
Let A = A(X) denote the set of limit directions in X, that is, z € A(X) if and
only if there is a sequence of distinct elements z1, z2, ... of X with limz, = z.
Clearly A(X) C S! is closed. When I is an arc on S! we define I* = I U (—1I).
Here is the cone lemma in a slightly different form, more suitable for our
purposes.

LEMMA 2. Assume that A(X) C I* for some open arc I C S of length
7 /9. Then there is an a-good path on X.

It will suffice to prove Lemma 1 because of the following.
CLAIM 1. Lemma I implies Lemma 2.

Proof. Assume that the conditions of Lemma 2 hold. Since I is open and
A(X) is closed, there is a closed arc J C I with A(X) C J*. Let K be the cone
hull of J; then Ky is a cone with half angle g € (0, 7/18) and X\ K is finite, so
Lemma 1 applies. O
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Figure 1: The construction of a(n), b(n), x,1.

Now we come to the second auxiliary lemma. A point a € X is called sharp
if Z0ab < 7 /18 for every b € X with |b| < |a|. Set y = /9.

LEMMA 3. Assume that all but finitely many elements of X are sharp. Then
there is a y-good path on X.

For our purposes, an a-good path on X would do as well. But, as we will see
later, the proof gives a y-good path on X.

§3. Proof of Theorem 2. A pair a, b € X is said to be fat if all angles of the
triangle Oab are at least 7w /18. The proof of the following result is simple.

PROPOSITION 1. If X contains infinitely many fat pairs, then there is an
a-good path on X.

Proof. We choose a sequence of (distinct) fat pairs, ak, by, from X with
lima; =a € S' andlim b; = b € S!. This is clearly possible, and Za0b > 7/18.
Also, Za0b < — 27 /18 since the angles at @ and b of the triangle a0b are at
least w/18.

We will construct an ¢-good path P on X of the form

x1, a(l), b(1), x2, a(2), b(2), x3, . ..
satisfying the condition
for every n, each x € X with |x| < |x,| appears before x; on P. (D

Here a(n), b(n) are fat pairs from the sequence ag, by. The construction is
quite straightforward (see Figure 1). Evidently, x; is the shortest element of X.
Assume that P, = x1, a(1), b(1), xp, ..., b(n — 1), x,, has been constructed
satisfying condition (1) and, further, that x,,b(n) & b, meaning that x,,b(n) and b
are less than (/18 — ) /2 aparton § 1 Clearly x,,4+1 has to be the shortest vector
in X missing from P,. Choose a(n), b(n) from the sequence of fat pairs so far
from x, and x,4; that x,a(n) = a and x,4+1b(n) = b (with the same meaning
of &~ as before). It is not hard to see now that P, = P,, a(n), b(n), x,4+1 is an
a-good path. O
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Figure 2: The construction of a(n), b(n), c(n), x,41.

Next we call a pair a, b € X balanced if /0ab > 7 /18, /0ba > /18 and
LaOb < 7 /18.

PROPOSITION 2. If X contains infinitely many balanced pairs, then there
is an a-good path on X.

Proof. We again choose a sequence of (distinct) balanced pairs ag, by from X
with lima; =a € S' and limb; =b € S'. This is clearly possible, Za0b <
/18, and a, b € A(X).

For z € S', let I, be the open arc of S' of length 77/9, centered at z.

Assume that there exists c € A(X) with c¢1_,UI,. Let ¢y € X be a
sequence with ¢y — ¢ and |cx| — oco. We will construct an a-good path P on X
of the form

x1, c(1), a(l), b(1), x2, ¢(2), a(2), b(2), x3, ...

satisfying condition (1) where a(n), b(n) are pairs from the sequence ai, by
and c(n) is a subsequence of ¢ (see Figure 2). The construction is similar to
the previous one. We start with x, the shortest element in X. Assume that
the path P, = x1, c(1), a(1), b(1), ..., b(n — 1), x,, has been constructed and
satisfies condition (1), and, further, that x(n)b(n — 1) ~ b. Again, x,41 has to
be the shortest vector in X missing from P,. Choose c(n) so that x,,c(n) & ¢ and
then the pair a(n), b(n) so far away from c(n) and x, 4 that a(n)c(n) &~ —a and
Xp1b(n) =~ b. 1t is clear that P,y = Py, c(n), a(n), b(n), x,41 is an a-good
path.

The same argument works, exchanging the roles of a and b, when there is
c € A(X) with ¢ ¢ I_; U I,. Thus we can assume that there is no ¢ € A(X) with
c¢l Ul orcgl ,Ul, This means that, with I =1, NI, A(X)CI*.
Now the cone lemma (Lemma 2) can be applied since / is an open interval of
length at most /9. O

Thus we are left with the case when there are only finitely many fat pairs and
finitely many balanced pairs in X. Choose r so large that all fat and balanced
pairs in X are inside D,, the disk of radius r centered at 0. We claim then that
every x € X\ D, is sharp.
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Indeed, consider x € X\ D, and assume that z € X with |z| < |x|. Then, of
course, /0zx > /0xz. If /0xz > /18, then the pair x, z is either fat (since
/x0z > 7 /18) or balanced (if Zx0z < 7r/18). But both cases are excluded as x
is outside D,.. Thus Z0xz < /18 and x is sharp.

A direct application of Lemma 3 completes the proof of the theorem. O

§4. Proof of the cone lemma. We need a stronger version of Theorem 1 which
is proved in [1]. To state it we require two additional definitions.

Given a path z1, 22, . . ., z, the directions z2z1 and z,,—1z, are called the end
directions of the path. We call a subset R of S' a restriction if it is the disjoint
union of two closed arcs Rj, Ry C S! such that both have length 4y and their
distance from each other (along the unit circle) is larger than 2y. (Recall that
y =m/9.) We call the path z1, . .., z, R-avoiding if the two end directions are
not in the same R; (i = 1, 2) and the path is y-good.

THEOREM 3. Let X be a finite set of points in the plane. For every
restriction R there is an R-avoiding path on all the points of X.

We now begin the proof of the cone lemma. Call a pair a, b € X steep if the
angle between the x-axis and the line through a and b is at least 2y .

If there is no steep pair in X, then ordering the points of X by increasing first
component gives an @-good path on X, even with o = 57/9.

We let C be the cone consisting of all z € R? withz € [—x/18, /18], and set
C*=C U (=C). Since 8 < 7/18, the cone K lies in the interior of the cone C.
One more piece of notation: z! denotes the first coordinate of z € R.

Assume next that there are only finitely many steep pairs in X. For #; > 0
define the strip 7; = {x € R2:|x!| <#}. Choose 71 so large that 77 contains
all steep pairs and the set X\ K™ as well. Next choose ; € R so large that
X\T> C x + C* for every x € X N Ty. Such a 1, exists because K C C.

Set Ry =[—2y,2y], Ry =[7 — 2y, +2y]. Then R=RUR, C Slisa
restriction, so by Theorem 3, there is an R-avoiding path, P = x1, x2, ..., X,
on X N T, (even with & = 7/9). One end direction of P is not in Ry and the
other one is not in R;. For the sake of simplicity assume that x;x] ¢ R and
Xn—1%Xn & Ro.

Let x;41, Xp42, ... and xg, x_1, x_2, ... respectively be the points of
(X\T2) N K in increasing order and the points of (X\72) N (—K) in decreasing
order.

CLAIM 2. Thepath ..., X_1, X0, X1, - - - » Xns Xnt1, - - - IS ®-good on X.

Proof. We only have to check /Zx,_1x;x,+1 >« and Zxgxixp >a. By
symmetry it suffices to check the latter. Either xi, xo is a steep pair (see
Figure 3), in which case xi, xp € Ty and Zxoxixp >2y —w/18=7/6 >«
because xé <0, x1 € XNTy, and xg € X\T, C x; — C imply xox1 € —C; or
X1, X2 is not a steep pair, in which case X;x1 € R because x,x] ¢ R;. But then
lxoxixo>m —y —n/18=131/18 > «. O



INFINITE PATHS WITH NO SMALL ANGLES 31

So we are left with the case when there are infinitely many steep pairs. We
first construct an «-good path on X under the extra condition that X C K, and
explain how to extend the argument for the general case later.

Let IT be the set of steep pairs in X. We will use them to create U-turns on
the «-good path to be constructed.

We recursively define numbers 7o =0 < #; < < - - - and pairs {a;, b;} and
{ci, d;} in I (all of them distinct points of X) satisfying conditions (Ai) and (Ci)
below. We set T; = {z € R? | 0 < z! <;}. The conditions are as follows.

(AQ) {ai, bi} el, a;, b; e T;\T;—1 and X\T; C (a; + C) N (b; + C).
(Ci) {ci,di}el, cj,dieTix \Tjand X NT; C (¢c; —C)N(d; — C).

The recursive definition starts with choosing a steep pair aj, b; and then #;
so large that (A1) is satisfied. This is possible since the angle of K is smaller
than that of C. Assume that #;, a;, b;, ¢i_1, d;_1 have been defined for all i =
1,2, ...,k (except c_1, d—1, which are not needed) and satisfy all conditions.
Then we choose a steep pair, ¢, di, outside Tj satisfying (Ck). Next we choose
another steep pair agt1, bx41 outside T (both distinct from cy, di). Finally, we
fix ;41 so large that condition (Ak + 1) holds. This is clearly possible.

The construction of the «-good path is now easy (see Figure 4). We add a
dummy point @y = (—1, 0). Theorem 1 guarantees the existence of a y-good
path Q; on the finite set

(X N (TA\Ti-1)\ai, bi, ci—1,di—1}) Ulai—1, ci}.

Neither @;_1 nor ¢; is an interior point of Q; because of condition (Ai — 1) and
(Ci). In the case of ag this follows from X C K. Thus a;_1 and ¢; are the
endpoints of Q; with the end direction at g;_ in C and at ¢; in —C. It follows
now that the path Q1, d1, b1, Q2, d2, b2, O3, d3, ... is a-good on X U {ap}.
Deleting the dummy vertex from it gives an «-good path on X. This completes
the proof when X C K.

In the general case we proceed as follows. If there are infinitely many steep
pairs both in K and —K, then we choose a steep pair aj, b; € K and another
a_1, b_; € —K and then fix # so large that T} = {z € R2:|z!| < #;} contains all
Z\K* and, further, the conditions

(X\T)NK C(a1 +C)N (b1 +C)
(X\T)N(=K)C @1 —-C)N(b-1 -0

are satisfied. This is clearly possible. We then proceed the same way as before,
but moving in two directions.

If, finally, there are infinitely many steep pairs in K yet only finitely many in
— K, then an obvious combination of the previous methods produces an «-good
path on X. The details are straightforward and therefore omitted. O

Remark. The bound o < 7r/18 comes from this part of the proof. Namely,
Theorem 1 gives the y-good path Q;; its endpoints are forced to be a;_; and c;
only when the angle of K is less than /9.
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Figure 3: The angle Zxpx1x.
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Figure 4: The construction of Q3.
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§5. Proof of Lemma 3. Let r > 0 be so large that Xo = X N D, contains all
non-sharp points of X. Order the elements of X\ X by increasing distance from
the origin, so if x1, xo, ... is this order, then |x,| < |x,+1| for all n € N. Set,
further, X (n) = Xo U {x1, ..., x,} and fix a y-good path, P,, on X (n).

CLAIM 3. For every neN, x, is an endpoint of every y-good path
on X (n).

Proof. Assume to the contrary that x,, is an interior point of such a path. Then
the two neighbors of x, (a, b, say) are in X (n) and /0Ox,a and Z0x,b are both
smaller than 7r/18 and therefore Zax,b < /9, which is a contradiction. O

For every 1 <n < k we define, by backward induction on n, a y-good path
Pi[n] on X (n) as follows. Set P[k] = P. If Pi[n] has been defined and n > 1,
then, by the previous claim, x, is an end vertex of Py[n]. Delete this end vertex
from Py[n] to get Pi[n — 1].
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Let L be an infinite subset of the natural numbers and n € N. There exists
an infinite subset L’ of L such that for every j, k € L’ the two paths P;[n] and
Py[n] are the same. Indeed, partition L by paths on X (n), that is, for every
k € L, k > n, the element k is put into the class Pi[n]. Since there are finitely
many paths on X (n), one of the classes L’ is infinite.

Next we define, by induction, a chain of infinite sets L} D Ly D L3 D - --
with the property that, for every j, k € L, the two paths P;[n] and Pi[n] are
the same. Start with Lo =N. Let n > 1 and assume that L = L,,_; has been
defined. The previous argument gives a suitable infinite L’ C L, and we set
L, =L’'. The sets form an infinite chain Lo =N, L, L,, ... with each L,
infinite and containing L, 1, and, further, for i, j € L, with n > 1, the condition
Pj[n] = Pi[n] is satisfied.

For n € N let Q, be the path Py[n] for some k € L,,. Forn <m, Q, is a
subpath of Q,, by construction. Define the infinite path Q as the union of the
paths Q,. The path Q is an infinite y-good path on X. O

Remark. In the example of §1 there are neither fat nor balanced pairs, and
the conditions of Lemma 2 do not hold. So in our proof, the a-good path on X
is found via the above procedure. The argument in Claim 3 can be used to show
that all @-good paths on X are of the following form. The order of the x,s and z,,s
is..., 22,21, X1, X2, X3, ... and y; is either between x| and x, or between x|
and z] and, for n > 2, y, is either between x,, and x,,4| or between z,,_1 and z,,.
It is easy to see that each such path is indeed «-good.

§6. Higher dimensions. In the paper [1] we proved the higher-dimension
analogue of Theorem 1 in the following form.

THEOREM 4. Foreveryd > 2 there is a positive ag such that for every finite
set of points X C RY there exists an ay-good path on X.

The actual value of a4 is w/42 (for d > 2); see [1]. The proof of Theorem 2
goes through in higher dimensions without any real difficulty, and gives the
following result.

THEOREM 5. For every d > 2 for every discrete set of points X C R¢ and
every a € (0, m/84) there exists a «-good path on X.
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