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PROCEEDINGS OF THE 
AMERICAN MATHEMATICAL SOCIETY 
Volume 86, Number 1, September 1982 

QUANTITATIVE HELLY-TYPE THEOREMS 

DMRE BARANY, MEIR KATCHALSKI AND JANOS PACH 

ABSTRACT. We establish some quantitative versions of Helly's famous theorem 
on convex sets in Euclidean space. We prove, for instance, that if C is any finite 
family of convex sets in Rd, such that the intersection of any 2d members of 
C has volume at least 1, then the intersection of all members belonging to C is 
of volume > d-d2 . A similar theorem is true for diameter, instead of volume. 
A quantitative version of Steinitz' Theorem is also proved. 

1. Introduction. The aim of this paper is to establish some quantitative versions 
of the following two well-known results on convex sets. 

HELLY'S THEOREM (H. T.). If C is a finite family of at least d + 1 convex sets 
in Rd and if the intersection of any d + 1 members of C is nonempty, thenn c is 
nonempty. 

STEINITZ' THEOREM (S. T.). If V is a set of points in Rd whose convex hull 
contains a solid ball in Rd, then there exists a subset V' of V containing not more 
than 2d points and whose convex hull contains a solid ball with the same center. 

Helly's Theorem is not quantitative in the sense that it does not give any infor- 
mation on the size of n C. As a first attempt to get a quantitative version of H. 
T., we suppose that any d + 1 members of C have a "large" intersection and, then, 
we try to prove thatn c is "large". (Here "large" can be meant, for instance, as 
for large volume or diameter or surface area.) However, no theorem of this type is 
true. This is shown by the following example. Consider a family C of 2d halfspaces 
whose intersection is a "small" cube. Then any 2d - 1 of them have a "large" 
(unbounded) intersection, whilen c is "small". Thus, to obtain a quantitative 
theorem, one has to replace the Helly number d + 1 by at least 2d. In this sense 
our following theorems are best possible. 

"QUANTITATIVE" VOLUME THEOREM (Q.V.T.). There exists a constantv 
v(d) > 0 such that for any finite family C of convex sets in Rd; if the intersection of 
any 2d or fewer members of C has volume at least 1, then the volume of n c, is at 
least v(d). 

"QUANTITATIVE" DIAMETER THEOREM (Q.D.T.). There exists a constant 
c = c(d) > 0 such that for any finite family C of convex sets in Rd; if the intersection 
of any 2d or fewer members of C has diameter at least 1, then the diameter of n c 
is at least c(d). 
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110 IMRE BARANY, MEIR KATCHALSKI AND JANOS PACH 

As we shall see later these two theorems are closely related to the following 
strengthened version of Steinitz' Theorem. 

"QUANTITATIVE" STEINITZ THEOREM (Q.S.T.). There exists a constant 
r = r(d) > 0 such that for any subset E of Rd whose convex hull contains the 
d-dimensional unit ball Bd, there exists a subset F of E with IFI < 2d such that the 
convex hull of F contains a d-dimensional ball of radius r(d) with the same center. 

Helly's Theorem appears in [5] (cf. [2]), Steinitz' Theorem appears in [8] (cf. [2] 
again). A weaker version of our Q.D.T. is implied by a result of B. Griinbaum [3]. 
(This result states that if the intersection of any 2d members of a finite family C 
of convex sets in Rd is at least 1-dimensional, then n C is at least 1-dimensional.) 
The Q.V.T. appears in [1]. However, an independent proof will be given here, with 
an explicit constant. In fact, we shall prove Q.V.T., Q.D.T., and Q.S.T. by giving 
explicit constants v(d), c(d) and r(d). 

For related Helly-type results consult [3, 4]. An excellent survey paper on these 
matters is [2]. 

Proofs are given in the next section. The last section contains some remarks. 
2. Proofs. The following notation will be used: conv E for the convex hull of 

E C Rd and pos E for the smallest convex cone with apex at the origin containing 
E, Bd or B for the unit ball of Rd with center at the origin and S or Sd-1 for the 
unit sphere of Rd, Wd-1 for the surface area of Sd-1 and cE - {cx: x E E} if c is 
a real number and finally Ilall denotes the distance from a E Rd to the origin. 

PROOF OF Q.S.T. Assume that B C convE and consider a regular d-dimen- 
sional simplex A inscribed in B. Since A C conv E, each vertex of A is a convex 
combination of at most d + 1 elements of E, so A is contained in P = convE' 
where E' C E and IE'l < (d + 1)2. Clearly kB C P because JB C A. We may 
suppose without loss of generality that the facets P1, . .. , Pn of P are all simplices 
(otherwise we can triangulate the nonsimplex facets). It is obvious that 

(1) n < ((d + 1)2) 

Since the cones pos Pi (i = 1, , n) cover the sphere Sd-1, for one of them, say 
posP1, the surface area of S n posPi is not less than l Wd-1- Let a E posP1 be a 
vector such that the minimal angle between a and the facets of posP1 is maximal. 
Denote this minimum by a. For each facet Li of pos P1 consider the set Di of those 
vectors whose angle with Li is not larger than a and which lie on the same side of 
Li as a (i = 1, . . , d). Clearly Ud=1 Di D pos P1. Since the surface area of S nD 1 
is less than Wd-2 tg a we get 

1 
~~~~~~~~d 

'Wd-1 < Area(S n pos Pi) < Area(S n Di) ni= 

< dwd-2tg a. 
This gives 

a > arc tg nd Wd2 

Now the set K = {x E j S: < (x, a) = a} is contained in conv(Pi U {0}) and the 
vector (-1/1all)a belongs to the convex hull of 0 and at most d points of E. Let F 
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QUANTITATIVE HELLY-TYPE THEOREMS 111 

be the set of these points and the vertices of P1, clearly IFI < 2d and 0 E convF. 
The cone with apex (-1/j1all)a and base K is contained in convF and the origin 
lies on its axis. It is easily checked that the largest ball contained in this cone (with 
center at the origin) is r(d)B where 

(2) r(d) = (1 + + d cosa) >d 

Since r(d)B C conv F this proves the theorem for r(d) -d2d. 
With some additional effort the estimation (2) can be improved to 

(3) r(d) > c(2ed)-Ld/2Jd2 

where c is a positive constant. This improvement comes mainly from the use of the 
Upper Bound Theorem [6] instead of the crude estimation (1). 

PROOF OF Q.V.T. We suppose that each C E C is closed. This cannot affect 
the volumes in question. Every C E C is the intersection of some closed halfspaces 
Hi (i E Ic). Let X = {Hi: i E Ic, C E C}. It is clear that the intersection of the 
interior of any 2d member,s of C is nonempty, so by Helly's Theorem the interior 
of n c is nonempty. We can suppose that n c is bounded (otherwise it would have 
infinite volume). Consideril the boundary F of the set 

'G= {x E Rd: p(x, f c) ? } 
where e > 0 is chosen so small that vol G < 2vol(n C). Now F is compact and is 
covered by the open sets Rd\H (H E k). So, by the Borel covering theorem, there 
exists a finite subfamily )(' C X such that F is covered by the sets Rd\H (H E A/'). 
Now 

nccn,k c GI 
so in order to prove the theorem it suffices to prove the following lemma. 

LEMMA. Suppose that for a finite family }/ of halfspaces of Rd the intersection 
P = f is a polytope with unit volume. Then there exists a subfamily )(' C ) with 
1'l < 2d such that volfn )( < 1/v(d). 

PROOF. Consider the ellipsoid E of largest volume contained in P (with center 
0, say). Then as it is well known (see e.g. [9]) P C dE. Using a volume-preserving 
linear transformation we can suppose that E is a ball. Then 

vol(dE)= dd vol E < dd vol P = dd, 
so that P C pB where 

pdvolB = dd. 

Using polarity we get (pB)* = B C P*. Then, on applying Q.S.T., there exists 
an at most 2d-membered subset, Q, of the vertices of P* such that 

P* D convQ D B. 

Using polarity again 

(()B - R mB D (convQ)* D P** = P 
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112 IMRE BARANY, MEIR KATCHALSKI AND JANOS PACH 

and clearly, (conv Q)* is the intersection of IQI < 2d members of }/. Denoting the 
set of these halfspaces by }/' we get 

vol (fl }/') = vol(conv Q)* < (rP))d vol B K d2d2. 

This gives that the theorem (and the lemma) are true with v(d) = d2d . (Again, 
this can be improved by (3).) 

PROOF OF Q.D.T. FIRST PROOF. It is again easily seen that the theorem 
follows from the special case when C consists of a finite number of closed halfspaces 
and n c is a convex polytope with diameter 1. But this special case is the dual of 
Q.S.T. The result is that c(d) > jr(d) where r(d) comes from (2) or (3). This, again, 
can be improved to c(d) > [\/(d + 1)/2d]r(d) using the following consequence of 
Helly's Theorem (see [2, Theorem 2.6]). If X C Rd and diamX = 1, then X can 
be covered by a ball of radius (d/2(d + 1))1/2. 

SECOND PROOF. (This proof does not use Q.S.T. and gives a smaller constant 
c(d) than the first proof. As a matter of fact, we want to have as large c(d) as 
possible.) We shall show that if diamn C < 1, then diamn C' < rO 1(d) for some 
(at most) 2d-membered subfamily C' of C. By H.T., n c 74 0, suppose it contains the 
origin. Then n C C B and B C A where A is a regular simplex with side (or, what 
is the same, diameter) /2d(d + 1). Consider the d + 1 halfspaces Ho, H1, ... ,Hd 
whose intersection is A. For each Hi there exist (at most) d members of C whose 
intersection lies in Hi (by H.T., again). Thus there exists an at most d(d + 1)- 
membered subfamily C" of C such that n C C c whence diam C" < V2d(d + 1). 

Now we reduce the number of elements of C" to 2d. This is done through repeated 
applications of the following lemma. 

LEMMA. Let k > 2d and C1, ...,Ck+ be given convex sets in Rd such that 
O E Hk+l Ci and each Di n k+flI Ci contains a point aj with IIajj 1 (j 
1, ... , k+ 1). Then nk+l Ci contains a point a with IIall > h where h = h(d, k) > 0 
depends only on d and k. 

PROOF OF THE LEMMA. The distance of a spherical cap P is the distance of 
its convex hull from the origin. Clearly there exists an h = h(d, k) so that for a 
spherical cap P with distance h 

AreaP d 
Wd- 

> 
k+1' 

where we used the assumption k > 2d. For each aj consider the spherical cap P(aj) 
with center aj and distance h. By our choice of h there exists a point b E Sd-i 
common to at least d + 1 such caps, otherwise each point of Sd-1 is covered by at 
most d caps and 

j> >AreaP(aj) (k + 1)d 
Wd-1 k+1 

This, in turn, implies that the spherical cap P(b) with distance h and center b 
contains at least d + 1 points from the set {a1, ... , ak+1 }, suppose these points are 
a1,..., ad+1. The line segment [0, a6] meets the bounding hyperplane H of P(b) 
in the point bj (j = 1, . .. , d + 1), obviously bj E Di. By Radon's theorem (see [7 
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or 2]), applied in the hyperplane H to the points b, .b. , 1, there exists a point 
a E H common to DI,D2,.. ,DD'+. Consequently a E n+i1 Ci. On the other 
hand, a E H implies flall > h. 

To get an estimation for ro(d) in the case d > 3 observe that 

h(d, k) k + 1- 2d 

satisfies the requirements of the Lemma. So we have 

ro(d) ? 1 d(d+1)-1 k + 1 -2d 
ro(d+d) __ k+ 1 

= (1 + o(d))V-d-2d /222de2d 
This is less than the r(d) from Q.S.T. 

3. Remarks. 1. The Q.V.T. and Q.D.T. remain true if instead of the finiteness 
of C we suppose that the members C are all closed and one of them is compact. 

2. Let v*(d) (c*(d) and r*(d)) denote the supremum of those v(d) (c(d) and r(d)) 
for which Q.V.T. (Q.D.T. and Q.S.T.) holds. What we have shown is that 

v*(d) > d , c*(d) ? r*(d) (d+ 1)/2d 

and 
r*(d) > d-2d 

(or a somewhat better estimation from (3)). We have not been able to determine the 
order of magnitude of these functions. We think that v*(d) d-cid and r*(d) 
C2d-1/2 where c1 and c2 are positive constants. 

3. Let voln C, the n-dimensional volume of C be the supremum of the area of 
the intersection of C with a n-dimensional flat. (Here C is a convex set in Rd.) It 
follows from (4), that there exist constants K(d, n) > 0 (n = 1, 2,. . ., d) such that 
if a finite family C of convex sets has the property that the intersection of any 2d 
or fewer members of C is of n-dimensional volume at least 1, then 

Vol,f(n C) > K(d, n). 

This result is somewhat stronger than Q.V.T. and Q.D.T. 
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