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1. Introduction

Let C"={x€R": |x;|=1 i=1,...,n} be the n-dimensional cube and A be a
d-dimensional subspace of R” having no point in common with the (n—d—1)-
dimensional faces of C*. We want to find a lower bound on the number of vertices
of the polytope ANC™. More generally, given an n-dimensional centrally symmetric
polytope K (whose center is at the origin) and a d-dimensional subspace 4CR”,
find lower bound on the number of vertices of 4A(NK. We are going to prove two
theorems concerning this question. These theorems have several interesting corol-
laries, for instance the following “lower bound”-type one. Every d-dimensional,
centrally symmetric simplicial polytope has at least 2¢ facets. (In fact this theorem
is equivalent to our main result when K=C")

This question was motivated by the following problem of Erdds [2]. Given
ay, ---» 4,€R? vectors of at most unit length, at least how many of the 2" vectors

Z? &;a; (& =+1 or —1) lie in the ball Vd B¢, where B? is the euclidean unit ball of
fes] d

R?. Erd8s conjectured that this number is at least ¢(d)2"n 2 for some positive
constant c¢(d) depending only on d. This conjecture has been proved very recently
by J. Beck [1]. In this paper we do not contribute to this problem because our results

would imply only that the number in question is at least 2"~¢ / [ Z:)

In the proofs we shall need Borsuk’s theorem on antipodal maps. A continuous
map ¢: S"—R™ is said to be antipodal if ¢(—x)=—o¢(x) for every x€8"

BORSUK’S THEOREM. If m<n, then there is no antipodal map ¢: S*->S™
This theorem is equivalent to the following,.

If o: S"—~R" is an antipodal map, then there exists an x€S™ with ¢(x)=0.
We shall prove the following extension of Borsuk’s theorem.

If @: S"—~S8™ is antipodal, then the n-dimensional measure of ©(S") is not
less than the (n-dimensional) measure of S".

2. Notation and results

Let K be a convex polytope in R”. The support of x¢K is defined as the mini-
mal face of K containing x. A face is understood to be closed. If x lies in 0K, the
boundary of K, then 7(x)=1#(x, K) denotes the set of cuter normals of unit length
to K at x. It is clear that #(x)cS"~* is nonempty. The set #(x) consists of one point
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if the boundary of K is smooth at x. The d-dimensional outer angle of K

at x (d=1,2, ..., n) is defined as
4, K = 2221(00).

Ag-1(S4Y)7

where 4., is the (d—1)-dimensional Lebesgue measure in R" and S~ is supposed
to be isometrically imbedded into R”. Obviously,

0, if the support of x is more than (n—d)-dimensional,
o, if the support of x is less than (n—d)-dimensional.

oy(x, K) = {

Let o/ denote the set of d-dimensional subspaces of R". We shall consider
sections of type AMNK where KCR" is a centrally symmetrlc n-dimensional poly-
tope (with center at the origin) and A€«/D. A section ANK is called regular
if 4 has no point in common with the (#—d— 1)-dimensional faces of K.

THEOREM 1. Let K be a centrally symmetric, n-dimensional polytope and A€ol
Then

) oy(x, K) =1

>
x€vert(ANK)
where vert(ANK) is the set of vertices of ANK.
CorOLLARY 1. If ANK is a regular section, then

1

vert (ANK)| = PRIk

where o,(K)=max {a,(x, K): the support of x is (n—d)-dimensional}.

COROLLARY 2. Any regular, d-dimensional section of C" has at least 2 vertices.

COROLLARY 3. Any d-dimensional, centrally symmetric, simplicial polytope has
at least 2¢ facets.

CororLAry 4. [cf. ErdGs, Beck]. If ay, ..., a,€B%, then at least 2"~¢ / [Z,) vec-

tors out of the 2" vectors Zs a; (s;=+1 or —1) lie in the ball Vd B

Let £~ "’*-3(”“‘”(1{) be the set of all (n—d) -dimensional faces of K. To
present our next theorem we define a map ¢: S 9-skel,_,K to be special if

(i) ¢ is antipodal
(i) for each LeZ®-D either Lc@(S"Y) or int LNg(S*"~%)=g.

Here int L denotes the relative interior of the face L.

We mention that some projections n: R"~A (where A€s/®-4+Y) induce
a special map ¢,: S"~?—skel,_,K in a natural way. Suppose that n is a projec-
tion such that the image of every L& #"~4+V s (n—d+1)-dimensional. Then =,
restricted to K is one-to-one on every face L&Z®-%+1 QOn the other hand, n(XK)
is a convex polytope whose boundary is the ““same” as S$"~¢, and n has an inverse
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on this boundary. Denoting this inverse by ¢, we have the induced special map
©p: S"?>skel,_, K.

Our next theorem gives a lower bound on the number of vertices of a regular
section of K through the following discrete linear program.

{minimize 2 x(L)
LeGm-D
subject to x(L)=0or 1 (VL),
@ { x(L)=x(-L) (YD),
i : Z x(L) =2 (Yo special).
Legn~a)
Lco(sn—a)

Denote the minimum of this problem by M. In other words, M is the minimum size
of a centrally symmetric set of (n—d)-faces of K meeting all special images of S"~¢.

THEOREM 2. Every regular section of a centrally symmetric n-dimensional poly-
tope K has at least M wvertices.

Corollaries 2, 3 and 4 follow from this theorem as well. Moreover we can
sharpen Corollary 2 (and, similarly Corollary 3):

COROLLARY 2’. Any regular d-dimensional section of C* has at least 2° vertices.
Equality holds if and only if the section is a d-dimensional parallelepiped.

Further we have
COROLLARY 5. Every d-dimensional regular section of the d-dimensional octa-

hedron has exactly 2[ dZI] vertices.

COROLLARY 6. Every 2-dimensional regular section of the dodecahedron (icosa-
hedron) has at least 6 (resp. 10) vertices.

The proof of Theorem 1 will be based on the following extension of Borsuk’s
theorem.

THEOREM 3. If ¢: S¥—~S" is an antipodal map, then 1,(@(S¥)=21,(S%). Here
Ay is the k-dimensional Lebesgue measure (both in R**' and R*+1) normalized so
that 2, (S*) equals the k-dimensional mesaure of any copy of S* isometrically imbedded
into S*.

Let us mention two open problems: The first one arises from an attempt to
find an alternative proof of Theorem 3. Let KCR" be a symmetric convex polytope
and ¢: vert K—~R™— {0} such that for every vertex », if y, ..., », are the neighbours
of » then there exist coefficients A, ..., 4,>0 such that

e@ = Lo@)+...+4e @)

Then we conjecture that ¢(vert X) lies in an n-dimensional subspace of R™. This
conjecture would imply Theorem 3.

To present the second problem write f;(P) for the number of k-dimensional
faces of the polytope P. Suppose P is symmetric, simple and d-dimensional with
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2n facets. The lower bound theorem would say that f(P) is not less than a function
of d, n and k. An obvious guess for that function is

fo(P) =22+2(m—d)(d-1),

ﬁc(P)zz"""(‘,i]Jrz(n—d)[de] for 1=k=d-1.

This is supported by a kind communication of P. McMullen [4]. If the guess is
correct, the minimal polytopes would be obtained from the cube by successive centrally
symmetric truncations of vertices.

3. Proofs

ProOF OF THEOREM 1. Let us choose an >0 such that if L is a face of K and
ANL=g, then AN(L+eB")= . Such an ¢ exists because each face of X is
compact.

Put now K,=K+¢&B" and let S?-! be the unit sphere of the subspace 4. The

map n: ANOK—S%-! defined by 1r(y)=ﬂ—£Tl is one-to-one and antipodal. We

define a map @:8"'>S"-1 by @(z)=t(r"1(2), K,). Since K, is smooth at every
point of its boundary, ¢ is well defined, continuous and antipodal. Theorem 3 then
implies

Ag=1(S%Y) = 24_1(0(S471) = A1 (1(ANOK,, K))).

Claim. t(ANJK,, K,)S Ut(int L; K), where the union is taken over all faces
L of K with LNA=@.

Suppose z€#(y, K,) for some yc ANOK,. Then y=x+ez where xcdK and
z€1(x, K), as one can check easily. Write L for the support of x (in K), then x€int L
and z€¢(int L, K). All we have to show is that LN A= . Suppose that LNA= &,
then by the choice of &, AN(L+eB")= @, too. But yé4 and y=x-+ez€L+eB",
a contradiction.

From this we have

Fama(8*Y) = ys(HANOK,, K)) = | 3 Ayma(1(int L, K)).

Clearly A4, (¢#(int L,K))=0 if dim L>n—d. Suppose ANK a regular section,
then LNA=@ for every face L with dim L<n—d. Thus

Ag-1(t(int L, K))
LN4=@ /1,1—1(5‘1"1) . xEvegAﬂK otd(x, L,
Legn-a)
because #(int L, K) coincides with #(x, K) for every x€intL and LNA=g for
some LEZ®-D if and only if ANL is a vertex of ANK.
Finally, if 4NK is not a regular section, then some member of the left hand
side of (1) equals + <o.

1

IIA

Corollary 1 is an immediate consequence.

PrOOF OF COROLLARY 2. It is easy to see that oy(x, C*)=2-9 if the support
of x is (n—d)-dimensional. Using Corollary 1 this fact implies the result.
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Proor oF CorROLLARY 3. It is easy to check and actually well known [3] that
every d-dimensional, centrally symmetric and simple polytope is a regular section
of C" for some n. So Corollary 2 says that every d-dimensional, centrally symmetric
and simple polytope has at least 2¢ vertices. Dualizing this statement we get
Corollary 3.

Here we mention that Corollary 2 does not hold for non-regular sections.
This follows from the fact that every d-dimensional, symmetric polytope with 2n
facets is a section of C”. For instance, the d-dimensional octahedron is a (non-
regular) section of C*™* and it has only 2d vertices.

ProoOF OF COROLLARY 4, We may clearly suppose that the vectors 4, ..., @,€B?
are in general position, say their entries are algebraically independent over the
rationals. Put

A= {xER: Zn’xiai = O}EM("—"’.
i=1
P=ANC" is a regular section because the points a4, ..., @, are in general position.
By Corollary 2, |vert P|=2"-%. To each vertex x° of P there corresponds a sign
Z"'sia,-llé Vd. This is a simple
1
geometric fact the proof of which is left to the reader. On the other hand any sign

sequence &, ..., &, such that g=x? if {x}|=1 and

sequence can correspond to at most [n] vertices of P. (One can slightly improve

d
this bound, but it would not influence the order of magnitude. It is easy to construct

;IJ vertices of P.) This shows

] vectors out of the 2" vectors 2"' &a; (g;=11) lie in the ball
i=1

. n
an example where a sign sequence corresponds to (

that at least 2"-¢ / (Z
Vd B.
PrOOF OF THEOREM 2. Suppose that A€s/? and that the section ANK is
regular. For Lc£"-9 put
1 if ANL =g,
x4(L) = {

0 otherwise.

Clearly, Lez’%l—a) x,(L)=|vert ANK|. We show x,(L) satisfies the conditions

of the discrete linear program (2). All we have to check is the condition

3 qu,(zs:t—a) xL)=2

Lcgn-a)
for each special map ¢: S"-?—skel,_; K. Now let ¢ be a special map, then, for
LSo(S™ Y x,(L)=1 iff LNA= . So (3) holds iff AN@(S"~%) consists of at
least two pints. Consider the orthogonal complement, 4+, of 4 and let n: R*~> 4+
be the orthogonal projection. Since ¢ is antipodal, AN¢@(S"~%) contains two
points iff 0cmop(S"~9). But mog@: S*~9->A4+ (=R"-%, so by Borsuk’s theorem
there exists a z€S"¢ with nog(z)=0.
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Corollary 2 follows from Theorem 2 as well. In order to see this take the spe-
cial map ¢: S"~?-~skel,_,C" which is induced by some projection and consider
the set of special maps {go¢: g£G} where G is the group generated by the reflec-
tions of C" Clearly LSgo(S"~%) for exactly 2"-9+1 elements g€G (for each
fixed LeZ"-9)and |G|=2". So summing up the inequalities

xA(L) =2

LEgSp(sn-4)
for every g€G we get > x,(L)=2% This implies M=2? The same method
L

gives Corollary 2° as well. Indeed, if the set {LeZ®-9: LNA> @} contains two
faces, L, and L, that are not parallel, then one can find a special map ¢ (induced by
same projection) so that both L, L,C ¢(S"~9). Consequently

Z X A (L) = 4 = 2.
LEo(5"-4)
This implies M=>2¢,
To see that Corollary 5 holds we use the method of proof of Theorem 2. The
(n—d+-1)-dimensional subspace x;=...=x;,_ =0 (1=i;<i;,_;=n) intersects the
octahedron

igm1

o' = {xER”: Zn’ x| = 1}
i=1

in an (n—d+1)-dimensional octahedron O0%;%*} ~ whose boundary is clearly

the image of a special map ¢: S"~?—skel,_; 0" Since the section 4ANO™ is
regular and O}7¢*!  lies in a subspace,

U150y Bg—1

xA(L) = 2.
L p(Sr-d)

Summing up these equalities for each such ¢ we get

al _ n
jvert ANO"| = LGZ%’—ﬂ’ x4(L) = z(d—l)’

because every LeZ"~% lies on the boundary of exactly one octahedron 0% 4+1 .
We mention that Corollary 1 does not imply Corollary 5 (for n=4 and d=2
for instance). And in general, Theorem 2 seems to be stronger than Theorem 1.

Corollary 6 can be proven using a suitable set of special maps.

ProoF oF THEOREM 3. We can suppose that n=k. We are going to use the
following formula which is a consequence of the Fubini theorem. If XS §" is
A measurable, then

@ I(X) = “_[ IXNA|dy

where p is the invariant measure on the set & of all (n+1—k)-dimensional sub-
spaces of R+, normalized suitably. Applying this formula to X=¢(S%),
i@ (89) = [ lo(SHN4|du = [ 2dn,
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because |p(S¥)NA|=2 forevery A€/ as we have seen in the proof of Theorem 2
Let ¢@,: S*~S" be an isometric imbedding of S* into S Then |p,(SYN4|=2
for p-almost every Acs/. Applying (4) again with X=¢y(S¥)

. L(po(S9) = [ 2dn,
and this proves the theorem.

Acknowledgement. We are indebted to A. Schrijver and Z. Szabé for the sti-
mulating discussions on the topics of this paper.
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