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ABSTRACT 

Given a convex compac t  set  K C [~2 w h a t  is the  la rges t  n such t h a t  K 

conta ins  a convex la t t ice  n-gon? We answer  th i s  ques t ion  asympto t ica l ly .  

I t  t u rns  out  t h a t  the  max ima[  n is re la ted  to  the  larges t  affine pe r ime te r  

t h a t  a convex set conta ined  in K can  have. This,  in turn ,  gives a new 

charac te r iza t ion  of /4o, the  convex set  in K hav ing  max i ma l  affine 

per imeter .  

1. I n t r o d u c t i o n  

Assume K C R2 is a fixed convex body,  t h a t  is a convex compac t  set w i th  

nonempty  interior.  Let  Z 2 denote  the  (usual)  l a t t i ce  of integer  po in ts  and  wr i te  

1 2 This  is a shrunken  copy of Z 2 when t is large. A convex Z t - l a t t i ce  Zt = 7Z �9 
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n-gon is, by definition, a convex polygon with exactly n vertices each belonging 

to the lattice Zt. Define 

re(K, Zt) = max{n : there is a convex Zt-lattice n-gon contained in K}. 

In other words, re(K, Zt) is the maximal number of Zt-lattice points in K in con- 

vex position. In this paper we determine the asymptotic behavior of re(K, Zt) 

(as t --~ co). We now state the main result. Let A(K) denote the supremum of 

the affine perimeter of all convex sets S C K.  (For the definition and properties 

of affine perimeter, see Section 2.) 

THEOREM 1.1: Under the above conditions, 

lim t-2/3m(K, Zt) - 3 t--~oo (27r)2/3A(K)" 

Let AP(S) denote the affine perimeter of a convex set S c ]I( 2. It is shown 

in [Bs (see also Theorem 3.1 below) that  there is a unique Ko C K with 

AP(K0) = A(K). This unique Ko has the interesting "limit shape" property 

(see [B~95] and [B~97]) that  the overwhelming majority of the convex Zt-lattice 

polygons contained in K are very close to K0 in the Hausdorff distance. This 

property extends to the above case as well: 

THEOREM 1.2: Let Qt denote any maximizer in the definition of m(K, Zt). 
Then 

lim dist(Qt, K0) = 0, 
t ---+OO 

where dist denotes the Hausdorff distance. 

The problem of estimating re(K, Zt) has a long history. J a r n ~  proved in 

[Ja25] that  on a strictly convex curve of length ~ in the plane there can be at 

most 
3 .e2/3(1+ o(1)) 

lattice points and this estimate is best possible. When the strictly closed curve 

is the circle of radius r, Ja rn~ ' s  estimate gives that  a convex polygon contained 

in this circle has at most 3~r~r2/3(1 + o(1)) vertices. The same bound follows 

from Theorem 1.1 as well. 

Andrews [An63] showed that  a convex lattice polygon P has at most 

c(AreaP) ]/3 vertices, where c > 0 is a universal constant. The smallest known 

value of c is (81r2) 1/3 < 5, which follows from an inequality of R4nyi and Su- 

lanke [RS63] (see [Ra93]). This implies in the K, Zt setting that  

m(K, Zt) ~ 5t2/3(AreaK) W3, 
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which is in accordance with Theorem 1.1. Zunid [Zu95] and [Zu98] determined 

m(K, Zt) when K is the unit square, and the limiting shape of the maximizer. 

Remark 1.1: The lattice points on the curve giving the extremum form a convex 

lattice polygon, which is called Ja rn~ ' s  polygon. It is clear that  its edges 

are "short" primitive vectors. We will see this phenomenon in the proof of 

Theorems 1.1 and 2.1. 

Remark 1.2: Actually, Andrews [An63] proves much more. Namely, a 

convex lattice polytope P C ]~d  with nonempty interior can have at most 

c(volP) (d-1)/(d+l) vertices where the constant c > 0 depends on dimension 

only. 

2. Aff ine p e r i m e t e r  

Let C denote the set of convex bodies in R 2, that  is, compact convex sets with 

nonempty interior. Given S E C, choose a subdivision Xl , . . . ,Xn,Xn+l  = Xl of 

the boundary OS and lines gi, i = 1 , . . . , n  supporting S at xi. Denote by Yi 

the intersection of s ~i+1 and by Ti the triangle conv{xi, Yi, xi+l} (and also its 

area). The affine perimeter AP(S) of S is defined as 

n 

AP(S) = 21im E ~/~i, 
i = l  

where the limit is taken over a sequence of subdivisions with 

max Ixi+l - xi[ --+ 0. 
1. . . ,n  

The existence of the limit and its independence of the sequence chosen follow 

from the fact, implied by the inequality in (2.4) below, that  ~ i n l  ~ decreases 

as the subdivision is refined. Therefore, 

n 

AP(S) = 2inf E ~/~i. 
i = l  

Note that the affine perimeter of a polygon is zero. 

The same definition applies for a compact convex curve F: a subdivision 

x l , . . . , x n + l  on F, together with the supporting lines at xi define the triangles 
�9 2 n T1,.. , Tn, and AP(F) is the infimum of )-~i=1 ~ "  Alternatively, given unit 

vectors dl , . . . ,  dn+l (in clockwise order on the unit circle), there is a subdivision 

Xl , . . .  ,Xn+l on F with tangent line s at xi which is orthogonal to di. The 
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subdivision defines triangles T1 , . . . ,  Tn, and 

Isr. J. Math. 

n 

AP(F)  = 2 inf ~ ~ ,  
i = 1  

where now the infimum is taken over all n and all choices of unit vectors 

dl , . . .  ,dn+l. Note that  the triangles Ti are determined by F and d l , . . .  ,dn+l 
uniquely (unless di is orthogonal to a segment contained in F, in which case we 

can take the midpoint of this segment for xi). We will call them the triangles 

induced by directions d l , . . . ,  dn+l on F. 

We mention the following properties of the map AP: C --~ 1~ that  will be used 

later. 

(2.1) AP(LS)  = (det L)I/3AP(S), for L: R 2 --* R 2 linear. 

(2.2) If the boundary of S is twice differentiable, then AP(S) = los ~l/3ds = 
f:~ r2/3dr where ~ is the curvature and r the radius of curvature at the 

boundary point with outer normal vector u(r = (cos r sin r 

(2.3) Given a triangle T -- conv{po,Pl,p2}, let D -- D(T) be the unique 

parabola which is tangent to pop1 and PiP2 at P0 and P2, respectively. 

Among all convex curves connecting P0 and P2 within the triangle T, the 

arc of the parabola D is the unique one with maximal affine length, and 

AP(D) = 2 ~/T. We call D the special parabola in T. 

(2.4) In the above triangle T let ql and q2 be points on the side PoP1 and PIP2, 

resp., and let P3 be a point on qlq2. Writing T1 and T2 for triangles PoqlP3 
and P3q2P2 we have (see Figure 1) 

3 T 

Moreover, equality holds if and only if qaq2 is tangent to the parabola D 

at the point P3 (see [B123]). 
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P2 

T2 

q2 

P0 ql Pl 

Figure 1. 

It  is clear from the definition that ,  for a polygon K ,  A P ( K )  = 0. This shows 

further that  the map AP: C --* R is not continuous (C is equipped with the 

Hausdorff metric). I t  is known (see [Lu91], for instance), however, that  it is 

upper semicontinuous. 

The following theorem will be used for the proof of the main theorems. It  is 

similar, in spirit, to a result of Vershik [Ve94]. Assume F is a compact convex 

curve in the plane. For e :> 0, the s-neighbourhood of F will be denoted by 

U~(F). Let m(F,c ,  Zt) denote the maximum number of vertices that  a convex 

Zt-lattice curve lying in U~(F) can have. 

THEOREM 2.1: Under the above conditions, 

lira lira t -2 /3m(F,6 ,  Zt) - - -  
~--*0 t --*oo 

3 
( 2 zc )2 /aAP(r )  �9 

For the proof of Theorem 2.1 we will need the following fact, which is a 

consequence of the upper semicontinuity of the affine perimeter. 

PROPOSITION 2.1: For every compact convex curve F and for every ~ > 0 there 

exist ~ > O, integer n, and unit vectors dl , .  . . , d~+l such that for every compact 

convex curve F t C U~(F) the triangles T1 , . . .  ,Tn induced by d l , . . .  ,dn+l on F r 

satisfy 
n 

2 ~ ~/_< AP(F) + ,. 
i=1 
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Proo~ This is quite simple: assuming the contrary one finds a F p C U~(F) for 

every ~ > 0 with AP(F  ~) > AP(F)  + ~?, contradicting the upper semicontinuity 

of the functional AP. | 

3. M a x i m a l  affine p e r i m e t e r  

Let C(K) = {S �9 g, S C g } .  Define A(K) = sup{AP(S), S e C(K)}. We will 

need the following result from [Bs 

THEOREM 3.1: For every K �9 C there exists a unique Ko �9 C(K) such that 

AP(Ko) = A(K).  

The function A: C --* ]~ is continuous. (We omit the simple proof.) 

Theorem 3.1 shows that  there is a mapping F: C --* C given by F(K)  = Ko. 

F is affinely equivariant, that  is, for a nondegenerate affine map L: ]~2 __, R2, 

F(LK)  = LF(K).  

PROPOSITION 3.1: F: g --+ g is continuous. 

Proof." The proof is simple: assume Kn --* K. Choose a convergent subse- 

quence of F(Kn); its limit, K* say, is contained in K.  The upper semicontinuity 

of AP and the continuity of A implies that  

AP(K*) > l imsup AP(F(Kn))  = lim A(Kn) = AP(F(K)) ,  

and K* = F(K)  = Ko follows from the unicity of K0. II 

The unique F(K)  = Ko has interesting properties as well. Clearly, 

OKo N OK ~ 0, as otherwise a slightly enlarged copy of K0 would be contained 

in K and have larger affine perimeter. So, OKo\OK is the union of countably 

many arcs, called free arcs. 

(3.1) Each free arc is an arc of a parabola whose tangents at the end points are 

tangent to K as well. 

(3.2) The boundary of K0 contains no line segment. 

The last statement is made quantitative in [Bs Assume Area K -- 1. Assume 

further that  the maximal area ellipsoid inscribed in K0 is a circle. This can be 

reached using a suitable area preserving affine transformation. 

(3.3) Under these conditions the radius of curvature at each point on the 

boundary of K0 is at most 240. 
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What  we get from the proofs of the main theorems is a characterization of 

K0. For C E C the barycenter (or center of gravity) of C is defined by 

b( C) - 1 f~ xdx. 
Area C � 9  

(Here, x is a vector and dx is integration on C.) Define Co as the collection of 

a l l C  E C w i t h b ( C )  = O. F i x C  E Co and let u E S 1 be a u n i t  vector. The 

radial function, p(u) -- pc(u) ,  is, as usual (cf. [Sch93]), defined as 

pc(u)  = max{t :> O: tu E C}. 

= 0 translates (via a change of variables to polar The condition f c  xdx  

coordinates) to 

sl P(u)3du = 0; 

here, du denotes vector integration on S 1. By Minkowski's classical theorem (see 

[Sch93]), there is a unique (up to translation) convex body C* = G(C) whose 

radius of curvature in direction u is exactly R(u)  = 1 3 ~p (u). The following 

characterization theorem describes the sets F ( K )  when K E C. 

THEOREM 3.2: For each K E C, there is a unique C E Co such that Ko is a 

translated copy of G(C) -- C*. Moreover, for every C E Co the set G(C) = 

C* E C satisfies F(C*) = C*. 

This theorem immediately implies the following result. 

COROLLARY 3.1: Assume K E C. Then F ( K )  = K holds i f  and only i f  K 

has well-defined and continuous radius of  curvature R(u)  (for each u E S 1) and 

is the radial function of  a convex set C E Co. 

Two sets K1,/(2 E C are equivalent if they are translates of each other. Write 

JC for the set of equivalence classes in ( F ( K )  : K E C}. The two theorems above 

show that the map G: Co -* /C is one-to-one. It can be shown that  the map 

G: Co ~ / C  is continuous in both directions, but we won't need this fact here. 

Theorem 3.2 implies the following strengthening of (3.3): 

COROLLARY 3.2: For any K E C, there is a nondegenerate linear transformation 

L: •2 __, R2 such that the radius of  curvature R(u)  of  F ( L K )  = (LK)o at any 

point of  its boundary satisfies 

1 8 
5 < R(u) <_ -5" 
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Remark 3.1: Theorem 3.2 and Corollary 3.1 may extend to higher dimensions. 

Unfortunately, the unicity of the maximal affine surface area convex set con- 

tained in a fixed convex body in R d for d > 2 is not known. We hope to return 

to these questions in the near future. 

4. L a r g e  t r i ang les  

We are interested in the maximal convex Zt-lattice polygons inscribed in a 

convex body K, when t is large. This is the same as considering the maximal 

Z2-1attice polygons inscribed in the blown-up copy t K  of K.  Theorems 1.1 

and 1.2 show that any such maximizer is very close to the subset Ko of K with 

maximal affine perimeter. As we saw earlier, the boundary of this body Ko is 

the union of countably many parabolic arcs whose tangents at the end points 

are tangent to K as well. These tangent lines will define our "large" triangles. 

We will be interested in finding the set of vectors that will build up the arc of Qt 

within each such triangle T. We shall prove that  each large triangle naturally 

gives rise to a "small" triangle A, so that the edges of the arc of the maximizer 

Qt within T are primitive vectors in A. These connections will become clear in 

the sections to come. 

We now proceed with a result about large triangles. We start with a definition 

which is slightly more general than necessary. 

Definition 1: Let T = conv{po,pl,p2} be a (non-degenerate) triangle in •2. 

h convex lattice chain within T (from the side [Po,Pl] to the side ~vl,p2]) is a 

sequence of points Xo, . . . ,  xn such that 

(i) the points Po, Xo , . . . ,  Xn,P2 are in convex position, 

(ii) zi = xi - xi-1 E Z 2, for each i = 1 , . . .  ,n. 

We call n the length of this convex lattice chain. 

Define m(T)  as the maximal length that a convex lattice chain within T can 

have. For simpler writing we denote the area of T by the same letter T. 

Assume now that a, b E R 2 are two non-parallel vectors and tl,  t2 are almost 

equal and large values. Setting Pl - P o  = t la and P2 - P l  ~ t2b gives the "large" 

triangle T. 

THEOREM 4.1: Ass~zme t l , t2 --+ oc with t l / t2  --+ 1. Then 

l imm(T) �9 T -1/3 - 6 
(271-)2/3" 

Clearly, it suffices to show this when tl = t2 = t and t --* cr and this is what 

we are going to do in Section 6. 
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We will need this result in the Zt setting as well. So given a triangle T in 

the plane, we define m*(T, Zt) as the length of a maximal Zt-lattice chain from 

vertex P0 to vertex P2 within T. The previous theorem states that  

limt-2/am*(T, Zt) - ( 2 1 r ) 2 / 3 .  

Now let Qt be a maximal Zt-lattice chain in T (from p0 to P2)- Recall the 

definition of the special parabola D(T) from (2.3). 

THEOREM 4.2: Under the above conditions, 

lira dist(Qt, D(T) ) = O. 

This result follows from Theorem 1.2 as well. The short proof given in sec- 

tion 7 shows the close connection between maximal convex lattice chains and 

inequality (2.4). 

From the proof of Theorem 4.1 we will be able to give a simple construction 

of a convex Zt-lattice curve in the triangle T which is almost maximal and is 

very close to the parabola arc D(T). This construction will be used in the 

characterization Theorem 3.2. 

Remark 4.1: It  would be interesting to understand the behavior of re(T),  for 

general triangles, when T --* co. Write w(T) for the lattice width of the triangle 

T, that  is 

w(T) = nfin max{w(x - y ) :  x , y  �9 T}. 
wez2\{0} 

If w �9 Z 2 is the lattice width direction of T, then the lattice points in any 

translated copy of T are contained in Fw(T)] consecutive lattice lines. Each 

such line contains at most two vertices from a convex lattice chain, Thus, 

m(T) <_ 2[w(T)] < 2w(T) + 2. 

So, if w(T) is much smaller than T 1/3, then the asymptotic  estimate 

(2 )2/3 " -  

d i c t a t e d  by Theorem 4.1 is no longer valid. 
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5. Smal l  t r i ang l e s  

Assume now that  u, v E •2 are non-parallel vectors. Define the triangle A as 

A = conv{0, u, v}. 

Its area is also denoted by A and its lattice width by w(A). We write F for the 

set of primitive vectors in Z 2, 

P = {(x,y) �9 Z2:  gad(x,y) = 1}. 

We will need to know the size of F n A. Since the density of P in Z 2 is asymp- 

totically 6/7r 2, one would expect 

6 A I ~ n ~ l  ~ ~ . 

This is indeed the case when w(A) is large enough. In our application, u = Aa, 

and v = Ab with A ~ t 1/3. Thus w(A) is of order t 1/3 which is large, and the 

triangle A is "small" compared to T. 

THEOREM 5.1: Assume w(A) is large enough (w(A) _> 6). Then 

6 logw(A) 
I~ n ~xl - ~ z x  < 3 0 ~  9 

Any given x �9 A can be written uniquely as x = ce(x)u +/3(x)v. Clearly, 

a(x) = x.  v• �9 v • and fLx a(x)dx  -- A/3.  

THEOREM 5.2: Assume w(A) is large enough (w(A) > 6). Then 

6 ~ a(x)dx - < l o g  

p~n~ ~ w(A) 

and 
6 f ~ ( A )  

E ~(P) - -~ Jx fl(x)dx < 30A l~ 
p ~ n ~  ~ w( A ) 

Notice that  the estimate in both theorems is invariant under lattice preserving 

affine transformations. The proofs go via the classical method (see [HW79], for 

instance) and are therefore omitted. See also [BT04] for very similar proofs with 

the estimation depending on the lattice width of A. 
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6. P r o o f  o f  T h e o r e m  4.1 

We assume t = ta = t2 and set U = ta, V = tb. For x E ]R 2, there  is a unique 

representa t ion x = (~(x)U + ~ ( x ) V .  

We s ta r t  wi th  the  upper  bound.  Let  x 0 , . . . ,  xn be the  sequence of vertices of 

a maximal  latt ice chain in T. So m ( T )  = n. The  vectors  zi = xi - x i -1  all lie 

in Z 2 and all belong to the cone pos{a,  b}. Clearly 

n n 

~-~(~(zi) _< 1 and ~ - - ~ ( z i )  _< 1. 
i = l  i=1  

Define the norm (essentially an gl norm)  I1" ]J as follows: 

Ilxll = I~(x)l  + [~(x)l.  

Since the zi are non-paral lel  vectors f rom Z 2 ;3 pos{a,  b}, 

n 

IIz, ll _> ~ tl;ll, 
i=1 

where the second sum is t aken  over the shortest  (in I1" [[ norm)  n pr imit ive  

vectors in pos{a,  b}. The  set of these shortest  n vectors  f rom P ;3 pos{a,  b} is 

exact ly  ~ (3 A, where A = conv{0, ha,  hb}, for some sui table  h > 0. (There  is 

a little ambigui ty  in this definition when  the  side of  A opposi te  to  0 contains 

many  lat t ice points.  This  can be resolved in any way.) 

The  proof  of  the  upper  bound is based on choosing h so t ha t  ~ A n ~  IIpll is 

a lmost  equal to, but  slightly larger than,  2. In  this case 

n n n 

F D(z,I >_  Nz, ll >_ ilplr > 2, 
i=1 i = l  i=1  pEAMP 

so Ill ~ A A I > n = re(T) ,  and we es t imate  lip ;3 A] using T h e o r e m  5.1. 

The  compu ta t ion  is as follows. Set t ing u = ha,  v = hb, 

V • �9 x h v • �9 x h 
(~(x) i 

v •  u - t v •  u - T ~ J "  

Write A0 for the  tr iangle conv{0, a, b} (and its area).  We have A = A2A0, 

w(A) = ~w(/Xo) and 
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By Theorem 5.2, 

Set now 

A A[62 A2A0 Z a(p)=T Z ~(;)>-T 5 3 0 ~ a ~  
pEAMP pEANP 

_ _  2A3Ao (1 - 157r21~ )) 
7r2t 

3/7r2t ~. 

_- V ~ 0 ~  + ~) 
where 6 > 0 will be soon specified. Now 

log w(A) 
,,(a) ] 

~Tr 2t 

A > 2A0' 

so, for large enough t, 

log w(Z~) _ log Aw(Z~0) 
< Clt -1/3 log t w(Z~) Aw(Z~0) 

with a constant Cl > 0 depending only on Ao. Choose 6 = 307r2Clt -1/3 logt. 
With this choice, 

E ~(P) k (1 + 307C2clt-I/31ogt)(1- 15r2Clt-l/31ogt) > 1 
pE AVI~ 

if t is large enough. Similarly, Ep~Pn~ ~(P) > 1 and so Y]p~Paa IlPll > 2. 
Consequently, 

6 A re(T) < IZ~n~l < f i  + 3 0 ~  l~ 
- w(~)  

: ~-~A(1 + 51r2 l~ w(A) ~ 
w(~)  } 

6 (~2t~2/3~o(1 + ~)~/~(1 + 5~2clt-'/~ logo 
<- ~ k 2 A o /  

- (2~2zT1/3(1  + O(t -1/3 logt)). 

Note that  the implied constant depends on A0 only. 

For the lower bound, choose A so that both ~-~peenA ~(P), Y],eena fl(P) --< 1 
but almost equal to one. Then the primitive vectors in A can serve as edges of 
a convex lattice chain in T, so m(T) > II? Cl A I. For later reference we denote 
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this convex lattice chain by C(A). The computation is similar to the previous 
one. We set 

a/7r2t 
A = ~ - ~ o ( 1 - 5  ) and ~=min(~,157r2c2t-1/31ogt), 

where c2 will be specified soon. Thus 

is of order ~/t. Consequently 

log w(A) 
~(zx) <_ c2t -1/3 log t 

with some large c2 (depending only on A0) for all large enough t. This shows 
that J < 1/2 if t is large enough and so 

= 157r2c2 t-l~3 log t. 

We check that ~ (~(p) < 1; indeed, 

A A 6 A  og w(A) 
= Y "(P) -< T + 30al ] 

pEANP pcAMP 

_ 157r 2 log w(A) 2A3A~ (1 + ) 
7r2t w(~) 

= (1 - 6)(1 + 157r2c2t -1/3 logt) < 1, 

and similarly for Epc~nzx/3(P) -< 1. Finally, 

6 A 30Al~ re(T) _> ILx n ~l-> ~2 - ~ ( ~ )  

6 T1/3(1 -- O(t -1/3 log t)). l 
--- (2~)2/a 

Remark 6.1: The last proof contains the construction of an almost maximal 
lattice chain in T, namely C(A). The edges of this chain are the vectors in 
P M A. Its length is 

I P KI A I -- 6 T1/3(1 q- O(t -1/3 log t)).  
(2~)2/3 
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The chain C(A) = (xo, x l , . . . ,  xn) almost connects the two special vertices, P0 

and P2, of T: 

p E A A P  \ pG/ ' ,NP / \ p E A N P  -- 

Here, the coefficients of U and V are between 1 - O ( t  -1/3 logt) and 1. So setting 

xo - Po = c~oa and P2 - xn = t30b we have ao, j30 = O(t 2/3 log t). 

T. P r o o f  o f  T h e o r e m  4.2 

Now T is fixed and Qt is a maximal Zt-lattice chain within T. Let g be a line, 

with fixed direction d, tangent to Qt at a vertex p3. Let q E D(T)  be the point 

where the tangent to D(T)  goes in direction d. Assume g intersects PoP1 at 

ql and PiP2 at q2. Let T1 and T2 be the triangles with vertices PO,ql,P3 and 

P3,q2,P2, resp. (Of course g, p3,ql,q2,T1,T2 all depend on t.) See Figure 1. 

Clearly, 

m *(T, Zt) = m *(T1,Zt) + m *(T2,Zt). 

Choose convergent subsequences of ql,p3, q2. Assuming none of the Pi and qj 

coincides in the limit, we can apply the Zt version of Theorem 4.1. This gives, 

after straightforward simplifications, that  

where T1 and T2 denote the limiting triangles. In view of property (2.4) of the 

affine perimeter, this is possible if and only if g (in the limit) is tangent to the 

parabola D(T)  at the point q. Thus P3 tends to q. 

If one of the triangles, say T1, becomes degenerate, then one can use Andrew's 

estimate giving, again for the limiting triangles, 

- r  

But that  is not possible since 7'1, being degenerate, has area 0 and T2 < T. This 

finishes the proof of Theorem 4.2. | 

In the Zt setting the chain C(A) becomes the Zt-lattice chain C(A, Zt) which 

is, of course, almost maximal and almost connects P0 to P2 within T. We show 

next that  this chain, too, is very close to the parabola D(T):  
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CLAIM 7.1: l imdist(C(A, Zt), D(T)) = O. 

Proos For this proof we work in the Z 2 setting and divide by t in the end. 

Fix a vector d on the segment (a, b), that  is, d = (1 - s)a + sb with s E (0,1) 

fixed, and let A(s) = A (q pos(a, d). The tangent line to C(A) in direction d 

goes through the point q E C(A). Now 

q - p o  = ( q  - + ( x o  - p o )  = p + - p o ) .  

peA(s)nP 

Here x0 - P 0  is O(t2/alogt)a from Remark 6.1. The sum of the vectors in 

A(s) NP can be estimated the same way as for A N]? in Remark 6.1 and we get 

that 

E p = st(a + d)(1 + O(t - '/3 log t)). 
A(s)n~ 

The point st(a + d) is on the parabola D(T) and the tangent there has direction 

d, as one can readily check. Thus q - st(a + d) is at most O(t 2/3 log t). Dividing 

by t we get the claim. II 

Remark 7.1: The primitive points are distributed evenly in a small triangle, so 

instead of summing them, we could take the integral of the vector x in A. In 

this case the triangle need not be small. With the previous notation, 

(s) 

This is a curve, parametrized by s. It is very easy to see that  this curve is 

1 conv{0, a, a + b}. The exactly the special parabola inscribed in the triangle ~A 

tangent to this parabola at z(s) is parallel with d. 

Remark 7.2: The moral is that  the maximal Zt-lattice chain in A, and C(A, Zt) 

and D(T) are all very close to each other. Further, C(A, Zt) is almost explicit; 

the curve z(s) can be computed from A. This is the idea behind the proof of 

Theorem 3.2. 

8. P r o o f  o f  T h e o r e m  2.1 

The proof consists of two parts. We show that  the limsup of t-2/3 lvertQt[, 
over a sequence of Zt-lattice convex curves Qt c U~(F), can only be slightly 

larger than 3(27r)-2/3AP(F). Secondly, we construct a sequence, Pt, of convex 

Zt-lattice polygons lying in U~ (F) with ahnost as many as 3(27r)-2/at2/3AP(F) 
vertices. 
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Let ~/ be a small positive number, and choose ~ > 0 and unit vectors 
d l , . . . ,dk+l  for F and ~/ according to Proposition 2.1. Let Qt (t --~ cr be 

a sequence of convex Zt-lattice curves in U~(F). We show that this sequence 
contains a subsequence, to be denoted by Q~, such that 

3 
lim sup T--2/31 vert Q~ I < ~ (AP(F) + 3~/). 

This shows what we need. 
On each Qt, the directions di induce triangles Ti(t) with vertices zi(t). We 

choose now a convergent subsequence Qr such that limzi(T) = xi for each i. 

Let Q c U~(F) be the limit of the Q~. Clearly, Ti(T) tends to a triangle Ti for 

each i. Now 
k 

3 T AP(Q) <_ 2 y ~  ~ <_ AP(F) + ~/. 
1 

Next we estimate I vertQ~l. We can apply Theorem 4.1, Zt version, in each 
Ti(T) when Ti is nondegenerate: 

m*(T~(T),ZT) < ~ T 2 / 3 ( ~ +  O(T -U3 1ogT)), 

where the constant in the 'big Oh' term depends on Ti only. So for large enough 

T (and nondegenerate Ti) we have 

--  (27r )2 /3  - 

When Ti is degenerate, Andrews' estimate works giving 

again for large enough r. Here Ti = 0, since the triangle in question is 

degenerate. Thus for all i and large T, 

3 T 
--  (27r )2 /3  

So we have, again for large enough T, 

k k 

I vert QTI <- Y~ m*(Ti('r), Z~) _< ~ (2~v)2/--------- ~ 
1 1 

k 

- ( 2 7 r ) 2 / 3  1 
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Next comes the construction of Pt. Assume r > 0 is small. We will find 

a sequence of Zt-lattice polygons Pt in Ue(F) such that  Pt has at least 

3(27r)-2/3t2/3(AP(F) - 2 r  vertices, provided t is large enough. 

Choose points xi C F, tangent lines gi, so that  the triangles Ti all lie in 

Ue/2(F). We assume, rather  for convenience than necessity, that  the gi have 

irrational slopes. By the properties of the affine perimeter,  

k 

2 ~ ~ >_ AP(F). 
1 

For each i there is a Zt-lattice square, of side length 1/t, containing xi. Move ti 

to a parallel position, gi(t), that  contains a vertex, zi(t), of this square. Here, 

zi(t) E Zt is chosen so that  the whole square and F lie on the same side of gi(t). 

Replace each xi by zi (t) E Zt and each triangle Ti by the corresponding Ti (t). 

Note that  the zi(t) are in convex position. 

Recall that  the proof of the lower bound of Theorem 4.1 produced an ahnost 

maximal Z2-1attice chain C(A) in the triangle A. This gives in the Zt-setting 

an almost maximal Zt-lattice chain C(Ti( t ) ,Zt)  in T~(t). Fix i now and let 

zi(t), Y0, Y l , . . . ,  Yn, zi+l (t) be the vertices of C(Ti(t), Zt). Note that  yj - Yj-1 
is in Zt but yj may not be. 

We show now how this chain can be changed a little so that  it is an almost 

maximal Zt-lattice chain within T/(t) with all of its vertices in Zt. To this end 

note first that  v = (Y0 - zi(t)) + (zi+l(t) - Yn) is in Zt. Also, the slope of v is 

between the slopes of two consecutive edges of the chain C(Ti(t), Zt), say the 

j t h  and the (j + 1)st. Then the vectors 

Yl -- Y0, Y2 -- Yl , - - . ,  Yj -- Yj-1, V, Yj+I - -  Y j , . . . ,  Yn -- Yn--1 

form the edges, in this order, of a chain from zi(t) to zi+l(t) within Ti(t) with 

all vertices in Zt. Let Ci(t) denote this chain. It  has at least as many edges as 

the original chain had. 

Since Ti C U~/2(F), both  T/(t) and Ci(T) lie in U~(F) if t is large enough. 

Thus the union of the Ci(t) forms a convex Zt-lattice curve Pt in Ue(F). The 

construction is now finished. We have to bound the number of vertices of Pt 
from below. 

The number of edges on Ci(t) is at least as large as on C(Ti(t), Zt) which is, 

by Theorem 4.1, at least 

6 
- o(t l o g  t ) ) ,  
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provided Ti is nondegenerate. Note that  for such a T~, 

3 T - o(t-1/3 log0) > - 

if t is large enough. For degenerate Ti, we use the trivial estimate saying that  
Ci(t) has at least t2/3~-~ = 0 edges. So we have 

k 

] vert Pt[ :> ~ ( 2 7 r ) ~ t 2 / a ( ~ / - T i i - ~ ) /  k 

k g 

- (2~)2/a , 

> ~ t 2 / 3 ( A P ( F )  - 2~). ! 

Remark 8.1: Ci(t) is made up of primitive vectors in Ai(t) plus possibly one 

more vector, which we ignore as it is short. So the edges of Pt are essentially 

the primitive vectors in [.J A~(t). In the proof of Theorem 3.2, we will need to 

show that  the set (_J A~(t) has nice properties. 

9. P r o o f  o f  T h e o r e m s  1.1 a nd  1.2 

Let Qt be any maximizer in the definition of m(K, Zt). Choose a subsequence 

Q~ from it. We show that  it contains a subsequence, to be denoted by Q~, with 

T ~ C~ such that  

limr-2/31 vertQr[ = 3 (27r)2fi A(K) '  

and 

limdist(Qr, K0) = 0. 

This will prove both theorems. 

The proof is simple and is based on Theorem 2.1. Choose a convergent sub- 

sequence QT from Q~, and let S be the limit of Qr. Clearly, S c K and S E C. 

By Theorem 2.1, 

3 
limT-2/31 vert QT] = ~ AP(S). 

By the definition of A(K), AP(S) <_ A(K). Assume AP(S) < A(K). Then 

AP(S) § ~ < A(K) with some positive ~. A slightly shrunken homothetic copy 

of K0, K~ say, can be placed in K so that  U~(OK~) C K for some positive e, and 
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AP(S) + ~/2 < AP(K~). Now Theorem 2.1 implies the existence of a convex 

Zt-lattice polygon Pr  in U~(K~) C K with 

I ver tPr l  > (2~2/3"r2/3(AP(S) + ~/4). 

This contradicts the maximality of Q~. Then AP(S) = A(K),  and S = K0 

follows from the unicity of K0. | 

10. P r o o f  o f  T h e o r e m  3.2 

We assume first that  K is a convex polygon. Then K0 is tangent to edges 

E l , . . .  ,Ek of K at points P l , . . .  ,Pk. We assume that  the boundary of K is 

exactly [.J Ei (since we can delete the edges not touched by K0). The vertex vi 

is the common endpoint of edges Ei and Ei+l.  The outer angle at vi is r > 0. 

Set Ti = conv{p~,vi,p~+l}. Then AP(K) -- 2 ~-]k ~ is the solution of the 

maximization problem 

k 

max 2 ~ ~ x i ( e i +  1 - -  Xi+l)sin r 
1 

where ei -- ]]Eil] and xi = IlPi - viii; see Figure 2. 

Vi- -  1 e i  - -  X i  

Figure 2. 

The solution is unique (by Theorem 3.1). So taking derivatives we get the 

necessary conditions for the extremum. They can be expressed as 

X i  Ci - -  X i  
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Define now the triangle 

1 
Ai = ~ conv{0, vi - Pi,Pi+l - vi}. 

~/'1'i 

So Ti determines Ai. Conversely, Ai determines Ti uniquely (up to translation) 

in the following way. If Ai = conv{0, hi, bi}, then 

conv{0, Aiai, Ai(a i + bi)} 

is a translated copy of Ti. 

Each A i has 0 as a vertex. Note tha t  A i and Ai_l  share an edge. Namely, the 

edge going in direction v i - v i - 1  has length x i /~F~ in Ai and ( e i - x i ) / ~  in 

Ai_l .  They are equal, according to the necessary conditions for the extremum. 

CLAIM 10.1: (.Jl k A i is a convex set. 

Proo~ We have to see that  the angle, say r  at the common vertex of A iUA i_ I  

is less than  7r. To have simpler notation we assume that  i = 2 and A1 = 

conv{0, a l ,  bl}, A2 = conv{0, a2, b2}. Here, as we have seen, bl -- a2. 

If  r + r >_ ~r, then r < ~r follows immediately. So assume r + r < 7r. 

Then ~b < ~r if and only if A 1 § A 2 > A, where A = {0, abb2}.  

As the statement is invariant under linear transformations, we may assume 

tha t  al = (1,0) and 52 = (0,1), and write bx = a2 = ( r s ina ,  r cosa )  with 

E (0, ~r/2) and r > 0. With this notation our target  is to show that  

r ( s i n a  + cosa)  > 1. 

Now T1 and T2 are determined by A1 and A2 (see Figure 3 for notation). It  

is clear tha t  A = (r2/2)(sin a + cos a)  cos a and B = (r2/2)(sin a + cos a)  sin a.  

The special parabola arc within the triangle To = conv{pl,po,p3} connecting 

Pl and P3 must intersect the segment Iv1, v2], as otherwise replacing T1 and T2 

by To would increase the affine perimeter of K.  It  is not difficult to check that  

this happens if and only if A B  > ( r 2 / 4 ) s i n a  cos a.  As 

A B  -- (ra/4)(sin a + cos a)  2 sin a cos a ,  

we get 

rZ(s ina  + cosa)  2 > 1, 

which is equivalent to our target. | 
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T2 

P2 

~ ~ s i n  a 

P3 

r cos 

r2 

B 

r Pl ~ sin a r l  A Po 

Figure 3. 

We show now that  the convex set U1 k Ai has its barycenter at 0. Remark 7.1 

shows that  

, x d x  = -~ i (ai  + b~) = P~+I - Pi. 

k This implies immediately that indeed fuA~ x d x  = ~ 1  (Pi+~ - P i )  = O. 

We are almost finished with the proof. Define C to be the copy of UAi rotated 

around the origin, in clockwise direction, by 7r/2. Let u be a unit vector, and let 

z (u )  be the unique point with outer normal u on the boundary of K0. What 's  

the radius of curvature, R ( u ) ,  of K0 at z(u)? This is, by definition, the limit, 

as v --~ u, of the length of the arc on b K o  between z ( u )  and z ( v )  divided by the 

angle between u, v E S 1. We may assume both directions u, v lie in the triangle 

A~. Define A(u,v)  = pos{u,v} N A~; then 

/A(~,v)xdx ~ 3Pc(u)~ll~- vll ~, 

and so R ( u )  = 1 3 ~ p c ( u )  �9 This proves the first half of Theorem 3.2 in the case 

when K is a polygon. 
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Assume now K E R 2 is arbitrary, and let Pn be a sequence of convex polygons 

tending to F(K) = Ko with K0 C Pn- Then F(P,~) -~ Ko as well. Also, by the 

previous argument, F(Pn) = G(Cn) with a unique Cn E Co and RF(p~)(u) -- 
3 pcn(U)/3. By property (3.3), RF(p~)(u) is bounded. Then one can choose a 

convergent subsequence from Ca tending to C E Co. It is easy to see that  

not only the subsequence but the whole Cn tends to C implying, in turn, that  

Pea -~ Pc, and so limRF(p~)(u) = p3c(U)/3 for each u. It follows now that  

RKo (u) = p~(u)/3. 
The second half of the theorem is easy: G(C) = C* E C clearly. Choose 

a dense enough set of directions dl,...,dn+l and consider the induced tri- 

angles, Ti, on C*. The corresponding "small triangles" Ai are very close to 

C • M pos(d~, di+l}, where C • is a copy of C rotated by r / 2  (in anticlockwise 

direction) since Re* (u) -- p~(u)/3. Then the rotated copy of U As is very close 

to C. I 

11. P r o o f  o f  C o r o l l a r y  3.2 

Let L: ]~2 _~ R2 be a nondegenerate linear map. For K E C, F(LK) = LF(K). 
Assume now that  C E Co is the convex set whose existence is guaranteed by 

Theorem 3.2. We claim that  LC is the convex set corresponding to LK. It 

suffices to check this when K is a convex polygon. The proof of Theorem 3.2 

shows that  U Ai is a convex polygon with each Ai a well-defined triangle. As 

fA~(s) xdx describes the special parabola in Ti, fLA,(s) xdx describes the special 

parabola in LT/. As C is a rotated copy of UA i ,  LC is also a rotated copy of 

U LAi. This proves the claim. 

Given K E C and the corresponding C E Co, choose a linear transformation 

L: R 2 -* ]~2 that  carries C into isotropic position. This means (see [KLS]) 
1 that  b(C) = 0 and the matrix of inertia about 0, ~ fxec xxTdx, is the 

identity matrix. Kannan, Lov~sz and Simonovits [KLS] prove that,  with this 

positioning, the inscribed and circumscribed ellipses of C can be taken to be 

circles B(r), B(R), centered at the origin, with R/r _< 2. So, we may take r = 1 

and then R _< 2. 

In this position the radial function PLC(U) satisfies 

1 <_ PLC(U) < 2, 

and the radius of curvature of F(LK) satisfies the required inequalities. I 
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