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Abstract

In one of his early papers Claude Berge proved a Helly-type theorem, which replaces the usual “nonempty intersection” condition
with a “convex union” condition. Inspired by this we prove a fractional Helly-type result, where we assume that many (d +1)-tuples
of a family of convex sets have a star-shaped union, and the conclusion is that many of the sets have a common point. We also
investigate somewhat related art-gallery problems. In particular, we prove a (p, 3)-theorem for guarding planar art galleries with a
bounded number of holes, completing a result of Kalai and Matoušek, who obtained such a result for galleries without holes. On
the other hand, we show that if the number of holes is unbounded, then no (p, q)-theorem of this kind holds with p�2q − 1.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

In one of his early papers [6] Claude Berge proved a Helly-type result, in which one of the usual “nonempty
intersection” conditions is replaced with another, weaker condition (see [9] for a survey of Helly-type results). The
theorem is cited in Berge’s book [7] in the following form.

Theorem 1.1 (Berge [6]). Let C1, C2, . . . , Cm (m�2) be closed convex sets in Rd whose union is convex; if the
intersection of every m − 1 of these sets is nonempty, then their intersection is nonempty.

The interesting cases are with m�d + 1, for otherwise, the intersection is nonempty by the (usual) Helly theorem.
The following (much newer) theorem of Breen [8] easily implies Theorem 1.1:

Theorem 1.2 (Breen [8]). Assume C is a nonempty family of closed convex sets in Rd . If every d + 1 or fewer sets in
C have a starshaped union, then

⋂
C �= ∅.
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Here a set X ⊆ Rd is called starshaped if there is a point c ∈ X such that the segment [x, c] is contained in X for
every x ∈ X. To see that Breen’s theorem implies Berge’s result mentioned above, we suppose that the assumptions
of Berge’s theorem are satisfied for some C1, . . . , Cm. Then

⋃m
i=1Ci is starshaped since it is convex, the union of any

m − 1 or fewer sets among the Ci is starshaped because these sets have a common point, and
⋂

Ci �= ∅ by Breen’s
theorem.

A fractional Helly-type theorem. Our first main result in this paper establishes a “fractional” variant of Breen’s
theorem. In the original fractional Helly theorem, due to Katchalski and Liu [14], not all (d + 1)-tuples of C intersect,
only a positive fraction of them, and the conclusion is that a positive fraction of the sets in C have a point in common.
Precisely:

Theorem 1.3 (Fractional Helly theorem [14]). For every � ∈ (0, 1] and every d �2 there is a � > 0 such that the
following holds. Assume C is a finite family of n�d + 1 convex compact sets in Rd with the property that at least
�(

n
d+1 ) of the (d + 1)-tuples of C have nonempty intersection. Then C contains an intersecting subfamily of size at

least �n.

Katchalski and Liu give � = �/(d + 1); the best value of � is 1 − (1 − �)1/(d+1) as shown by Kalai [12]. It has been
understood recently that the fractional Helly theorem plays a basic role in many results of combinatorial convexity;
see, e.g., [3,1,2,16]. Here is our fractional Helly-type theorem:

Theorem 1.4 (Fractional Helly with starshaped unions). For every � ∈ (0, 1) and every d �2 there is a �=�(�, d) > 0
such that the following holds. Assume C is a family of n�d + 1 convex compact sets in Rd with the property that at
least �(

n
d+1 ) of the (d + 1)-tuples of C have a starshaped union. Then C contains an intersecting subfamily of size at

least �n.

It is perhaps instructive to mention that in this theorem (unlike in Breen’s theorem) no assumption is made about
unions of fewer than d + 1 sets.

A ( p, q)-theorem. Alon and Kleitman [3] gave a spectacular proof of a conjecture of Hadwiger and Debrunner:

Theorem 1.5 ((p, q)-theorem [3]). For every integers d, p, q, p�q �d + 1�2, there exists an integer T such that
every finite family F of convex sets in Rd satisfying the (p, q)-property (that is, among every p sets of F there are
some q sets with a common point) there is a set of at most T points intersecting all sets of F (we say that F has a
transversal of size at most T ).

The Alon–Kleitman method is based mainly on the fractional Helly theorem. As is discussed in [2], a fractional
Helly-type property of a set system implies a (p, q)-theorem in a quite general setting. By a standard application of
this approach, Theorem 1.4 yields:

Corollary 1.6 (A (p, q)-theorem for starshaped unions). For every integers d, p, q, p�q �d + 1�2, there exists an
integer T such that every finite family F of convex sets in Rd , such that among every p sets of F there are some q

with a starshaped union, has a transversal of size at most T .

For completeness we briefly review the proof in Section 3.

Art galleries. Next, we consider similar theorems in a related but slightly different setting of art galleries. We first
introduce some standard terminology. An (art) gallery is a compact set X ⊂ Rd . A point x ∈ X guards (or sees) a point
y ∈ X if the segment [x, y] is fully contained in X. A hole in X is a bounded connected component of the complement
Rd\X.

We are interested in (p, q) theorems for art galleries of the following kind: if X is an art gallery in which among
every p points, some q can be guarded by a single point, then all of X can be guarded by at most C =C(p, q, d) points.
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There is a well-known positive result with p = q = d + 1 and C = C(d + 1, d + 1, d) = 1, i.e., a Helly-type
result:

Theorem 1.7 (Krasnosel’skiı̌ [15]). Let X ⊂ Rd be a compact set, and suppose that for every d + 1 or fewer points
of X there is a point in X that guards all of them. Then X can be guarded by a single point; that is, it is starshaped.

Another positive result is a (p, 3)-theorem of Kalai and Matoušek [13], which holds for all simply connected planar
galleries (simply connected means with no holes), with T = O(p3 log p). Here we extend it to planar galleries with a
bounded number of holes:

Theorem 1.8 (A (p, 3)-theorem for planar galleries with h holes). Assume that p�3 is an integer and X is a planar
art gallery with h holes having the property that among any p points of X there are some 3 that can be seen from a
single point. Then X can be guarded by at most C(h, p) points, where C(h, p) is a suitable number depending only
on h and p.

As usual, this theorem follows from the corresponding fractional Helly-type result (see Section 3 for a short discussion
of the implication):

Theorem 1.9 (Fractional Helly for planar galleries with h holes). For every � ∈ (0, 1) and every integer h�0 there
is a � > 0 such that the following holds. Assume X is a planar art gallery with h holes and A ⊂ X is an n-point set
such that at least �(

n
3 ) of the triples of points of A have common guards. Then some point can guard at least �n points

of A. Quantitatively, � can be bounded from below by a polynomial in � and h−1.

In Section 4, we prove Theorem 1.9 by induction on h, using the h= 0 case from [13] as a basis. The proof for h= 0
in [13] combines a theorem of Eckhoff on f -vectors of families of sets for which every intersection is contractible
or empty, the fractional Helly theorem of Katchalski and Liu, and a topological Helly-type theorem of Molnár. Our
induction step goes by an elementary geometric argument.

On the negative side, Valtr [18] constructed, for every k�1, a simply connected art gallery X in R3 of Lebesgue
measure 1, in which every point sees a set of volume at least 5

9 + � for a certain small positive constant �, and such
that X cannot be guarded by k guards. Clearly, in such a gallery, among every � 9

5 q� points, some q can be guarded
by a single point, and, therefore, no (p, q)-theorem holds in dimension d �3 with p� 9

5 q, even for simply connected
galleries.

In Section 5, we show that (p, q)-theorems do not hold for planar galleries with an unlimited number of holes for
p�2q − 1.

In Section 6, we prove a simple positive result, a (p, q) theorem for an unlimited number of holes in every dimension,
provided that q is larger than approximately (d/(d + 1))p:

Theorem 1.10 (A (p, q)-theorem for galleries in Rd ). Assume that d, p and q are integers with p > q �d�p/

(d + 1)� + 1. Assume X is an art gallery in Rd (with an arbitrary number of holes) containing at least p points
and having the property that among any p points of X there are some q that can be seen from a single point. Then X

can be guarded by at most p − q + 2 points.

It would be interesting to close the gaps between the positive results ((p, q)-theorems) and negative results (coun-
terexamples). For planar art galleries with an unlimited number of holes, we have (p, q) theorems with (p, q) =
(3, 3), (4, 4), (6, 5), (9, 7), (12, 9), . . . (and all cases obtainable by decreasing p or increasing q while retaining the in-
equality p�q) by Theorems 1.7 and 1.10. On the other hand, we know that no (p, q)-theorems hold for (p, q)= (5, 3),
(7, 4), (9, 5), . . . (and all cases obtainable by increasing p). We do not know, however, what happens for (p, q)=(4, 3),
(5, 4), (6, 4), etc. That is, for example, suppose that in a planar art gallery X, possibly with holes, some 3 out of every
4 points can be guarded by a single point. Does such an X admit a transversal of size bounded by a constant, inde-
pendent of the number of holes? There are also unsolved cases in higher dimensions, most notably the gap between
Theorem 1.10 and Valtr’s example in R3.
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2. Proof of Theorem 1.4

Here we prove the fractional Helly theorem with starshaped unions. Consider the hypergraph H whose vertices are
the sets C ∈ C and whose edges are the (d + 1)-tuples {C1, . . . , Cd+1} of sets from C with

⋃d+1
i=1 Ci starshaped. This

hypergraph has edge-density �, and so by a theorem of Erdős and Simonovits [10], for every integer t �1 there is a
constant c = c(t, �, d) > 0 (independent of n) such that H contains at least

�cnt(d+1)	
copies of the complete (d + 1)-partite (d + 1)-uniform hypergraph Kd+1(t) which has t vertices in each color class.
We assume t is sufficiently large (soon it will be fixed at t = d(d + 1)).

Lemma 2.1. Each such hypergraph Kd+1(t) contains at least t/d vertices such that the corresponding convex sets
have a point in common.

Proof. Let V1, V2, . . . , Vd+1 be the color classes of Kd+1(t). If for each transversal C1 ∈ V1, . . . , Cd+1 ∈ Vd+1 the
intersection

⋂d+1
i=1 Ci is nonempty, then by the colored Helly theorem of Lovász (see [5] or [16]), the sets in one of the

classes have a point in common, and we are finished with the proof.
We now assume that some transversal C1, . . . , Cd+1 has an empty intersection, and let k�d + 1 be the size of a

smallest nonintersecting subset of {C1, . . . , Cd+1}. (Of course, k�2.) To simplify notation we assume that this is the
subset {C1, . . . , Ck}. Further, let v ∈ Rd be the center of the Euclidean ball B of minimum radius satisfying, for each
i = 1, 2, . . . , k,

B ∩ Ci �= ∅.

By a suitable translation we can make sure that v = 0, which makes notation simpler. We write r for the radius of B.
Let bi be the point of Ci closest to 0. The halfspace Hi = {x : 〈bi, x − bi〉�0} (with boundary passing through bi and
perpendicular to [0, bi]) clearly contains Ci . The following claim describes some of the properties of the bi .

Claim 2.2.

(i) The bi are all distinct and ‖bi‖ = r .
(ii) The point 0 lies in the relative interior of conv{b1, . . . , bk}.

Proof. If 0 were not in conv{b1, . . . , bk}, then its projection onto conv{b1, . . . , bk} would be closer to each bi which is
impossible. Thus 0 lies in the relative interior of the convex hull of some subset of {b1, . . . , bk}. We may suppose that 0
lies in the relative interior of conv{b1, . . . , bj } with j �k. But this yields

⋂j
1 Hi =∅, implying, in turn, that

⋂j
1 Ci =∅.

This contradicts the minimality of k unless k = j . This proves part (ii).
As for part (i), if b1 = b2, say, then H1 = H2, and so

⋂k
1 Hi = ⋂k

2 Hi = ∅. Thus C2, . . . , Ck have no point in
common, again contradicting the minimality of k. Assume, finally, that ‖b1‖ < r (say). Then one can easily check that
b1, b2, . . . , bk are all contained in a ball of radius strictly than r . Namely, it suffices to move the center of the ball a
little, from 0 towards the point of conv{b2, b3, . . . , bk} that lies nearest to 0. �

Now we return to the proof of Lemma 2.1. We distinguish two cases: when k = d + 1 and when k�d.
First, we suppose k = d + 1. Then C =⋃k

i=1 Ci is starshaped; that is, there is a point c ∈ C with [c, x] ⊂ C for each
x ∈ C. In particular, each [c, bi] ⊂ C. Now Ci is contained in the halfspace Hi and Claim 2.2(ii) implies that these
halfspaces do not have a point in common. In particular, c cannot be contained in all of them: c /∈ H1, say. Then [c, b1)

is disjoint from C1, and a small part of this segment near b1 lies in B. Since we have B ∩ Ci = {bi}, this part cannot
be contained in any of C2, . . . , Ck either; a contradiction.

Assume now that k�d . For each choice of Dk+1 ∈ Vk+1, . . . , Dd+1 ∈ Vd+1, the union of the transversal
C1, . . . , Ck, Dk+1, . . . , Dd+1 is starshaped, and thus there is point c such that the segment [c, bi] is contained in
C1 ∪ · · · ∪ Ck ∪ Dk+1 ∪ · · · ∪ Dd+1. Again, the halfspaces Hi for i = 1, . . . , k have no point in common. Thus c is
not contained in one of the halfspaces, the j th, say. Then a small piece of the segment [c, bj ] near bj is contained
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in B, which is disjoint from
⋃k

i=1Ci . Thus one of the points b1, . . . , bk is contained in the union of
⋃d+1

i=k+1 Di for
every transversal C1, . . . , Ck, Dk+1, . . . , Dd+1. Consequently, some bj is contained in at least t/k� t/d of the sets Dj .
The lemma is proved. �

The proof of Theorem 1.4 is finished by averaging. We first choose t so large that t/d �d + 1; namely, we let
t = d(d + 1). Each copy of Kd+1(t) in the hypergraph H contains an intersecting (d + 1)-tuple. Thus at least
c(t, �, d)nt(d+1) of the sets of size t (d + 1) contain an intersecting (d + 1)-tuple, and each such (d + 1)-tuple appears
in at most c′(t, d)nt(d+1)−(d+1) of them. So the number of intersecting (d + 1)-tuples in C is a positive fraction of all
(d + 1)-tuples of C, and the fractional Helly theorem 1.3 implies the result.

Remark. A method similar to the proof of Lemma 2.1 also yields a quick proof of Theorem 1.2. Indeed, assume⋂
C = ∅, and let {C1, . . . , Ck} be the smallest size subfamily of C with no common point. By Helly’s theorem

k�d + 1. Then the Euclidean ball B of minimum radius intersecting each Ci has properties as in Claim 2.2(i) and (ii),
and the same argument shows that

⋃k
i=1Ci is not starshaped.

3. (p, q)-theorems from fractional Helly theorems: the Alon–Kleitman method

Here we review the derivation of (p, q)-theorems from fractional Helly-type theorems, focusing on the particular
two cases considered in this paper. (The argument can be found in a number of sources by now, but it seems simpler
to repeat it briefly than to refer to the sources and point out the necessary modifications.)

We recall the fractional matching number and the fractional transversal number of a set system. First let F be a
set system on a finite ground set X. The fractional transversal number �∗(F) is the infimum of

∑
x∈X f (x) over

all functions f : X → [0, 1] such that
∑

x∈F f (x)�1 for all F ∈ F. The fractional matching number �∗(F) is
the supremum of

∑
F∈F �(F ) over all functions �:F → [0, 1] with

∑
F∈F:x∈F �(F )�1 for all x ∈ X. We have

�∗(F) = �∗(F) for all F, by the duality of linear programming or a similar argument (see [16] for a discussion in this
setting, or [1] for a proof of an equivalent but differently phrased statement).

Now we assume that X is a compact metric space and F is a (possibly infinite) family of compact subsets of X.
We can define �∗(F) in the same way as above, with the additional condition that the considered functions � must be
finitely supported (i.e., �(F ) �= 0 only for finitely many F ∈ F). The fractional transversal number �∗(F) can be
defined as the infimum of �(X) over all Borel measures � on X with �(F )�1 for all F ∈ F. Then we again have
�∗(F) = �∗(F); see [13].

Proof of Corollary 1.6 (sketch). We may assume q = d + 1. Let F be a finite system of convex sets in Rd such that
among every p sets, some d + 1 have a starshaped union. It suffices to verify that �∗(F) is bounded by a function of
d and p, since �∗(F) = �∗(F) and, as noted by Alon and Kleitman, the transversal number of F is bounded by a
function of �∗(F) for any finite system of convex sets in Rd .

Let �:F → [0, 1] be an optimal fractional packing (
∑

F∈F: x∈F �(F )�1 for all x). Since � is an optimal solution to
a linear program with integer coefficients, we may assume that the values of � are rational. We write �(F )=m(F)/D,
where D and the m(F) are integers. We form a new collection (multiset) Fm of sets by putting m(F) copies of each
F ∈ F into Fm. Thus N = |Fm| = ∑

F∈F m(F) and �∗(F) = N/D.
Among every p′ = d(p − 1) + 1 sets of Fm, some d + 1 have a starshaped union (if there are p distinct sets among

our p′ sets, then the assumption on F applies, and otherwise, some set is repeated at least d +1 times). So each p′-tuple
of sets in Fm contributes a (d + 1)-tuple with a starshaped union, and each (d + 1)-tuple can be extended to a p′-tuple
in (

N−d−1
p′−d−1 ) ways. So there are at least (

N
p′ )/(

N−d−1
p′−d−1 ) (d + 1)-tuples with a starshaped union. This number is no less

than �(
N

d+1 ) for some � = �(d, p) > 0, and Theorem 1.4 yields a point x contained in at least �N sets of Fm for some
� = �(p, d) > 0. Then

1�
∑

F∈F: x∈F

�(F ) =
∑

F∈F: x∈F

m(F)

D
� 1

D
· �N = ��∗(F),

and so �∗(F)�1/�. �



2308 I. Bárány, J. Matoušek / Discrete Mathematics 306 (2006) 2303–2313

Proof of Theorem 1.8 (sketch). Suppose that X is a planar art gallery with h holes such that among every p points,
some 3 admit a single guard. For every x ∈ X, let V (x) be the set of points of X visible from x, and let V = {V (x):
x ∈ X}. A transversal of V is exactly a set that guards all of X.

As shown in [13,17], the VC-dimension of V is bounded by a function of the number of holes h. The transversal
number �(F) of any set system F of finite VC-dimension is bounded by a function of the VC-dimension and �∗(F)

(see, e.g., [16]), so it suffices to bound �∗(V). A double-counting argument as in the previous proof, this time using
Theorem 1.9 instead of Theorem 1.4, shows that �∗(V) is bounded by a function of p, and we have �∗(V) = �∗(V)

as mentioned above. �

4. Proof of Theorem 1.9

Here we prove the fractional Helly theorem for planar art galleries with h holes. As was remarked in the introduction,
the case h = 0 of the theorem is proved in [13], and it is also the starting point of our induction argument.

Write Xc for the complement of X ⊂ R2. If X is an art gallery with h holes, then Xc consists of h + 1 connected
components, h of them bounded and one unbounded. Each component is simply connected.

Definition 4.1. A segment [x, y] is called a bridge in X if [x, y] ⊂ X and x and y belong to the boundary of distinct
connected components of Xc.

Any art gallery with h > 0 has bridges. Let A ⊂ X be the given set of n points. A tripod is a fourtuple (x; a, b, c)

of points such that x ∈ X, a, b, c ∈ A, and the segments [x, a], [x, b], [x, c] are all contained in X. A tripod simply
represents a triple of A that is guarded by x. For the proof of Theorem 1.9, we assume that there are m = �(

n
3 )

tripods.

Proof of Theorem 1.9. We show that there is a bridge that is missed by at least �m tripods where � = �2/273. With
this bridge one can connect two distinct components of the complement of X (to arrive at an art gallery with one fewer
holes) while keeping a positive fraction of the tripods.

We first observe that if x, y ∈ R2 with x and y belonging to distinct components of the complement of X, then [x, y]
contains a bridge [x′, y′] with x and x′ from the same component.

Now let C be a hole of X, and let S be a horizontal line and T a vertical line that intersect in C. By the above
observation, S contains two bridges S1, S2 connecting C to other components of Xc, with S1 to the left and S2 to the
right of C; see Fig. 1. Similarly, T contains two bridges T1 and T2, T1 above C and T2 below C. If any of these four
bridges is disjoint from at least �m tripods, then we are finished. So each bridge is avoided by no more than �m of
the tripods, and then at least (1 − 4�)m of the tripods meet each of the bridges. The lines S and T split the plane
into four sectors. So at least one sector contains the center of at least ( 1

4 − �)m of tripods that meet all of S1, S2,

T1, T2.
Let P be the set of these tripods, and assume that their centers are in the top right sector. A tripod in P is of the form

(x; a, b, c), where a and b come in clockwise order around x, and the hole C comes between a and b in this order.
Thus [a, x] intersects S2 and T2, and [b, x] intersects S1 and T1.

Let E ⊆ A × A be the set of all pairs (a, b) such that P contains at least �(n − 2) tripods of the form (x; a, b, c),
where

� =
(

1

4
− �

)
�

6
.

We note that

|E|��
(n

2

)
.

Indeed, each pair (a, b) takes part in at most n−2 tripods from P, and the pairs not in E take part in fewer than �(n−2)

tripods. Thus(
1

4
− �

)
�

(n

3

)
� |P| < (n − 2)|E| + �(n − 2)

(n

2

)

and |E|��(
n
2 ) follows.
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Fig. 1. A tripod of P.

Let z ∈ C be the intersection point of the lines S and T . For every tripod (x; a, b, c) ∈ P, [a, x] is below C and [b, x]
is above C, and a, z, b come in clockwise order around x. Consequently, a and b come in clockwise order around z as
well. We consider the segment L connecting the endpoints (not lying in C) of S1 and T2. Let a∗ be the intersection of
L with the line spanned by z and a ∈ A. Each pair (a, b) ∈ E is represented by the segment, or interval, [a∗, b∗] ⊂ L.
There are |E|��(

n
2 ) such intervals with at most n endpoints.

We use the following simple fact [4]: given �(
n
2 ) distinct open intervals on a line, having n endpoints altogether,

there is a point common to at least

�2

4

(n

2

)

of the intervals.
So in our case there is a point p common to the interior of (�2/4)(

n
2 ) intervals of the form (a∗, b∗) with (a, b) ∈ E.

Let P′ ⊆ P be the set of all tripods with (a, b) ∈ E and such that the interval (a∗, b∗) is intersected by the ray starting
at z and containing p. This ray contains a bridge M connecting C to another component of Xc and disjoint from all
the tripods in P′. This finishes the proof since

|P′|��(n − 2) · �2

4

(n

2

)
= 3

4

((
1

4
− �

)
�

6

)3 (n

3

)
���

(n

3

)
. �

This proof shows that a hole can be eliminated by reducing the number of tripods from �(
n
3 ) to (�/27)3(

n
3 ). It gives

the estimate � = 	(�3h
/273h+1

). Next, we present a better bound, polynomial in � and h−1. However, we believe that
the proper value of � is much smaller.

An improved quantitative bound. We first choose one point ci , called the center of Ci , from the interior of the hole
Ci , i = 1, . . . , h. The three lines of the three segments of a tripod split the plane into six cells, and the centers ci into
six groups, one group in each cell. Two tripods are considered equivalent if their two triples of lines split the centers
into the same six groups. There are O(h6) equivalence classes of tripods, and so we can select �(m/h6) tripods that
partition the centers into at most six classes.

Now we keep these m̄ = �(m/h6) tripods. Thus m̄ = �̄(
n
3 ) where �̄ = �(�/h6) The ci lie in six cells D1, . . . , D6.

We will find a bridge between two holes (or rather two connected components of Xc) that avoids the remaining m̄

tripods, until each cell contains at most one ci .
Assume D1 contains c1 and c2. The segment [c1, c2] contains a bridge of the form [x, y], where x is on the boundary

of C1 and y is on the boundary of another connected component of Xc. If this component is another hole C3, then C1
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and C3 are connected with the bridge [x, y] that avoids the remaining m̄ tripods. Thus the two holes C1 and C3 and
the bridge [x, y] form a new hole with new center c3, and the hole C1, together with its center c1 has disappeared.
(We note that c3 may be in a cell different from D1.) If this component is the unbounded one, then [x, y] is a bridge
between C1 and the outer boundary of X that avoids the remaining m̄ tripods. Again, the hole C1 and its center c1 have
disappeared.

We can continue this bridging process as long as there are two ci in the same cell. We end up with a new art gallery
having at most six holes but still m̄ = �̄(

n
3 ) tripods. The previous proof finds a bridge while keeping (�̄/27)3(

n
3 ) of the

tripods. After six repetitions, we find a new art gallery without holes having at least

�
(
�̄36

)
= �

(
�729

h4374

)

tripods. This improves on the earlier bound for all h > 6.

5. A counterexample to (p, q)-theorems for an unbounded number of holes

We begin by observing that visibility in planar art galleries with an unlimited number of holes can represent essentially
any finite set system. That is, given a set system F on [n], we can place n points a1, a2, . . . , an in a gallery and arrange
holes so that the set AF = {ai : i ∈ F } has a common guard iff F ∈ F. Of course, there are some trivial restrictions
that have to be observed: First, if AF has a common guard then AG has a common guard for all G ⊆ F . Second, it
is impossible to prevent one-point subsets from having a common guard, and it is problematic to do so for two-point
subsets. So the next lemma, which partially formalizes this observation, speaks about a system F of sets of size at
least 3 and incomparable by inclusion.

Lemma 5.1. Let n�2 be an integer, let 
 > 0 be a real number, and let F ⊆ 2[n] be a system of subsets of [n], each
of size at least 3, such that no two sets in F are comparable by inclusion. Then there exist points a1, . . . , an ∈ R2 and
sets L1, L2, . . . , Ln of lines with the following properties:

• Each ai lies in the 
-neighborhood of the point (i, 0).
• The lines of Li all pass through ai .
• We have Li = {�i,F : F ∈ F, i ∈ F }.
• For every F ∈ F, there is a point pF lying in the 
-neighborhood of the point (1, −1) such that the lines of

L = L1 ∪ · · · ∪ Ln passing through pF are exactly �i,F with i ∈ F .
• No point different from the ai and the pF is common to more than two lines of L.

Assuming this lemma, a fractional Helly theorem for art galleries with arbitrarily many holes in the plane (with the
“fractional Helly number” k�3) can be refuted as follows: let F= (

[n]
k

) be the system of all k-tuples on [n], construct
the ai and the Li as above, and let X be the union of the lines of

⋃n
i=1 Li intersected with a sufficiently large ball. Then

every k-tuple of the ai has a common guard but no k + 1 of them have a common guard, which is an ultimate form of
invalidity of a fractional Helly theorem.

Proof of Lemma 5.1. The construction goes by induction and it is quite simple. Let us call an intersection of the lines
in L proper if it is not one of the ai .

We suppose that a1, a2, . . . , ak−1 and L1, . . . , Lk−1 have already been constructed, such that for every F ∈ F with
|[k − 1] ∩ F |�2, the lines �i,F with i ∈ [k − 1] ∩ F pass through a common point pF lying very near to (1, −1), and
there are no other proper intersections of the lines of multiplicity greater than two. We choose a point ak sufficiently
near to (k, 0) that lies on no line determined by two proper intersections of the lines in L1 ∪ · · · ∪Lk−1. Then for every
F ∈ F with k ∈ F , we choose a line �k,F ∈ Lk . If |F ∩ [k − 1]|�2, then pF has already been defined, and we let �k,F

connect ak and pF . Otherwise, we choose �k,F through ak so that it passes near (1, −1) and avoids all intersections of
the lines in L1 ∪ · · ·∪Lk−1. If F ∩[k − 1] consists of a single index j (and k ∈ F ), then the intersection �k,F with �j,F

becomes pF . It is easy to check that the induction hypothesis holds for k as well, and thus the result of the construction
is as claimed in the lemma. �
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Fig. 2. The construction of X; a global view.

Fig. 3. Detail of an opening in T .

In order to refute a (p, q) theorem, we have to work harder, since we must make sure that for every p-tuple of points
there are some q with a common guard, not only for p-tuples in a suitably chosen set A.

Proposition 5.2. For every q �3 and every m, there exists a planar art gallery X (a closed polygonal set with holes)
such that for every set A of p = 2q − 1 points of X, there is a point of X that can see at least q points of A, and no m

points of X together can see all of X (i.e., X cannot be guarded by m guards).

Proof. We choose n = qm + 1 and let F consist of all q-element subsets of [n]. Then we apply the construction from
Lemma 5.1 with a small 
 > 0, obtaining points a1, . . . , an and sets L1, . . . , Ln of lines as in the lemma.

The construction of the gallery X is indicated in Fig. 2. The gallery is obtained from a large rectangle by deleting
suitable holes. First we remove from X a very thin horizontal rectangle T as indicated in the picture. Then we choose
a very small positive � > 0, and for every line �i,F in each Li we make an opening of width � near the intersection of
�i,F with T , as indicated in Fig. 3 (so the gallery now has many holes, namely, the remaining pieces of T ).

For reasons to be soon seen, we need to introduce another auxiliary parameter, a large number K . The construction
so far has the following property. For every n and K there exist positive numbers 
, �, � satisfying the condition below:

Let y be a point in the (K
)-neighborhood E′ of the point (1, −1), and let G be the set of all indices i ∈ [n] such
that y can see some point in the �-neighborhood of ai . Then |G|�q.

In the last step of the construction, we add a very small hole Hi near ai , for each i ∈ [n], as shown in Fig. 4. In reality,
Hi is very small compared to � (which is hard to illustrate in a picture). The V-shaped opening on the bottom of Hi is
such that, in the absence of any other hole, ai can see just the 
-neighborhood E of (1, −1) but no points left or right of
it. Then the “visibility cones” of any two points among the ai intersect only in E′, the (K
)-neighborhood of (1, −1),
for K sufficiently large in terms of n. Finally, the top of Hi is sufficiently flat so that all of it is visible from all points
of the top side of the gallery. This finishes the description of the construction, and it remains to check that it has the
desired properties.

First, the points a1, . . . , an require at least n/q > m guards. Indeed, anywhere except for E′, no point can see more
than one ai , and within E′ no point can see more than q of the ai by the condition mentioned above.

Next, we consider arbitrary p = 2q − 1 points in X. We divide them into two groups:

1. those contained in the lower halfplane (below the top side of T ) plus those contained in the regions B1, B2, . . . , Bn

indicated in Fig. 4: Bi is the part of the �-neighborhood of ai below the dotted line (extending the bottom side of
Hi) plus the V-shaped opening on the bottom of Hi ; and

2. those contained in the upper halfplane (above the top side of T or on it) but not in any of the Bi .
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Fig. 4. Detail of the hole Hi near ai .

One of these groups contains at least q points.
Any q points of group 1 can be seen from a single point. Indeed, all of the lower halfplane can be seen from any

point of E. There are at most q distinct i such that one of the considered q points is in Bi , and by the construction,
there is a point in E that can see all of these Bi .

All of group 2 (upper halfplane minus the Bi) can also be seen from a single point. For any particular point on the top
side of the gallery, the holes Hi throw “shadows,” which can be made arbitrarily narrow by making the Hi sufficiently
small compared to �. So by moving the observation point along the top side of X, we can find a position where the
shadows avoid given q points of group 2. �

6. Proof of Theorem 1.10

This proof is similar to one by Hadwiger and Debrunner in [11] for the original (p, q)-problem under the condition
p(d − 1) < (q − 1)d.

Assume p = t (d + 1) − r where t, r are positive integers with 0�r �d. Then q � td + 1.
Call a subset T from X unguarded if there is no point in X guarding all points of T . Let s be the maximal number

of pairwise disjoint unguarded (d + 1)-tuples from X and let T1, . . . , Ts be such a system of (d + 1)-tuples. We claim
that s < t . If not, then let T be the union of the first t (d + 1)-tuples, |T | = t (d + 1)�p. Every subset S ⊂ T with
q elements contains one of the (d + 1)-tuples T1, . . . , Tt , and no such S can be guarded by a single point form X,
contradicting the (p, q)-property.

So s� t − 1 and no (d + 1)-tuple which is disjoint from T := ⋃s
1Ti is unguarded. That is, all (d + 1)-tuples in

X′ = X\T have a guard in X. At this point Krasnosel’skiı̌’s theorem (Theorem 1.7) almost applies: only X′ is not
compact and the guards may lie in X but not in X′. But the proof of Krasnosel’skiı̌’s theorem applies with minute
and straightforward modifications. We outline this modified proof later, for the reader’s convenience and also because
Krasnosel’skiı̌’s neat proof deserves it.

So X′ is guarded by a single point. We need guards for the points in T . Since |T |� t (d + 1) < p and since |X|�p

we choose a subset V from X′ with |T | + |V | = p. By the (p, q) condition, T ∪ V contains a subset Q of size q that
can be guarded from a single point. The points in T \Q can guard themselves; this is altogether

1 + 1 + |T \Q|�1 + 1 + |(T ∪ V )\Q| = 2 + p − q

guards for the whole art gallery. This proves Theorem 1.10. �
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Proof of Krasnosel’skiı̌’s theorem (sketch and modifications). First we consider the theorem itself, with any d + 1
points in a compact X ⊂ Rd visible from a single point. For x ∈ X, let V (x) be the set of points visible from x. Then
by Helly’s theorem the sets conv(V (x)) (x ∈ X) have a point in common, say y. We show that y ∈ V (x) for every
x ∈ X. If not, then for some x ∈ X, the segment [y, x] contains a subsegment [u, z) disjoint from X but with z ∈ X.
Let � be the distance of u from X, and let v be on [u, z] at distance �/2 from z. Now the distance of [u, v] from X

is attained on a pair (w, x0) with w ∈ [u, v] and x0 ∈ X. It is easily checked that w �= u. Now V (x0) is contained
in the halfspace H whose boundary is orthogonal to [w, x0] and contains x0. But H must contain y, and so the angle
ywx0 < �/2. Thus some point of [u, v] is closer to x0 than w, a contradiction proving Krasnosel’skiı̌’s theorem.

In our proof of Theorem 1.10 above, the situation is similar but x0 is only guaranteed to lie in X. But if we can find
a point x′ ∈ X′ close to x0, then the same contradiction is reached. So we are done unless x0 ∈ X\X′ is isolated in X,
and this case is easy to discuss. �
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