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ABSTRACT: Assume Xn is a random sample of n uniform, independent points from a triangle T .
The longest convex chain, Y , of Xn is defined naturally (see the next paragraph). The length |Y | of
Y is a random variable, denoted by Ln. In this article, we determine the order of magnitude of the
expectation of Ln. We show further that Ln is highly concentrated around its mean, and that the longest
convex chains have a limit shape. © 2009 Wiley Periodicals, Inc. Random Struct. Alg., 35, 137–162, 2009
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1. INTRODUCTION AND RESULTS

Let T ⊂ R
2 be a triangle with vertices p0, p1, p2 and let X ⊂ T be a finite point set. A subset

Y ⊂ X is a convex chain in T (from p0 to p2) if the convex hull of Y ∪ {p0, p2} is a convex
polygon with exactly |Y | + 2 vertices. A convex chain Y gives rise to the polygonal path
C(Y) which is the boundary of this convex polygon minus the edge between p0 and p2. The
length of the convex chain Y is just |Y |.

For most part of this article, we assume that X = Xn is a random sample of n random,
uniform, independent points from T . Let Ln be the length of a longest convex chain in
Xn. The random variable Ln is a distant relative of the “longest increasing subsequence”
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138 AMBRUS AND BÁRÁNY

Fig. 1. The special parabola.

problem, cf. [1]. In this article, we establish several properties of Ln. The first concerns its
expectation, ELn.

Theorem 1.1. There exists a positive constant α for which

lim
n→∞

ELn

3
√

n
= α.

Theorem 1.1, together with some geometric arguments based on Theorem 2.1 below,
implies that the longest convex chains have a limit shape � in the following sense. Let
C(Xn) be the collection of all longest convex chains from Xn. For every ε > 0

lim
n→∞ P(dist(C(Y), �) > ε for some Y ∈ C(Xn)) = 0,

where dist(., .) stands for the Hausdorff distance. In fact, the statement of Theorem 1.3 is
much stronger, because there ε also converges to 0. The limit shape turns out to be the
unique parabola arc � ⊂ T that is tangent to the sides p0p1 at p0 and p1p2 at p2, see Fig. 1a).
The parabola arc � will be called the special parabola in T .

The proof of the “limit shape” result is based on the following theorem, saying that Ln

is highly concentrated around its expectation.

Theorem 1.2. For every γ > 0 there exists a constant N, such that for every n > N

P

(
|Ln − ELn| > γ

√
log n n1/6

)
< n−γ 2/14.

For the quantitative version of the limit shape theorem we fix our triangle T as T =
conv{(0, 1), (0, 0), (1, 0)}.

Theorem 1.3. Let γ ≥ 1 and define ε = 3/2γ 1/2n−1/12(log n)1/4. Then there exists N > 0,
depending on γ , such that for every n > N,

P(dist(C(Y), �) > ε for some Y ∈ C(Xn)) < 2n−γ 2/14.

Random Structures and Algorithms DOI 10.1002/rsa



LONGEST CONVEX CHAINS 139

Fig. 2. Characterization of �.

2. PRELIMINARIES

When choosing one random point in triangle T , the underlying probability measure is the
normalized Lebesgue measure on T . Most of the random variables treated in this article
(e.g. Ln) are defined on the nth power of this probability space, to be denoted by T⊗n. In
this case, P denotes the nth power of the normalized Lebesgue measure on T .

Throughout the article, A stands for the (Lebesgue) area measure on the plane. So when
choosing n independent random points in T , the number of points in any domain D ⊂ T is
a binomial random variable of distribution B(n, A(D)/A(T)). Hence the expected number
of points in D is nA(D)/A(T).

For binomial random variables we have the following useful deviation estimates, which
are relatives of Chernoff’s inequality, see [2], Theorems A.1.12 and A.1.13, pp 267-268. If
K has binomial distribution with mean value k > 1 and c > 0, then

P(K ≤ k − c
√

k log k) ≤ k−c2/2. (2.1)

On the other hand, for c > 1,

P(K ≥ ck) ≤
(e

c

)ck

. (2.2)

We will use (2.1) often, mainly with c = 1.
The special parabola arc � in T is characterized by the fact that it has the largest affine

length among all convex curves connecting p0 and p2 within T . (For the definition and
properties of affine arc length see [6] or [3].) This is a consequence of the following theorem
from [6]. Assume that a line � intersects the sides [p0, p1] resp. [p1, p2] at points q0 and q2.
Let q1 be a point on the segment [q0, q2] and write T1 resp. T2 for the triangle with vertices
p0, q0, q1 resp. q1, q2, p2, see Fig. 2.

Theorem 2.1 [6]. Under the above assumptions

3
√

A(T1) + 3
√

A(T2) ≤ 3
√

A(T).

Equality holds here if and only if q1 ∈ � and � is tangent to � at q1.

Random Structures and Algorithms DOI 10.1002/rsa



140 AMBRUS AND BÁRÁNY

The equality part of the theorem implies the following fact. Assume that p0 =
q0, q1, . . . , qk = p2 are points, in this order, on �. Let Ti be the triangle delimited by
the tangents to � at qi−1 and qi, and by the segment [qi−1, qi], i = 1, . . . , k; see Fig. 1b).

Corollary 2.1. Under the previous assumptions
∑k

i=1
3
√

A(Ti) = 3
√

A(T). In particular,
when A(Ti) = t for each i = 1, . . . , k − 1 and A(Tk) < t, then k − 1 ≤ 3

√
A(T)/t < k.

We will need a strengthening of Theorem 2.1. Assume q0 resp. q2 divides the segment
[p0, p1] resp. [p1, p2] in ratio a : (1 − a) and b : (1 − b), see Fig. 2.

Theorem 2.2. With the above notation

3
√

A(T1) + 3
√

A(T2) ≤ 3
√

A(T) − 3
√

A(T)
1

3
(a − b)2.

Proof. Let c be a number between 0 and 1 so that q1 divides the segment [q0, q2] in ratio
c : (1 − c). Then, writing A(xyz) for the area of the triangle with vertices x, y, z,

A(p0q0q1) = aA(p0p1q1) = acA(p0p1q2) = abcA(p0p1p2),

showing A(T1) = abcA(T). Similarly, A(T2) = (1 − a)(1 − b)(1 − c)A(T). Hence, we
have to prove the following fact: 0 ≤ a, b, c ≤ 1 implies

1 − 3
√

abc − 3
√

(1 − a)(1 − b)(1 − c) ≥ 1

3
(a − b)2. (2.3)

Denote Q the left hand side of (2.3). By computing the derivative of Q with respect to c
yields that for fixed a and b, Q is minimal when

c =
√

ab√
ab + √

(1 − a)(1 − b)
.

It is easy to see that with this c

3
√

abc + 3
√

(1 − a)(1 − b)(1 − c) =
(√

ab + √
(1 − a)(1 − b)

)2/3
.

Now, denote
(√

ab + √
(1 − a)(1 − b)

)2
by 1 − u, so

u = a + b − 2ab − 2
√

ab(1 − a)(1 − b).

We claim that u ≥ (a − b)2: this is the same as

a − a2 + b − b2 ≥ 2
√

(a − a2)(b − b2),

which is just the inequality between the arithmetic and geometric means for the numbers
a − a2, b − b2 ≥ 0. Therefore, using u ≤ 1,

Q ≥ 1 − (1 − u)1/3 ≥ 1

3
u ≥ 1

3
(a − b)2.
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LONGEST CONVEX CHAINS 141

Theorems 2.1 and 2.2 imply the following

Corollary 2.2. If q1 ∈ � and � is tangent to � at q1, then with the above notations, a = b.

It is clear that the underlying triangle T can be chosen arbitrarily, as an affine transforma-
tion does not influence the value of Ln. Our standard model for T is the one with p0 = (0, 1),
p1 = (0, 0), p2 = (1, 0) as the vertices of T . In this case the special parabola � has equation√

x + √
y = 1.

3. OTHER MODELS

There are several choices for the underlying finite set X. For instance, consider the lattice
1
t Z

2 where Z
2 is the usual lattice in R

2 and t > 0 is large, and set X = T ∩ 1
t Z

2. Clearly,
n := |X| ≈ A(T)t2 as t → ∞. Write Yn ⊂ X for a longest convex chain in T . It is shown
in [5] that, as t → ∞ (or n → ∞),

|Yn| = 6

(2π)2/3
3
√

t2A(T)(1 + o(1)) = 6

(2π)2/3
n1/3(1 + o(1)). (3.1)

This result is analogous to Theorem 1.1, except that in the lattice case the value of the
constant is known to be 6/(2π)2/3, whereas in the present article only the existence of the
limit α is shown, together with 1.5 < α < 3.5, see Section 4. This is similar to the longest
increasing subsequence problem, [1], where it is easy to see that the expectation is of order√

n, but proving the precise asymptotic formula 2
√

n(1 + o(1)) turned out to be difficult,
cf. [8] and [12]. In our case, numerical experiments suggest that α = 3 and we venture to
conjecture that this is the actual value of α.

More generally, let K ⊂ R
2 be a convex compact set with nonempty interior, and set

Xt = K ∩ 1
t Z

2. A set Y ⊂ Xt is said to be in convex position if no point of Y lies in the convex
hull of the others. In other words, the convex polygon convY has exactly |Y | vertices. Let
Yt be a maximum size subset of Xt which is in convex position and set m(K , t) = |Yt|. It is
shown in [5] that

m(K , t) = 3

(2π)2/3
A∗(K)t2/3(1 + o(1)) (3.2)

where A∗(K) denotes the supremum (actually, maximum) of the affine perimeter that a
convex subset of K can have. The main difficulty lies in the case of triangles, that is,
proving (3.1).

These results can be extended, quite easily, to the present case when Xn is a random
sample of n uniform independent points from K . For instance, writing Yn for the maximum
size subset of Xn in convex position, one can show the following.

Theorem 3.1. Under the above conditions

lim
n→∞ n−1/3

E|Yn| = αA∗(K)

2 3
√

A(K)
.

Here α is the constant from Theorem 1.1.

One can also prove that convYn has a limit shape, namely, the unique convex subset of
K whose affine perimeter is equal to A∗(K). The proofs are almost identical to those used

Random Structures and Algorithms DOI 10.1002/rsa



142 AMBRUS AND BÁRÁNY

in [5], so we do not repeat them here, instead we rather explain what is different and more
interesting.

Another random model is when X comes from a homogeneous planar Poisson process
X(n) of intensity n/A(T). Given a domain D in the plane, m(D) = |X(n) ∩ D|, the number
of points in D, has Poisson distribution with parameter λ = nA(D)/A(T), i.e.

P(m(D) = k) = e−λλk/k!.

We can also think of the Poisson model as follows: for a domain D, we first pick a random
number m according to the corresponding Poisson distribution, and then choose m random,
independent, uniform points in D. The advantage of the Poisson model is that the number of
points of X(n) in disjoint domains are independent random variables, unlike in the uniform
model.

As is well known, the uniform model Xn and the Poisson model X(n) behave very
similarly. In particular, Theorems 1.1, 1.2, and 1.3 remain valid for the Poisson model as
well, with essentially the same quantitative estimates. The proofs are quite standard, and
we do not go into the details. Actually, the proof of Theorem 1.3 is simpler in the Poisson
model since there the subtriangles behave the same way as any other triangle.

The longest increasing subsequence problem has been almost completely solved by now,
see [1]. In this respect, our results only constitute the first, and perhaps the simplest, steps
in understanding the random variable Ln.

4. EXPECTATION

The main target of this section is to prove of Theorem 1.1. We also establish upper and
lower bounds for the constant involved.

Proof of Theorem 1.1. We start with an upper bound on ELn:

lim sup
n→∞

ELn

3
√

n
≤ 3

√
2e = 3.4248 . . . . (4.1)

It is shown in [3], Eq. (5.3) (cf. [4] as well) that the probability of k uniform independent
random points in T forming a convex chain is

2k

k!(k + 1)! .

Therefore, the probability that a convex chain of length k exists is at most
(n

k

)
2k/(k!(k+1)!).

In other words

P(Ln ≥ k) ≤
(

n

k

)
2k

k!(k + 1)! .

Random Structures and Algorithms DOI 10.1002/rsa



LONGEST CONVEX CHAINS 143

We use this estimate and Stirling’s formula to bound ELn. Assume γ >
3
√

2e. Then

ELn =
n∑

k=0

P(Ln > k) ≤
n∑

k=0

P(Ln ≥ k) ≤ γ 3
√

n +
∑

k>γ 3√n

P(Ln ≥ k)

≤ γ 3
√

n +
∑

k>γ 3√n

(
n

k

)
2k

k!(k + 1)! ≤ γ 3
√

n +
∑

k>γ 3√n

(2n)k

(k!)3

≤ γ 3
√

n +
∑

k>γ 3√n

1√
(2πγ )3n

(
2e3

γ 3

)k

≤ γ 3
√

n + n−1/2C,

where C = γ 3/(γ 3 − 2e3) is a positive constant. Because this holds for arbitrary γ >
3
√

2e,
(4.1) is proved.

Next we establish a lower bound for ELn. We use the second half of Corollary 2.1 with
t = 2A(T)/n. So, we have triangles Ti of area t for 1 ≤ i ≤ k − 1, and the last triangle Tk

of area less than t. By (2.1) k ≥ 3
√

n/2. Let Xn be the uniform independent sample from T .
Let xi be a point of Ti ∩ Xn, provided that Ti ∩ Xn 
= ∅. The collection of such xi’s forms a
convex chain. Hence, the expected length of the longest convex chain is at least the expected
number of non-empty triangles Ti, so

ELn ≥
k∑
1

P(Ti ∩ Xn 
= ∅) ≥ (k − 1)

(
1 −

(
1 − 2

n

)n)

≥
(

3

√
n

2
− 1

)
(1 − e−2) ≈ 0.6862n1/3.

What we have proved so far is that

α = lim inf
n→∞ n−1/3

ELn > 0.6862, and α = lim sup
n→∞

n−1/3
ELn < 3.4249.

We show next that the limit exists. Suppose on the contrary that α < α.
The idea of the proof is to use the second half of Corollary 2.1 again, with the longest

convex chain in the small triangles having length close to the limsup , while in the large
triangle, ELn is close to the liminf. For convenience, we suppose that A(T) = 1.

Choose a large n with ELn ≥ (1 − ε)α 3
√

n, and an N much larger than n with ELN ≤
(1 + ε)α

3
√

N . Here ε is a suitably small positive number. Define n1 so that the equation
n = n1 − √

n1 log n1 holds.
Choose N uniform, independent random points from triangle T . Define t = n1/N . Hence,

the expected number of points in a triangle (contained in T ) of area t is n1.
Apply the second half of Corollary 2.1 with this t. Then the number of triangles, k,

satisfies k > 3
√

N/n1.
Denote by ki the number of points in Ti, and by ELi the expectation of the length of the

longest convex chain in Ti. Clearly ki has binomial distribution with mean n1, except for the
last triangle where the mean is less than n1.

Random Structures and Algorithms DOI 10.1002/rsa



144 AMBRUS AND BÁRÁNY

As the union of convex chains in the triangles Ti is a convex chain in T between (0, 0)

and (1, 1), by estimate (2.1) we have

ELN ≥
∑
i≤k

ELi ≥
∑

i≤k−1

P(ki > n)ELn

≥
∑

i≤k−1

(
1 − n−1/2

1

)
(1 − ε)α 3

√
n

≥ (
3
√

N/n1 − 1
)(

1 − n−1/2
1

)
(1 − ε)α 3

√
n

= α
3
√

N(1 − ε)
(
1 − n−1/2

1

)(
3
√

n/n1 − 3
√

n/N
)

≥ α
3
√

N(1 − 2ε),

where the last inequality holds if n is chosen large enough and N is chosen even larger with
n/N very small. Thus (1 + ε)α ≥ (1 − 2ε)α which, for small enough ε, contradicts our
assumption α < α.

Remark. The lower bound ELn ≥ 0.6862n1/3 is probably the easiest to prove. A better
estimate, also mentioned by Enriquez [7], can be established as follows. Assume T is the
standard triangle and let D denote the domain of T lying above �. Then A(D) = 1/3, so the
expected number of points in D is 2n/3, and the number of points is concentrated around
this expectation. The affine perimeter of D is 2 3

√
1/2 (see [3]), and a classical result of Rényi

and Sulanke [9] yields that expected number of vertices of conv(D ∩ Xn) is about

�

(
5

3

)
3

√
2

3

(
1

3

)−1/3

2 3
√

1/2 3
√

2n/3 ≈ 1.5772 3
√

n

As most vertices are located next to the parabola, the majority of them form a convex chain,
and so

lim inf
n→∞

ELn

3
√

n
≥ 1.5772 . . . . (4.2)

This sketch can be completed with standard tools. From now on, we will use this estimate.
Also, α will always refer to the limit constant of Theorem 1.1.

5. CONCENTRATION RESULTS FOR ELN

The concentration results proved here are consequences of Talagrand’s inequality from
[10] which says the following. Suppose Y is a real-valued random variable on a product
probability space �⊗n, and that Y is 1-Lipschitz with respect to the Hamming distance,
meaning that

|Y(x) − Y(y)| ≤ 1

whenever x and y differ in one coordinates. Moreover, assume that Y is f -certifiable. This
means that there exists a function f : N → N with the following property: for every x and
b with Y(x) ≥ b there exists an index set I of at most f (b) elements, such that Y(y) ≥ b
holds for every y agreeing with x on I . Let m denote the median of Y . Then for every s > 0
we have

P(Y ≤ m − s) ≤ 2exp

( −s2

4f (m)

)
Random Structures and Algorithms DOI 10.1002/rsa



LONGEST CONVEX CHAINS 145

and

P(Y ≥ m + s) ≤ 2exp

( −s2

4f (m + s)

)
.

When applied to Ln, these inequalities prove concentration about the median, to be denoted
by mn. Theorem 1.2 concerns the mean of Ln. However, concentration ensures that the mean
and the median are not far apart, in fact, lim n−1/3mn = α. First we need a lower bound
on mn.

Lemma 5.1. Suppose that log n > 25. Then

mn ≥ 3
√

3n/ log n.

As this is a special case of Lemma 6.1 from the next section, the proof will be given
there.

Proof of Theorem 1.2. The statement cries out for the application of Talagrand’s inequal-
ity. The random variable Ln satisfies the conditions with f (b) = b, since fixing the
coordinates of a maximal chain guarantees that the length will not decrease, and changing
one coordinate changes the length of the maximal chain by at most one. Write m = mn for
the median in the present proof. Setting s = β

√
m log m where β is an arbitrary positive

constant, we have

P
(|Ln − m| ≥ β

√
m log m

)
< 4 exp

{
−β2m log m

4(m + β
√

m log m)

}

= 4 exp

{
−β2 log m

4(1 + β
√

m−1 log m)

}

Define now β0 = c
√

m/ log m with a constant c > 0, which will be fixed at the end of the
proof to give the correct estimate. If β ≤ β0, then β

√
m−1 log m ≤ c, and the denominator

in the exponent is at most 4(1 + c). Thus

P
(|Ln − m| ≥ β

√
m log m

)
< 4m−β2/4(1+c). (5.1)

On the other hand, for β > β0 we have

P
(|Ln − m| ≥ β

√
m log m

)
< P

(|Ln − m| ≥ β0

√
m log m

) = 4 exp

(
−m

c2

4(1 + c)

)
.

(5.2)

Next, we compare the median and the expectation of Ln.

|ELn − m| ≤ E|Ln − m| =
∫ ∞

0
P(|Ln − m| > x)dx.

The range of Ln is [1, n], so the integrand is 0 if x > n. Substitute x = β
√

m log m, and
divide the integral into two parts at β0:

|ELn − m| ≤ 4
√

m log m(I1 + I2),

Random Structures and Algorithms DOI 10.1002/rsa



146 AMBRUS AND BÁRÁNY

where

I1 =
∫ β0

0
m−β2/4(1+c)dβ <

∫ ∞

0
m−β2/4(1+c)dβ =

√
π(1 + c)

log m
, (5.3)

and

I2 =
∫ n/

√
m log m

β0

exp

(
−m

c2

4(1 + c)

)
dβ < n exp

(
−m

c2

4(1 + c)

)
. (5.4)

By Lemma 5.1, n < m4, so I2 < m4 exp(−mc2/4(1 + c)). As mn goes to infinity as n
increases (again by Lemma 5.1), the bound on I2 is eventually much smaller than the one
on I1:

|ELn − m| ≤ 4
√

m log m(I1 + I2) < 4
√

π(1 + c)m + 4
√

m log m m4 exp

(
−m

c2

4(1 + c)

)
≤ 5

√
π(1 + c)

√
m (5.5)

for all large enough n. Hence, ELn is of the same order of magnitude as mn, and we obtain

lim n−1/3
ELn = lim n−1/3mn = α. (5.6)

For fixed γ and for large enough n, (5.5) implies

P
(|Ln − ELn| > γ

√
log n n1/6

) ≤ P
(|Ln − m| > γ

√
log n n1/6 − |ELn − m|)

≤ P
(|Ln − m| > γ

√
log n n1/6 − 5

√
π(1 + c)

√
m

)
.

Using mn ≤ 3.43n1/3 from (4.1) and (5.6), it is easy to see that

γ
√

log n n1/6 − 5
√

π(1 + c)m ≥ γ
√

m

(√
3 log m − log 41

3.43
− 5

√
π(1 + c)

γ

)

≥ γ

√
3

3.44

√
m log m.

Since for large enough n, γ
√

3/3.44 < β0 = c
√

m/ log m, (5.1) finally implies

P
(|Ln − ELn| ≥ γ

√
log n n1/6

) ≤ P

(
|Ln − m| ≥ γ

√
3

3.44

√
m log m

)
≤ 4m−3γ 2/13.76(1+c) ≤ n−γ 2/14

with (5.6) and the choice of c = 0.01.

Remark. The constant in the exponent is far from being best possible. We have made no
attempt to find its optimal value. In general, Talagrand’s inequality is too general to give
the precise concentration, see Talagrand’s comments on this in [10].
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6. SUBTRIANGLES

For the proof of Theorem 1.3 we need to consider subtriangles S of T , that is, triangles of
the form S = conv{a, b, c} with a, b, c ∈ T , while Xn is still a random sample from T . We
will need to estimate the concentration of the longest convex chain from Xn in S. As this
random variable depends only on the relative area of S, we may and do assume that T is the
standard triangle and S = conv{(0,

√
s), (0, 0), (

√
s, 0)}. Thus A(S) = s/2. Write Ls,n for

the length of the longest convex chain in S from (0,
√

s) to (
√

s, 0), and ms,n for its median.
In the following statements, we consider the situation when sn/2, the expected number of
points from Xn in S, tends to infinity.

As in the proof of Theorem 1.2, we need two estimates: a lower bound for the median
guarantees that the mean and the median are close to each other, while an upper bound for
the expectation (or for the median) is needed for deriving the inequality in terms of n. Here
comes the lower bound; the case s = 1 is Lemma 5.1.

Lemma 6.1. Suppose that log(ns) > 25. Then

ms,n ≥ 3
√

3ns/ log(ns).

Proof. Set t = (A(S) log(ns))/(3ns), and apply the second half of Corollary 2.1 to the
triangle S. The number of triangles is k with

3
√

3ns/ log(ns) < k ≤ 3
√

3ns/ log(ns) + 1.

For any i ∈ {1, . . . , k}, the probability that Ti contains no point of Xn is

P(Ti ∩ Xn = ∅) ≤
(

1 − log(ns)

3ns

)n

< exp

(− log(ns)

3s

)
= (ns)−1/3s < (ns)−1/3.

Hence the union bound yields

P
(
Ln,s > 3

√
3ns/ log(ns)

) ≥ 1 − P(Ti ∩ Xn = ∅ for some i ≤ k)

≥ 1 − k(ns)−1/3 ≥ 1 − (
3
√

3/ log(ns) + (ns)−1/3
)
,

which is greater than 1/2 by the assumption.

Obtaining an upper bound for the mean is slightly more delicate; note that in the Lemma
below s need not be fixed.

Lemma 6.2. Assume ns → ∞. Then

lim(ns)−1/3
ELs,n = α

where α is the same constant as in Theorem 1.1.

Proof. Take any ε > 0 and choose N0 (depending on ε) so large that for every k ≥ N0,
(1 − ε)α < ELkk−1/3 < (1 + ε)α. The random variable K = |Xn ∩ S| has binomial
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distribution with mean ns. When ns is large enough, ns−√
ns log ns ≥ N0, and we use (2.1)

for a lower estimate:

ELs,n =
n∑

k=0

P(K = k)ELk

≥ P(K > ns − √
ns log ns)(1 − ε)α(ns − √

ns log ns)1/3

≥ (1 − (ns)−1/2)(1 − ε)α(ns − √
ns log ns)1/3

≥ (1 − 2ε)α(ns)1/3.

For the upper bound, Jensen’s inequality applied to 3
√

x comes in handy:

ELs,n =
n∑

k=0

P(K = k)ELk

≤ N0P(K < N0) +
n∑

k=N0

P(K = k)ELk

≤ N0 +
n∑

k=N0

P(K = k)(1 + ε)α
3
√

k

≤ N0 + P(K ≥ N0)(1 + ε)α

 n∑
k=N0

P(K = k)

P(K ≥ N0)
k

1/3

≤ N0 + P(K ≥ N0)
2/3(1 + ε)α(EK)1/3

≤ N0 + (1 + ε)α(ns)1/3 ≤ (1 + 2ε)α(ns)1/3.

Next, we derive the strong concentration property of Ls,n, the analogue of Theorem 1.2.

Theorem 6.1. Suppose τ is a constant with 0 ≤ τ < 1. Then for every γ > 0 there exists
a constant N, such that for every n > N and every s ≥ n−τ ,

P
(|Ls,n − ELs,n| > γ

√
log ns(ns)1/6

)
< (ns)−γ 2/14.

Proof. This proof is almost identical with that of Theorem 1.2. Because Ls,n is a random
variable on T⊗n, we can apply Talagrand’s inequality with the certificate function f (b) = b
in the same way as in the proof of Theorem 1.2. Write again m for ms,n, the median of Ls,n.
Define β0 = c

√
m/ log m with c = 0.01, then the estimates (5.1) and (5.2) remain valid

with Ls,n in place of Ln. Just as before,

|ELs,n − m| ≤ E|Ls,n − m| =
∫ ∞

0
P(|Ls,n − m| > x)dx = 4

√
m log m(I1 + I2)

where I1 and I2 are defined the same way as in (5.3) and (5.4). Moreover, I1 satisfies the
inequality (5.3). With I2 we have to be a bit more careful.

Note that s ≥ n−τ with τ < 1 guarantees that Lemma 6.1 is applicable for n >

exp(25/(1 − τ)). As x/ log x is monotone increasing for x > e,

m ≥ 3

√
3ns

log(ns)
≥ 3

√
3n1−τ

(1 − τ) log n
>

3

√
n1−τ

n(1−τ)/2
= n(1−τ)/6
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for large enough n, and therefore by (5.4)

I2 < m6/(1−τ) exp

(
−m

c2

4(1 + c)

)
where of course 6/(1 − τ) < ∞. Lemma 6.1 implies that m = ms,n → ∞, thus the bound
on I2 is much smaller than the one on I1 for large enough n. Therefore, just as in (5.5),

|ELs,n − m| ≤ 4
√

m log m(I1 + I2)

< 4
√

π(1 + c)m + 4
√

m log m m6/(1−τ) exp

(
−m

c2

4(1 + c)

)
≤ 5

√
π(1 + c)

√
m.

Hence, ELs,n is of the same order of magnitude as m = ms,n. As sn ≥ n1−τ → ∞, we can
use Lemma 6.2, obtaining that for large enough n,

ms,n ≤ 3.431 3
√

ns. (6.1)

Again for fixed γ and for large enough n,

P(|Ls,n − ELs,n| > γ
√

log ns(ns)1/6) ≤ P(|Ls,n − m| > γ
√

log ns(ns)1/6 − |ELs,n − m|)
≤ P(|Ls,n − m| > γ

√
log ns(ns)1/6 − 5

√
π(1 + c)

√
m),

and by (6.1),

γ
√

log ns(ns)1/6 − 5
√

π(1 + c)
√

m ≥ γ

√
3

3.44

√
m log m.

Since for large enough n, γ
√

3/3.44 < β0 = c
√

m/ log m, (5.1) applied to Ls,n and (6.1)
finally implies

P
(|Ls,n − ELs,n| ≥ γ

√
log ns(ns)1/6

) ≤ P

(
|Ls,n − m| ≥ γ

√
3

3.44

√
m log m

)
≤ 4m−3γ 2/13.76(1+c) ≤ (ns)−γ 2/14.

Remark. The proof also yields that for any 0 < A < B < ∞, there exists N (depending
on A and B only), such that the inequality of Theorem 6.1 holds for any γ ∈ [A, B] and for
every n > N .

7. GEOMETRIC LEMMAS

For the proof of Theorem 1.3 we need further preparations. We start by assuming that K is
a convex compact set in the plane and A(K) > 0, and X̃n is a random sample of n uniform
and independent points from K . We need to estimate the probability that X̃n is in convex
position, that is, no point of X̃n is contained in the convex hull of the others. We denote this
probability by P(X̃n convex in K).
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Lemma 7.1. If K is as above,

P(X̃n convex in K) <

(
240

n2

)n

.

Proof. Let P be the smallest area parallelogram containing K . As is well known, A(P) ≤
2A(K). Let X∗

n be a random sample of n uniform and independent points from P. In this
case a (surprisingly exact) result of Valtr [11] says that

P
(
X∗

n convex in P
) = (n!)−2

(
2n − 2

n − 1

)2

.

Now we have

P(X̃n convex in K) = P
(
X∗

n convex in P|X∗
n ⊂ K

)
= P

(
X∗

n convex in P and X∗
n ⊂ K

)
P
(
X∗

n ⊂ K
) ≤ P

(
X∗

n convex in P
)

P
(
X∗

n ⊂ K
)

= (n!)−2

(
2n − 2

n − 1

)2 (
A(P)

A(K)

)n

<

(
240

n2

)n

,

where the last step is a straightforward estimate.

From now on we work exclusively with the standard triangle T .
Assume next that K is a convex subset of the triangle T , and let Xn be random sample of

n uniform and independent points from T . We define M(K , n) as the random variable

M(K , n) = max{|Y | : Y ⊂ Xn ∩ K is in convex position}.

From Theorem 3.1 it is not hard to determine what the asymptotic expectation of M(K , n)

is. But what we need is that M(K , n) is large with small probability. This is the content of
the next lemma.

Lemma 7.2. Let K be a convex subset of T . Then for any positive integers n and µ

satisfying 1920e2A(K)n ≤ µ3,

P(M(K , n) ≥ µ) ≤ µ32−µ + n2−µ3/(480e).

Proof. If M(K , n) ≥ µ, then K ∩Xn contains a subset of size µ which is in convex position.
Lemma 7.1 and the union bound imply that

P(M(K , n) ≥ µ
∣∣|K ∩ Xn| = k) ≤

(
k

µ

) (
240

µ2

)µ

≤
(

240ek

µ3

)µ

.
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Fig. 3. Convex chains far from �.

The random variable |K ∩ Xn| has binomial distribution. Thus we have

P(M(K , n) ≥ µ) =
n∑

k=µ

P(M(K , n) ≥ µ
∣∣|K ∩ Xn| = k)

(
n

k

)
(2A(K))k(1 − 2A(K))n−k

≤
n∑

k=µ

min

{
1,

(
240ek

µ3

)µ} (
n

k

)
(2A(K))k(1 − 2A(K))n−k

=
∑
k<k0

[..] +
n∑

k=k0

[..].

Here we choose k0 to be equal to µ3/(480e). Then

∑
k<k0

[..] ≤
∑
k<k0

(
240ek0

µ3

)µ

< k02−µ < µ32−µ.

Since
(n

k

)
(2A(K))k(1 − 2A(K))n−k is decreasing for k > 2A(K)n, and the condition on µ

guarantees that k0 > 2A(K)n,

∑
k>k0

[..] ≤ n

(
n

k0

)
(2A(K))k0(1 − 2A(K))n−k0

≤ n

(
ne

k0

)k0

(2A(K))k0 = n

(
2eA(K)n

k0

)k0

< n2−k0 = n2−µ3/(480e).

For the proof of Theorem 1.3 we will consider other parabolas that are similar to �.
Let �r be the parabola defined by the equation

√
x + √

y = √
1 + r where the parameter

r ∈ (−1, 3). The graph of �r is the homothetic copy of � with ratio of homothety 1 + r,
and center of homothety at the origin, see Fig. 3a). Assume the point (a, b) is on �. Then
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the point ((1 + r)a, (1 + r)b) is on �r , and the tangent line to this point on �r is given by
the equation

x√
a

+ y√
b

= 1 + r.

It follows that the distance between parallel tangent lines to � and �r is

|r|√
1
a + 1

b

≤ |r|√
8

. (7.1)

Define now
ρ = √

8ε = 3
√

2γ 1/2n−1/12(log n)1/4,

here ε comes from Theorem 1.3. This definition immediately implies the following fact.

Proposition 7.1. If a convex chain C(Y) lies between �−ρ and �ρ , then dist(C(Y), �) ≤ ε.

We need one more piece of preparation. Assume � is a tangent to �r , at the point q. With
the notations of Section 2, let T1 and T2 denote the two triangles determined by � and q, see
Fig. 3a). Let Xn be a random sample of n points from T and let Li denote the length of the
longest convex chain in Ti, i = 1, 2.

Lemma 7.3. For sufficiently large n, if |r| ≥ n−1/12, then

EL1 + EL2 ≤ ELn − 0.52r2 3
√

n.

Proof. Let ti = 2A(Ti) for i = 1, 2. We want to apply Theorem 2.2. It is not hard to see
(using Corollary 2.2 for instance) that what is denoted by |a − b| there, is equal to |r| here.
Consequently

3
√

t1/2 + 3
√

t2/2 ≤ 3
√

1/2 − 3
√

1/2
1

3
r2. (7.2)

Write Li for the longest convex chain in the triangle Ti. By affine invariance Li has the
same distribution as Lti ,n (from Section 6) for i = 1, 2. We need to estimate ELn−(EL1+EL2)

from below.
For four points q0 = (0, 1), q1, q2 and q3 = (1, 0) in this order on �, denote by Si the

triangle delimited by the tangents to � at qi−1, qi, and by the segment [qi−1, qi], i = 1, 2, 3;
see Fig. 3b). Choose q1 and q2 so that A(S1) = t1/2 and A(S2) = t2/2. Then Corollary 2.1
and (7.2) imply that

3
√

A(S3) ≥ 3
√

1/2
1

3
r2.

Let now �i denote the length of a longest chain in Si for i = 1, 2, 3. For i = 1 and 2, �i

has the same distribution as Lti ,n (and as Li). Therefore ELi = ELti ,n = E�i for i = 1, 2.
Further, �1 + �2 + �3 ≤ Ln follows from concatenating the longest convex chains in the
triangles Si. Thus, we have

EL1 + EL2 + E�3 =
3∑

i=1

E�i ≤ ELn. (7.3)
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The random variable |Xn ∩ S3| has binomial distribution with mean 2A(S3)n which is at
least κ = (1/3)3r6n ≥ (1/3)3n1/2. Set N = κ − √

κ log κ . Thus we obtain that for all large
enough n,

N > 0.99κ = 0.99

27
r6n,

and N tends to infinity with n. Using the estimates (2.1) and (4.2), again for large n we have

E�3 ≥ P(|Xn ∩ S3| ≥ N)ELN ≥ (1 − κ−1/2)1.57N1/3

≥ 1.569N1/3 ≥ 0.52r2 3
√

n.

Hence, by (7.3)

EL1 + EL2 ≤ ELn − 0.52r2 3
√

n.

8. LIMIT SHAPE

After the preparations in the previous sections we finally prove Theorem 1.3, that is, all
chains in C lie in a small neighbourhood of � with high probability. Note that similar limit
shape results have been proved for convex chains [4]; however, they are of different character
than the present case.

We fix the constant γ ≥ 1. Every result in this chapter holds for large enough n, depending
only on γ . We will not always mention this.

For this proof we set b = γ n1/6
√

log n. The strong concentration result of Theorem 1.2
directly shows that

P(Ln < ELn − b) ≤ n−γ 2/14.

We call a convex chain Y ⊂ Xn long if its length is at least ELn − b.
We will show that all long convex chains lie between the parabolas �ρ and �−ρ with

high probability, where high means > 1 − n−γ 2/14. In view of Proposition 7.1 this suffices
for the proof.

Let S be the triangle with vertices (0, 0.1), (0, 0), (0.1, 0), and define H to be the event
that there is a long convex chain Y ⊂ Xn having a point in S. We prove first the following
simple fact.

Lemma 8.1. For n large enough,

P(H) ≤ n−γ 2/6.

Proof. Let Y be a long convex chain with a point in S, and let y be a point of Y where
the tangent to C(Y) has slope 1. Clearly y ∈ S. Let Y1 be the part of Y between (0, 1)

and y, and Y2 be the part between y and (1, 0). Then Y1 resp. Y2 are convex chains in the
triangle S1 = conv{(0, 1), (0, 0), (0.1, 0)} and S2 = conv{(0, 0.1), (0, 0), (1, 0)}. As Y is a
long convex chain,

ELn − b ≤ |Y | ≤ |Y1| + |Y2| ≤ L1 + L2,

where Li denotes the length of the maximal chain in Si (i = 1, 2), |Yi| ≤ Li. As n → ∞,
the limit of n−1/3

ELn resp. n−1/3
ELi is α and α

3
√

0.1. This follows from Theorem 1.1 and
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Lemma 6.2. So lim n−1/3(ELn − EL1 − EL2) = α(1 − 2 3
√

0.1) > 1/10, implying that for
large enough n

ELn − EL1 − EL2 >
1

10
3
√

n > 3b = 3γ n1/6
√

log n.

So we have

P(H) ≤ P(L1 + L2 > ELn − b) = P(L1 + L2 > EL1 + EL2 + (ELn − EL1 − EL2) − b)

≤ P(L1 + L2 > EL1 + EL2 + 2b) ≤
∑
i=1,2

P(Li > ELi + b).

The triangle Si is of area 1/20 so Theorem 6.1 shows that

P(Li > ELi + b) = P
(
Li > ELi + γ n1/6

√
log n

)
≤ P(Li > ELi + γ 201/6(n/20)1/6

√
log n/20)

≤
( n

20

)−γ 2201/3/14 ≤ 1

2
n−γ 2/6.

After this first step, we estimate the probability of the existence of a long convex chain
not lying between �−ρ and �ρ . First, we deal with the case when the chain goes below this
region.

We define a set of parabolas. Let � = n−1/3
√

log n, ri = −ρ − i�, and

Gi = �ri where i = −1, 0, 1, . . . , g. (8.1)

Note that ri < 0. Here, we define g by the conditions Gg ⊂ S but Gi−1 is not contained in
S. Thus, the case when a long chain goes below Gg is covered by Lemma 8.1. Clearly g is
limited by −1 < rg = −ρ − g� ≥ −1 + 1/10. Thus g ≤ n2/3, say.

The convex polygonal chains C(Y) can be considered as functions defined on [0, 1]. We
extend the definition of �r as 0 on the interval [1 + r, 1] if r < 0, and consider this new
“parabola” �r as a function defined on [0, 1]. A parabola is said to be below, resp. above
C(Y) if the corresponding function is smaller (larger) than the one corresponding to C(Y).

The following lemma is important.

Lemma 8.2. There are points qi,j ∈ Gi−1, j = 1, 2, . . . , J(i) with J(i) ≤ n1/3, such that
the upper envelope of the tangent lines �(qi,j) of Gi−1 at qi,j is a broken polygonal path lying
above Gi.

Proof. The line �q, which is tangent to Gi−1 at q ∈ Gi−1, intersects the graph of Gi in two
points. Let λq denote the segment connecting these two points. It is not hard to check that
the length of the segment, |λ(q)|, decreases as q moves away from the center point of Gi−1.
A simple computation reveals that

4� (1 + ri)
2

(1 + ri−1)2
≤ |λq| ≤ √

2�(1 + ri), (8.2)

where q only moves up to the point when both endpoints of λ(q) lie in Gi.
Now choose qi,1 on Gi−1 so that the lower endpoint of λ(qi,1) is the intersection of Gi

with the x-axis. Once qi,j has been defined, we let qi,j+1 be the point in Gi−1 for which the
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Fig. 4. Long chains below �.

lower endpoint of λ(qi,j+1) coincides with the upper endpoint of λ(qi,j), (see Fig. 4a). The
length of �i is smaller than 2(1 + ri). So the process of choosing the qi,j stops after

|J(i)| ≤ 2(1 + ri)(1 + ri−1)
2

4�(1 + ri)2
≤ (1 + ri−1)

2

2�(1 + ri)
≤ n1/3

steps. This finishes the construction of the points qi,j. The upper envelope of the tangent
lines �(qi,j) is a convex polygonal path that lies between Gi and Gi−1 with edges λ(qi,j).

Now we define G∗
i to be the event that there is a long convex chain Y ⊂ Xn with Gi+1

below C(Y) but Gi not below C(Y), i = 0, 1, . . . , g − 1.
We split these events further. Let G∗

i,j be the event that there is a long convex chain Y with
the parabola Gi+1 below C(Y) but the line �(qi,j) not below C(Y); here qi,j ∈ Gi−1 comes
from Lemma 8.2. This implies that G∗

i ⊂ ⋃
j∈J(i) G∗

i,j.

Lemma 8.3. For every i = 0, . . . , g − 1 and every j = 1, . . . , J(i), P(G∗
i,j) ≤ 3n−8γ 2/7.

Before the proof we state (and prove) the following corollary.

Corollary 8.1. The probability that there is a long convex chain Y ⊂ Xn such that C(Y)

is not above �−ρ is at most n−γ 2/6 + 3n−γ 2/7.

This is quite easy: If there is such a chain, then either H, or some G∗
i (i = 0, 1, . . . , g−1)

occur. Since G∗
i ⊂ ⋃

j∈J(i) G∗
i,j, gJ(i) ≤ n and γ ≥ 1, the corollary follows from Lemmas

8.3 and 8.1.

Proof of Lemma 8.3. Let T1, T2 be the two triangles determined by qi,j and �(qi,j) as usual,
and let K = Ki,j be the convex set between λ(qi,j) and Gi+1, (see Fig. 4b).

We estimate A(K) as follows. A simple calculation as in (8.2) yields that the diameter
of K is at most 2

√�, and K is between the line �(qi,j) and the parallel line tangent to �i+1.
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The distance of these lines is at most 2�/
√

8 as one can easily check using (7.1). Then
A(K) ≤ √

2�3/2.
A long convex chain Y ⊂ Xn which is above Gi+1 but not above �(qi,j) splits into 3 parts:

Y1 = T1 ∩ Y , Y2 = T2 ∩ Y , and Y3 = K ∩ Y . Here Y1, Y2 are convex chains in T1 (from (0, 1)

to qi,j) and in T2 (from qi,j to (1, 0)), and Y3 is in convex position in K . So with the notations
of the previous section we have

|Y1| ≤ L1, |Y2| ≤ L2, and |Y3| ≤ M(K , n).

Since Y is a long convex chain, |Y1| + |Y2| + |Y3| ≥ ELn − b. This implies that L1 + L2 +
M(K , n) ≥ ELn − b. We are going to show that this event has small probability.

We apply Lemma 7.2 with µ = b/5. For large enough n it implies that

P(M(K , n) ≥ b/5) < (b/5)32−b/5 + n2−b3/(480e53) < 2−n1/6
< n−8γ 2/7, (8.3)

because the condition 1920e2A(K)n ≤ (b/5)3 is satisfied as A(K) ≤ √
2�3/2 <√

2n−1/2(log n)3/4 and (b/5)3 = γ 3n1/2(log n)3/2/125.
Next,

P(L1 + L2 + M(K , n) ≥ ELn − b) ≤ P(L1 + L2 ≥ ELn − 1.2b) + P(M(K , n) ≥ b/5)

≤ P(L1 + L2 ≥ ELn − 1.2b) + n−8γ 2/7. (8.4)

Now Lemma 7.3 implies that EL1 + EL2 ≤ ELn − 0.52r2
i−1

3
√

n, and hence

P(L1 + L2 ≥ ELn − 1.2b) ≤ P(L1 + L2 ≥ EL1 + EL2 + 0.52r2
i−1

3
√

n − 1.2b)

≤
∑
i=1,2

P(Li ≥ ELi + 0.26r2
i−1

3
√

n − 0.6b)

≤
∑
i=1,2

P(Li ≥ ELi + 4b). (8.5)

Here the last step is justified by observing that ri−1 ≤ r−1 = −ρ + � and so for large
enough n

0.26r2
i

3
√

n ≥ 0.26n1/3
(
3
√

2γ 1/2n−1/12(log n)1/4 − n−1/3
√

log n
)2

> 4.6γ n1/6
√

log n = 4.6b.
(8.6)

Next, we estimate P(Li ≥ ELi + 4b). When ti = 2A(Ti) ≥ n−5/6, we use Theorem 6.1
with τ = 5/6:

P(Li ≥ ELi + 4b) = P(Li ≥ ELi + 4γ
√

log n n1/6)

≤ P(Li ≥ ELi + 4γ
√

log n/ log(nti)
√

log(nti)(nti)
1/6)

≤ (nti)
−γ 28 log n/7 log(nti) = n−8γ 2/7.

The last inequality holds because of the Remark following Theorem 6.1, since

1 ≤ 4γ
√

log n/ log(nti) ≤ γ 4
√

6.
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Finally, when ti < n−5/6, the expected number of points in Ti is tin < n1/6. So for the
random variable |Ti ∩ Xn| inequality (2.2) implies that

P
(|Ti ∩ Xn| ≥ 4γ

√
log n n1/6

) ≤
(

etin

4γ
√

log n n1/6

)4γ
√

log n n1/6

≤
(

e

4γ
√

log n

)n1/6

< n−8γ 2/7

for large enough n, and hence

P
(
Li ≥ ELi + 4γ

√
log n n1/6

)
< n−8γ 2/7.

Thus P(Li ≥ ELi + 4b) ≤ n−8γ 2/7 for i = 1, 2 in all cases.

Now we handle the case of parabolas going above �ρ . Set Ri = ρ + iδ where δ =
n−1/2

√
log n. We define another series of parabolas:

Gi = �Ri , i = −1, 0, 1, . . . , f (8.7)

where f is limited by ρ + f δ ≤ 3. Thus f ≤ n1/2, say.
The following geometric lemma is similar to Lemma 8.2.

Lemma 8.4. There are points pi,j ∈ Gi−1, j = 1, 2, . . . , J (i) with J (i) ≤ n1/2 such that
the following holds. For each convex chain Y ⊂ Xn with Gi+1 above C(Y) but Gi not above
C(Y), there is a pi,j such that the line �(pi,j) is below C(Y).

Proof. For such a long chain Y there is a smallest R > ρ with �R above C(Y). Then C(Y)

and �R have a common point and a common tangent � at that point (because both C(Y) and
�R are convex). Let p be the point on Gi such that the line �(p), tangent at p to Gi, is parallel
with �. It is evident that C(Y) is above �(p).

Let L denote the set of lines that are tangent to Gi and that have both (0, 0) and (1, 1)

above it. We will construct a set of points pi,j ∈ Gi−1 such that each line in L is above the
segment �(pi,j)∩ T for some j = 1, 2, . . . , J (i). This construction then guarantees what the
lemma requires.

We need one more piece of notation. Given pi,j let [Aj, Bj] be the segment T ∩ �(pi,j),
with Aj on the x-axis and Bj on the y-axis. We shall construct the sequence of the Aj’s and
Bj’s.

The construction starts with pi,1 at the midpoint of Gi−1 and we define first the other pi,j

with A1 closer to the origin than Aj (see Fig. 5a). Assume pi,j has been found. There is a
unique tangent, �, to Gi passing through Bj. Let Aj+1 be the intersection point of � with
the x-axis, and pi,j+1 the common point of Gi−1 with the tangent to Gi−1 through Aj+1. The
construction is finished when we reach x(Aj) < 0, here x(Aj) denotes the x-coordinate of
Aj. Corollary 2.2 implies that

|AjAj+1| = |BjBj+1| = (1 + Ri) − (1 + Ri−1) = δ.

As x(A1) < 1/2, we reach x(Aj) < 0 after at most (2δ)−1 steps.
The construction satisfies what we need: if a tangent to Gi intersects the triangle in the

segment [A, B] with A on the x axis and x(A) ∈ [0, 1/2], then A is between Aj+1 and Aj for
some j, and the segment [A, B] is above the segment �(pi,j) ∩ T .
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Fig. 5. Long chains reaching above �.

The construction is extended to the other half of Gi−1 symmetrically, and J (i) ≤
2(2δ)−1 ≤ n1/2 follows.

Next we define G∗
i (i = 0, 1, . . . , f − 1) to be the event that there is a long convex chain

Y ⊂ Xn such that Gi+1 is above C(Y) but Gi is not above C(Y), i = 0, 1, . . . , f − 1. Further,
let G∗

i,j be the event there is a long convex chain Y ⊂ Xn with C(Y) below Gi+1 but not below
�(pi,j) (remember that pi,j ∈ Gi−1). Here i = 0, . . . , f − 1 and j = 1, . . . , J (i). We have now
the following result, similar to Lemma 8.3.

Lemma 8.5. For every i = 0, . . . , f − 1 and every j = 1, . . . , J (i), P(G∗
i,j) ≤ 3n−8γ 2/7.

This lemma immediately implies the following corollary.

Corollary 8.2. The probability that there is a long convex chain Y ⊂ Xn such that C(Y)

is not below �ρ is at most 3n−γ 2/7.

The proof follows from the facts that G∗
i ⊂ ⋃

j∈J (i) G∗
i,j, f ≤ n1/2, J (i) ≤ n1/2, and γ ≥ 1.

Now we give the proof of Lemma 8.3 which is analogous to that of Lemma 8.3.

Proof of Lemma 8.5. Let �(p) be the unique tangent to Gi+1 which is parallel with �(pi,j),
and p be the common point of �(p) and �i+1, (see Fig. 5b). Let T1, T2 be the two triangles
determined by p and �(p), and let K = Ki,j be the part of T that lies between �(pi,j) and
�(p). As the distance of these two lines is at most 2δ/

√
8, A(K) ≤ δ.

A long convex chain Y ⊂ Xn which is below Gi+1 but not below �(pi,j) splits into 3 parts:
Y1 = T1 ∩ Y , Y2 = T2 ∩ Y , and Y3 = K ∩ Y . Here Y1, Y2 are convex chains in T1 (from (0, 1)

to p) and in T2 (from p to (1, 0)), and Y3 is in convex position in K . So

|Y1| ≤ L1, |Y2| ≤ L2, and |Y3| ≤ M(K , n).

As Y is a long convex chain, |Y1|+|Y2|+|Y3| ≥ |Y | ≥ ELn −b, and so L1 +L2 +M(K , n) ≥
ELn − b. We are going to show that this event has small probability.
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We apply Lemma 7.2 again with µ = b/5. For sufficiently large n the condition
1920e2A(K)n ≤ (b/5)3 is satisfied, since A(K) ≤ δ = n−1/2

√
log n and (b/5)3 =

γ 3n1/2(log n)3/2/125. So we have, just as in (8.3),

P(M(K , n) ≥ b/5) < n−8γ 2/7.

Therefore, the estimate (8.4) applies without change:

P(L1 + L2 + M(K , n) ≥ ELn − b) ≤ P(L1 + L2 ≥ ELn − 1.2b) + n−8γ 2/7.

Now Lemma 7.3 implies that EL1 + EL2 ≤ ELn − 0.52R2
i+1

3
√

n, and just as in (8.5),

P(L1 + L2 ≥ ELn − 1.2b) ≤
∑
i=1,2

P
(
Li ≥ ELi + 0.26R2

i+1
3
√

n − 0.6b
)

≤
∑
i=1,2

P(Li ≥ ELi + 4b).

Here, the last step is justified just as in (8.6) except that this time Ri+1 ≥ R1 = ρ + δ.
Finally, we bound P(Li ≥ ELi + 4b) the same way as in the proof of Lemma 8.3 to obtain

P(Li ≥ ELi + 4b) ≤ n−8γ 2/7.

Proof of Theorem 1.3. Considering Proposition 7.1, we have to estimate the probability
that there is a longest convex chain not lying between �−ρ and �ρ . This event splits into
two parts: either the longest convex chain is not long, or there is a long convex chain not
between �−ρ and �ρ . The probability of the first event is estimated by Theorem 1.2, while
the second part is handled via Corollaries 8.1 and 8.2. Therefore the probability in question
is at most

n−γ 2/14 + n−γ 2/6 + 6n−γ 2/7 < 2n−γ 2/14.

Remark. In this proof one can avoid using the estimate on M(K , µ). In fact, choosing δ and
� small enough, the set K contains more than b/5 points of Xn with very small probability.
So, with high probability, it cannot add much to the size of a long convex chain. There are
more events G∗

i and G∗
i,j, which has a minor effect on the final result. Also, the triangle S in

Lemma 8.1 is to be chosen much smaller.
An important step in our proof is Lemma 7.3, essentially implying that if the distance

between � and the farthest point of a convex chain from � is “large”, then the chain
cannot be too long. Conditioning on the location of this farthest point would allow an
elegant conditional expectation argument. However, fixing the farthest point modifies the
underlying probability space and therefore the estimate coming from Lemma 7.3 is no
longer valid. To eliminate this difficulty, we chose to define finitely many subcases and
estimate them separately, which can also be considered as a finite approximation of the
continuous conditional expectation.
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TABLE 1. Results Obtained by the Simulation

n n−1/3
ELn dn Distance/

√
2 Deviation

1000 2.532 4 0.270 1.254
10,000 2.768 5 0.200 1.383
15,625 2.813 5 0.150 1.293
50,000 2.885 5 0.100 1.411
75,000 2.906 5 0.070 1.580
100,000 2.917 5 0.060 1.431
125,000 2.926 5 0.050 1.637
421,875 2.959 5 0.012 1.732
1,000,000 2.976 6 0.012 2.023

9. NUMERICAL EXPERIMENTS

In the final section, we summarize the observations obtained by computer simulations.
The search for the longest convex chains can be accomplished by an algorithm

which has running time O(n2). This algorithm works as follows. We order the points
by increasing x coordinate, and then recursively create a list at each point. The kth ele-
ment on the list at point p contains the minimal slope of the last segment of chains
starting at p0 and ending at p whose length is exactly k, and a pointer to the other
endpoint of this last segment. For creating the list at the next point p, we have to
search the points before p, and see if p can be added to the chains while preserving
convexity.

This algorithm can be speeded up with some (not fully justified but useful) tricks. First
of all, Theorem 1.3 guarantees that we have to search only among the points close to �. The
simulations show that most longest convex chains are located in a small neighbourhood of
�, whose radius is in fact of order ∼ n−1/3, much smaller than the width of order n−1/12

given by Theorem 1.3. Therefore the search can be restricted to a subset of the points with
cardinality of order n2/3. Second, when looking for the longest chain, we have to search
only points relatively close to p, and chains which are already relatively long, thus reducing
memory demands.

With the aforementioned method, the search can be executed for up to 5 × 104 active
points, in which case examining one sample takes about 2 minutes. As the experiments
show, this provides a good approximation for n’s up to order 106. In each experiment, we
increased the width of the searched neighbourhood until the increment did not generate a
significant change in the average length of the longest convex chain. The results obtained
by this method, although giving only a lower bound for ELn, are heuristically close to it.

Our largest search has been done for n = 106. The number of samples was 250 except
for the cases n = 253 and n = 106, where we used 500 samples to model the distribution
of Ln (see Fig. 7).

The results below well illustrate what the proof of Theorem 1.1 suggests, namely, that
n−1/3

ELn is increasing with n. Also, the data seem to confirm that α = 3.
On Table 1 we list the results obtained by the program. The first column is the number

of points chosen in T , the second is the average of n−1/3Ln. The third column contains
the half-length of the interval of the values of Ln, that is, dn = �max |Ln − ELn|�. This is
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Fig. 6. Results for n−1/3
ELn, illustrated as a function of n1/3.

noticeably small even for n = 106. In the fourth column we list 1/
√

2 times the radius of the
neighbourhood of parabola we used for the search (the term

√
2 comes from a transformation

of coordinates). The last data are the standard deviation of the set of values of Ln, ie. the
square-root of its variance.

Figure 6 illustrates the linear interpolation of n−1/3
ELn as a function of n1/3. It is based

on the data shown on Table 1.
As we know from Theorem 1.2, Ln is highly concentrated near its expectation. This

phenomenon is well recognizable on Fig. 7, where we plot the distribution in the cases
n = 253(= 15625) and n = 106 with 500 samples.

Fig. 7. Distribution of Ln, 500 samples, n = 253 and n = 106.
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