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Abstract. A description is given of serial rings whose maximal quotient rings

are quasi-Frobenius (QF). Every serial ring is a factor of a serial ring whose

maximal quotient ring is a QF-ring. This result is used to give a new, con-

ceptual proof for the selfduality of serial rings emphasising the importance of

weakly symmetric rings.

1. Introduction

The question as to whether serial rings are selfdual was put by Haack [5], and was

answered in positive by Dischinger and Müller [4]. Waschbüsch [16] noticed that the

result had been claimed (without proof) earlier by Amdal and Ringdal ([2] Remark

5(c)). In [16] he presents a proof which uses Kupisch’s classification of serial rings

described in [1], [2], [10]. All these proofs, however, are of highly technical nature;

furthermore, using the Kupisch classification for this purpose seems to us like using

a sledge hammer to crack an almond. It is therefore quite reasonable to look for a

conceptual proof, and it is not surprising that several authors (see e.g. [6], [7], [8],

[9], [13], [14]1) are still working on this fascinating topic.
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In this paper we present such a conceptual proof. We describe serial rings as

factors of serial rings whose maximal quotient rings are quasi-Frobenius (QF), and

then show that the latter rings admit weakly symmetric selfduality. By an obser-

vation of Haack, however, such selfdualities carry over to factor rings.

2. Basic facts, notations

For the benefit of the reader we present some easy, but basic results and notation

from [3], [10] in such an order that their proofs can be easily deduced.

The radical, the length and the injective hull of a module M is denoted by J(M),

c(M) and I(M), respectively, and module homomorphisms will be written opposite

the scalars. J will be the radical of a ring R. An artinian ring R is called selfdual if

there is a ring isomorphism ϕ : R −→ End(E) for some injective cogenerator RE.

Note that E is in general not I(R/J). The question of selfduality is probably the

most intriguing puzzle in the theory of Morita duality. It turns out that even for

the class of serial rings — the best–understood class of non-semisimple rings — it

is not simple to check a selfduality. Since minimal injective cogenerators are quite

complicated, with a few exceptions when a ring is commutative or hereditary with

some additional properties, it is not an easy job to find out a way of embedding

a ring into the endomorphism ring of an appropriate injective cogenerator. The

isomorphism ϕ induces a weakly symmetric selfduality if Eϕ(e) ∼= I(Re/Je) for

all e2 = e ∈ R. In particular, a QF-ring R is called weakly symmetric if Re ∼=

I(Re/Je) for every e2 = e ∈ R. A selfduality ϕ is called a good duality if ϕ(K) =

rRrE(K) for every ideal K of R where rX(Y ) denotes the right annihilator of Y in

X with respect to the multiplication under consideration. A good duality obviously

induces selfdualities for factor rings. A serial ring is an artinian ring over which

each module is a direct sum of uniserial modules (that is, modules with chain for

subomdule lattices). Avoiding triviality we will consider only serial rings which are

not uniserial: that is not local ones.

In what follows, with one exception in Proposition 4.1, R is an indecomposable,

basic, serial ring with a basic set {ei | i = 1, ..., n} of idempotents such that there
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are projective covers Rei−1 −→ Jei for i = 2, . . . , n and Ren −→ Je1 for the case

Je1 6= 0. This means that the associated quiver of R is An for the case Je1 = 0 or

Ãn−1 for Je1 6= 0. Let [k] be the least positive integer congruent to k ∈ Z modulo

n and

Si = Rei/Jei, Pi = Rei, Ri = eiRei, ci = c(RPi).

Fix ai ∈ eiRe[i+1] \ J2 (i = 1, ..., n) with an = 0 in case Je1 = 0 and for k ∈ N let

k
ai := a[i−k+1] . . . a[i−1]ai. Then we have

1
ai = ai and

n
a[i−1] ∈ Ri,

n
ai ∈ R[i+1],

n
a[i−1]ai =

n+1
a i = ai

n
ai, R

k
ai = Jke[i+1] (1)

and

e[i−k]J
ke[i+1] = e[i−k]R

k
ai = R[i−k]

k
ai =

k
aiR[i+1]. (2)

If, starting from the top, N1, N2, ..., Nc (c = c(M)) are the composition factors of

a uniserial module M , then

Ni
∼= Nj ⇐⇒ [i] = [j]. (3)

Since a simple R-module S is isomorphic to Sk iff ekS 6= 0, we obtain

ekJjei 6= ekJj+1ei ⇐⇒ [i − j] = k, ci > j. (4)

Observing that the proof of implication (d) =⇒ (a) in Theorem 32.2 in [3] works

also for semiprimary rings, we get

Proposition 2.1. A semiprimary ring R is serial iff R/J2 is serial.

Proposition 2.2. Every serial QF-ring R admits a weakly symmetric selfduality

Φ : R −→ R such that Φ(ei) = e[i+1−c] where c = c(Pi) (i = 1, ..., n).

Proof. By assumption all ci are equal, say, to c. Then [c] = 1 if and only if R

is weakly symmetric by (3). Therefore it is sufficient to prove the case [c] ≥ 2.

This implies 1 ≤ [c] − 1 = [c − 1]. The length of the module Ri
eiRe[i+1] is the

number of the simple factors of RP[i+1] isomorphic to Si which is precisely l + 1

if l is the greatest positive integer satisfying ln ≤ c − 1 by (3). Therefore, as
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1 ≤ [c] − 1 = [c − 1] and again in view of (3), l + 1 is also the length of R[i+1]
R[i+1]

which is the number of simple factors of P[i+1] isomorphic to S[i+1]. Similarly, one

obtains that the length of the right R[i+1]-module eiRe[i+1] is equal to the length

of Ri
Ri. Since the lengths of the uniserial right R[i+1]-module eiRe[i+1] and the

left Ri-module eiRe[i+1] are equal, we see that eiRe[i+1] is cyclic and free both as a

left Ri- and a right R[i+1]-module. Consequently the ai induce ring isomorphisms

gi : R[i+1] −→ Ri : x ∈ R[i+1] 7→ y ∈ Ri : yai = aix.

and

k
gi = g[i−k+1] · · · g[i−1]gi : R[i+1] −→ R[i−k+1], k ∈ N.

Thus
1
gi = gi and in view of (1) we have

gi(
n
ai) =

n
a[i−1], gi(

nk
a i) =

nk
a [i−1] (i = 1, ..., n; k ∈ N) (5)

We construct an automorphism ϕ of R satisfying ϕ(ei) = e[i−1] as follows. If

x ∈ Ri, put ϕ(x) = g[i−1](x) ∈ R[i−1]. For z ∈ ekJpei one can assume in view of

(2) and (4) that

[i − p] = k, z = x
p
a[i−1], x ∈ Rk = R[i−p]

and put

ϕ(z) = ϕ(x
p
a[i−1]) = g[k−1](x)

p
a[i−2] ∈ e[k−1]Re[i−1].

ϕ is well-defined on ekRei. For if z ∈ ekJqei, [i − q] = k, z = y
q
a[i−1] and t is the

smallest positive integer with

J t−1ai/J tai = R
t
ai/R

t+1
a i

∼= Sk,

then p − t = nn1, q − t = nn2 for some nonnegative integers n1, n2 and

0 = z − z = x
p
a[i−1] − y

q
a[i−1] = (x

nn1
a [i−t] − y

nn2
a [i−t])

t
a[i−1].

This implies together with (5)

0 = g[k−1](x
nn1
a [i−t] − y

nn2
a [i−t])

t
a[i−2] = g[k−1](x)

nn1
a [i−t−1]

t
a[i−2]−

g[k−1](y)
nn2
a [i−t−1]

t
a[i−2] = g[k−1](x)

p
a[i−2]−g[k−1](y)

q
a[i−2] = ϕ(x

p
a[i−1])−ϕ(y

q
a[i−1]).
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Since c(R[i−1]
e[i−1]Re[j−1]) = c(Ri

eiRej) by (3), ϕ is an additive isomorphism

between e[i−1]Re[j−1] and eiRej for all i, j = 1, ..., n. Therefore ϕ can be ex-

tended to an additive automorphism of R. In this case ϕ is also multiplicative, by

which we mean ϕ(uw) = ϕ(u)ϕ(w) for any u, v ∈ R. It obviously suffices to see

ϕ(uw) = ϕ(u)ϕ(w) for any u = equek and w = ekwei(q, k, i = 1, ...n). Write

u = x
j
a[k−1], w = y

p
a[i−1]; x ∈ Rq , y ∈ Rk, [k − j] = q, [i − p] = k,

then

uw = x
j
a[k−1]y

p
a[i−1] = x

j
g[k−1](y)

j
a[k−1]

p
a[i−1] = x

j
g[k−1](y)

j+p
a [i−1].

Thus we have

ϕ(uw) = g[q−1](x
j
g[k−1](y))

j+p
a [i−2] = g[q−1](x)g[q−1](

j
g[k−1](y))

j+p
a [i−2] =

g[q−1](x)
j+1
g [k−1](y)

j
a[k−2]

p
a[i−2] = g[q−1](x)

j
a[k−2]g[k−1](y)

p
a[i−2] = ϕ(u)ϕ(w).

Let l = [c − 1] = [c] − 1 and Φ = ϕl. If we defines an R-R-bimodule RΦ by

RΦ := R, r ∗ x ∗ t = rxΦ(t) (r, x, t ∈ R) , then RΦ induces a weakly symmetric

selfduality for R because the socle of RΦ ∗ ei = RΦ(ei) = Re[i+1−[c]] is exactly

S[i+c−[c]] = Si for all i = 1, ..., n.

Remark 2.0.1. This result was proved by Haack (cf. Theorem 3.3 [5]) though it

is also observed earlier by Kupisch (cf. footnote 4 [10]) as a consequence of his

classification. The above proof is a simplified version of the much easier proof to

Satz 2.1 [10]. Indeed, both proofs are based implicitly on the fact that the
k
ai to-

gether with the idempotents 1, 0, e1, ..., en form a semigroup under multiplication.

Roughly speaking, this semigroup can be considered as a “multiplicative base” or

in the other words, a “Cartan basis”, of a serial ring in a generalized sense that the

corresponding images yield a basis of the graded ring associated to the filtration

given by powers of the radical. Moreover, in the case of a not weakly symmetric

serial QF-ring the permutation sending i to [i−1] induces an automorphism of this

multiplicative semigroup which can be extended to a ring automorphism. We do
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not know about the existence of such a “multiplicative basis” for locally distribu-

tive rings and this lack of knowledge of existence is probably also a reason why a

corresponding question on selfduality for such rings or even for a narrower class

of regular representation-finite rings seems to be more difficult. The advantage of

Haack’s proof is a quite natural, easily understandable definition of the map ϕ.

This map ϕ in Haack’s proof is immediately multiplicative by observing the obvi-

ous equality aix = ϕ(x)aj for all x ∈ e[i+1]Re[j+1]. Furthermore, Proposition 2.2

is equivalent to the statement that the automorphism group of a serial, not weakly

symmetric QF-ring contains a cyclic subgroup of order n.

3. Structure of serial rings

Let Pl1 , . . . , Plm (1 ≤ l1 < l2 < · · · < lm ≤ n) be the injective indecomposable

projectives. Let l0 = 0 and {k} be the least positive integer congruent to k modulo

m for each 0 6= k ∈ Z. Moreover, define {0} = 0 if Je1 = 0, otherwise {0} = m. Plk

has exactly δk nonzero projective submodules where δ1 is l1 if Je1 = 0 or n− lm + l1

if Je1 6= 0, and δk = lk − l{k−1} (k = 2, ..., m). Let

e = el1 + · · · + elm , Ii = I(Pi), I = I(RR) =
n⊕

i=1

Ii
∼=

m⊕

k=1

P δk

lk
, T = End(RI).

Here, RRe is a minimal faithful left ideal (that is, a direct sum of isomorphism

types of indecomposable injective projectives in the case of serial rings), and T is a

serial ring as it is Morita equivalent to eRe. Let εi be the projection of I onto Ii

and Ti = Tεi (i = 1, ..., n). Put

B = {t ∈ T | Rt = 0}, A = {t ∈ T | Rt ⊆ R}.

Proposition 3.1. If B = 0, then T is a QF-ring.

Proof. Having B = 0 implies that R can be identified as a subring of T in the

usual way. Since a[lk+i] (1 ≤ i ≤ δ{k+1} − 1; k = 1, ..., m) induces an isomorphism

between T Tε[lk+i] and T Tε[lk+i+1], all T Tε[lk+1], ..., T Tεl{k+1}
are isomorphic and

T Talk is the radical of T Tε[lk+1]. Observing that the kernel of alk is not zero, we

obtain that T Tεlk is injective for all k = 1, ..., m, i.e. T is a QF-ring.
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Remark 3.0.2. It is obvious that B = 0 if and only if the socle of RR is a sum

of simple modules Si(i ∈ {[lk + 1] | k = 1, ..., m}) or equivalently if the eiRR

(i ∈ {[lk+1] | k = 1, ..., m}) are the indecomposable projective injectives. Moreover,

B = 0 implies t ∈ eiRej if t ∈ eiTej and Pit ⊆ Pj . Consequently, eiRej = eiTej

if Pj is not isomorphic to a submodule of Pi. If Pj is isomorphic to a submodule

of Pi, then Pit ⊆ Pj for all t ∈ eiTej which are not isomorphisms between Ii and

Ij , i.e., eiRej is precisely the radical of Ri
eiTejRj

. Therefore for the sum fk of

idempotents ei such that Pi is isomorphic to submodule of Plk , fkRfk = End(Rfk)

is a δk × δk matrix ring of the form




S S . . . S S

M S . . . S S

...
. . .

. . .
...

...

M M
. . . S S

M M . . . M S




where S = Rlk and M is its radical. Thus serial rings with B = 0 are a common

generalization of both serial QF-rings and the so-called (S : M)-upper triangular

matrix rings that appear in the characterization of semiperfect HNP rings. More-

over, B = 0 implies also Relk = Telk (k = 1, ..., m). For if t = telk , then It ⊆ R

and thus its restriction to R is some r ∈ Relk , hence t = r ∈ Relk .

Theorem 3.2. B = 0 if and only if the maximal quotient ring of R is a QF-ring.

Proof. If B = 0, then R is a subring of T and RT = I = I(RR) by the previous

remark. Hence T is the biendomorphism ring of I , i.e., the maximal quotient ring of

R by its definition given in [12]. Thus the maximal quotient ring of R is a QF-ring

by Proposition 3.1.

Conversely, if the maximal quotient ring of R is a QF-ring, then T must be the

maximal quotient ring of R and hence B = 0 in view of [12] Propositions 4.3.2,

4.3.3 and 4.3.6.
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Remark 3.0.3. For an arbitrary ring R the equality B = 0 holds if an only if the

maximal left quotient ring is left selfinjective. For, B = 0 means that IT = 1T

is a free right T -module and hence I = T = End(IT ). If the maximal quotient

ring of R is QF, then the endomorphism ring of a minimal faithful R-module is

obviously also QF, but the converse is not true. For example, if R has a strictly

increasing admissible sequence {c1, ..., cn} (n > 1) such that [c1] 6= 1, then RRen is

the minimal faithful module and Rn = enRen is trivially QF, but B 6= 0, i.e., the

maximal quotient ring of R cannot be QF.

We can characterize serial rings R with B = 0 as follows

Theorem 3.3. For each k = 1, ..., m and i = 1, ..., δk, let

W i
k :=

lk⊕

l=[l{k−1}+i]

Tl, Wk = W 1
k , W̃ i

k = W i
k ⊕

[l{k−1}+i−1]⊕

l=[l{k−1}+1]

J(T Tl).

If B = 0, then R is the ring of all endomorphisms of T T satisfying W i
kr ⊆ W̃ i

k for

all i ∈ {1, ..., δk} provided r induces an endomorphism of Wk(k = 1, ..., m).

Conversely, let T be a serial QF-ring with a basic set {ei | i = 1, ..., n} of

idempotents and e = el1 + · · · + elm (1 ≤ l1 < l2 < · · · < lm ≤ n) be such that

for k = 1, ..., m T Ti
∼=T Tlk (i = [l{k−1} + 1], ..., lk). Let R be the ring of all

endomorphisms r of T T satisfying W i
kr ⊆ W̃ i

k if r induces an endomorphism of

Wk. Then R is a serial ring with T = End(I(RR)) and B = 0.

Proof. The first statement of this theorem is already proved in Remark 3.0.2.

For the second statement it is clear that eiRej = eiTej if T Tei and T Tej are

nonisomorphic. Moreover, both RRei and eiRR (i = l[{k−1}+1], ..., lk) are isomor-

phic to submodules of RRelk and e[l{k−1}+1]RR, respectively. Therefore simple

T -modules Telk/J(T )elk and elkT/elkJ(T ) (k = 1, ..., m) are uniserial R-modules

with socles Re[l{k−1}+1]/Je[l{k−1}+1] and elkR/elkJ , respectively. These facts alto-

gether imply that RRei and eiRR (i = 1, ..., n) are uniserial and hence R is a serial

ring. It is now routine to check that B = 0 and T = End(I(RR)).
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Remark 3.0.4. Theorem 3.3 shows that in the case B = 0 there is a one-to-one

correspondence between R and its QF-subring eRe which is the endomorphism ring

of a minimal faithful R-module, and R is uniquely determined up to isomorphism

by eRe and the numerical invariants δk (k = 1, ..., m). For example, using the

notation of Theorem 3.3 let n = 5, m = 2, l1 = 2, l2 = 3 and T is Morita

equivalent to an indecomposable, basic serial QF-ring S = S1+S2+S12+S21 where

S1 = e1Se1, S2 = e2Se2, S12 = e1Se2, S21 = e2Se1, 1 = e1 + e2 with primitive

orthogonal idempotents e1, e2 and the radicals M1, M2 of S1, S2, respectively,

then R is isomorphic to the generalized matrix ring




S1 S1 S12 S12 S12

M1 S1 S12 S12 S12

S21 S21 S2 S2 S2

S21 S21 M2 S2 S2

S21 S21 M2 M2 S2




and the QF-subring eRe which is the endomorphism ring of the minimal faithful

R-module, is isomorphic to S.

In the general case when B is not necessarily zero, we have

Proposition 3.4. A is a serial ring.

Proof. If t = εitεj ∈ B (i, j = 1, ..., n), then t maps Ii in Ij and It cannot contain

Pj because Pit = 0 by assumption. Hence Iit ⊆ Pj ⊆ R. Therefore It ⊆ R for

every t ∈ B as t = (
∑n

i=1 εi)t(
∑n

i=1 εi). Consequently, B2 = 0. Since B C A and

A/B ∼= R, A is a semiprimary ring. In view of Proposition 2.1 it is enough to see

εitεj ∈ J(A)2 for each t ∈ B. Let b = εitεj and assume b 6= 0, then Pi 6= Ii,

i.e., Pi is not injective. Since Ii is also projective, every submodule between Pi

and Ii is projective. Thus without loss of generality one can assume Pi = Ker(t).

Hence the socle of Pj is contained in J and isomorphic to S[i+1]. Consequently

there is a nonzero element r = e[i+1]rej in the socle of Pj satisfying e[i+1]r = r.
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Let u = εiuε[i+1] and v = ε[i+1]vεj in T extend ai and r, respectively. Then we

have Ker(t) = Ker(uv), i.e., b ∈ J(A)2.

Since endomorphisms of Ii send Pi into itself, εiAεi is a factor ring of εiTεi for i =

1, 2, ..., n. The equalities εlkTεlk = End(Plk ) = εlkAεlk (k = 1, ..., m) imply that

the maximums of the lengths c(Ri
Ri) and c(εiAεi

εiAεi) (i = 1, ..., n), respectively,

are equal, say, to a constant d. Therefore both the lengths of RR and AA are

at most dn2. Moreover, being a factor ring of A, one obtains c(RR) ≤ c(AA).

Let R = A0. For i > 0 let Ti be the endomorphism ring of the injective module

I(Ai−1Ai−1), and Bi, Ai the subsets of endomorphisms in Ti sending Ai−1 into 0

and itself, respectively. Then Bi is an ideal in Ai and the factor ring Ai/Bi
∼= Ai−1.

Since c(Ai−1Ai−1) ≤ c(Ai
Ai) ≤ dn2 by the previous observation, after finitely many

steps, say, N we obtain a QF-ring TN which is the maximal quotien ring of AN and

R is a factor ring of AN . One can now contruct AN from the serial QF-ring TN in

the way suggested in Theorem 3.3. Thus we obtain as a final result

Theorem 3.5. Every basic indecomposable serial ring R is a factor ring of an

indecomposable basic serial ring whose maximal quotient ring is a QF-ring.

Example 3.0.1. If Q is the factor of the path algebra of the quiver Ã2 with arrows

ai from i to [i + 1] (i = 1, 2, 3; n = 3) by the ideal generated by all paths of length

4, then Q is a weakly symmetric serial QF-ring. Let R be the factor of Q by the

ideal generated by a3a2a1 and Pi = Rei where ei is the idempotent associated

to the vertex i. Then Soc(P1) ∼= S3 and Soc(Pi) ∼= Si for i = 2, 3 where Si is

the simple module associated to i. Moreover, I = I(R) = I(P1) ⊕ P2 ⊕ P3 and

I(P1) ∼= P3. Therefore, B is generated by any γ = ε1γε1 : I −→ I1 satisfying

Kerγ = P1 ⊕ P2 ⊕ P3, and A is a subring of T = End(RI) isomorphic to Q.

Example 3.0.2. If Q is the factor of the path algebra of Ã2 by the ideal generated

by all paths of length 6, then although Q is a serial QF-ring, Q is not weakly

symmetric. Let R be the factor of Q by the ideal generated by a2a1a3a2a1, and
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put Pi = Rei. Then Soc(P1) ∼= Soc(P3) ∼= S2 and Soc(P2) ∼= S1. Furthermore,

I = I(R) = I(P1) ⊕ P2 ⊕ P3 with I(P1) ∼= P3 and B = 0 hold.

Remark 3.0.5. Kupisch (cf. Folgerung 3.9 [11]) showed that every indecomposable

(basic) serial ring R satisfying ci 6= 1 (mod n) (i = 1, ..., n) is a factor of a QF-

ring. The ring in Example 3.0.1 satisfies c2 = c3 = 1 (mod n) and is a factor of a

weakly symmetric serial QF-ring. However, by Example 3.0.2 there exists a factor

of a serial QF-ring with B = 0. Haack (cf. Example 4.7 in [5]) gave an example of

a serial ring which is not a factor of any serial QF-ring.

As an application of Theorem 3.5 assume that c1 = 1, i.e., Je1 = 0 and R

is a serial ring with a simple projective module. Note that this condition is also

satisfied by the rings Ai constructed above as it is easy to check. Let now R be

a serial such that P1 is simple and the maximal quotient ring of R is a QF-ring,

i.e., B = 0. If Pl1 is an indecomposable injective projective module with the socle

isomorphic to P1, then al1 induces a projective cover Pl1 −→ J(Re[l1+1]) with the

kernel, say, Pi, i 6= l1 if l1 6= n. Since all nonzero submodules of Pl1 are projective,

the condition l1 6= n implies that there exists a nonzero homomorphism from Ii

into I[l1+1] sending Pi to 0, i.e., B 6= 0. This contradiction show that l1 = n and

hence the maximal quotient ring of R is a matrix ring over a division ring, say F

and R is an upper triangular matrix ring over F . Thus we reobtain the well-known

result (cf. Theorem 32.7 [3])

Corollary 3.6. A basic indecomposable serial ring is a factor ring of a serial ring

with projective socle if and only if it has a simple projective module. A basic inde-

composable serial ring with projective socle is an upper triangular matrix ring over

a division ring.

4. Weakly symmetric selfduality of serial rings

Recall that an artinian ring is locally distributive if the lattices of submodules of

indecomposable projective left or right modules are distributive. We begin with a

basic observation of Haack (cf. Proposition 4.1 [5])



12 PHA. M NGO. C ÁNH

Proposition 4.1. Every weakly symmetric selfduality of a locally distributive ring

is a good duality.

Proof. Assume that RER induces a weakly symmetric selfduality for a basic inde-

composable locally distributive ring R. We have to show K = rRrE(K) for every

ideal K of R. Let 1 = e1 + · · · + en be a decomposition of 1 as a sum of pairwise

orthogonal primitive idempotents ei and X = rRrE(K), Ri = eiRei, Ei = eiEei.

To complete the proof it is enough to see that eiKejRj
and eiXejRj

have the same

length for all i, j because the Ri
eiRejRj

are uniserial on both sides of the same

length in view of the local distributive condition. Since E induces a weakly sym-

metric selfduality for R, the natural nondegenerate pairing eiR×Eei −→ Ei shows

that eiR is the dual of Eei with respect to the selfduality of Ri induced by Ei.

Consequently, by putting Vi = Eei, Wi = rE(K)ei we have

c(eiXejRj
) = c(Rj

ej(Vi/Wi)) = c(Rj
ejVi) − c(Rj

ejWi) =

= c(eiRejRj
) − c(eiR/KejRj

) = c(eiKejRj
),

from which the statement follows.

Now we are able to give a conceptual proof to a well-known result (cf. [4], [16]).

Theorem 4.2. Every serial ring admits a weakly symmetric selfduality.

Proof. Using the notation of Sections 2 and 3, in view of Proposition 4.1, Propo-

sition 2.2 and Theorem 3.5 one can assume that R is a basic indecomposable not

selfinjective ring with B = 0. By Proposition 3.1 T = End(RI) = End(I(R))

is a QF-ring and one can identify εi (i = 1, ..., n) with ei. For simplicity let

gk = elk (k = 1, ..., m). There are two cases.

1. T is weakly symmetric. Since the top and the socle of T Tgk (k = 1, ..., m) are

isomorphic, they are such as R-modules, too, and hence with composition factors,

starting from the bottom, S[l{k−1}+1], ..., Slk . Consequently, if M[l{k−1}+1], ..., Mlk

are R-submodules of P[l{k−1}+1], ..., Plk of lengths 0, 1, ..., δk − 1, then the factor R-

modules Ii/Mi are injective with socle isomorphic to Si. Otherwise P[lk+1] would
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be an epimorphic image of the minimal submodule in I(Ii/Mi) containing Ii/Mi,

a contradiction. Since M =
⊕n

i=1 Mi is a subbimodule of RTR (as it is easy to

check in view of Theorem 3.3), the bimodule RER = T/M =
⊕n

i=1 Tεi/Mi
∼=

⊕n
i=1 I(Pi)/Mi induces a weakly symmetric selfduality for R.

2. T is not weakly symmetric. By Proposition 2.2 there is an automorphism Ψ

of eTe = eRe fixing the set {gk | k = 1, ..., m} such that an eRe − eRe-bimodule

eReΨ := eRe defined by a ∗ x ∗ b = axΨ(b) (a, x, b ∈ eRe) induces a weakly

symmetric selfduality for eRe. Moreover, if TeΨ := Te is an T − eRe-bimodule

defined by a ∗ x ∗ b = axΨ(b) (a ∈ T, x ∈ Te, b ∈ eRe), then

TeΨ ⊗
eRe

− : eRe− Mod −→ T − Mod

is an equivalence functor and V := TeΨ ⊗
eRe

eT is an T − T -bimodule. Since the

socle of eTgk = eRgk (k = 1, ..., m) is isomorphic to eRΨ−1(gk)/eJΨ−1(gk), it has

an element 0 6= x = Ψ−1(gk)x. Therefore

0 6= e ⊗ x = e ⊗ Ψ−1(gk)x = e ∗ Ψ−1(gk) ⊗ x = eΨ(Ψ−1(gk)) ⊗ x = gk ⊗ x ∈ V gk

and hence the socle of T V gk is isomorphic to the top of Tgk. Therefore Tgk/J(T )gk

is the socle of T V ei for all i = [l{k−1} + 1], ..., lk. Thus, as in Case 1, their com-

position factors as left R-modules, starting from the bottom, are S[l{k−1}+1, ..., Slk

and, if M[l{k−1}+1], ..., Mlk are R-submodules of V e[l{k−1}+1], ..., V elk of lengths

0, 1, ..., δlk − 1, then V ei/Mi are injective R-modules having the socle isomorphic

to Si, respectively. Since M =
⊕n

i=1 Mi is an R−R-subbimodule of V as it is easy

to check in view of Theorem 3.3, the R − R-bimodule E = V/M induces a weakly

symmetric selfduality for R.
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[10] H. Kupisch, Über eine Klasse von Ringen mit Minimalbedingung I, Arch. Math. 17 (1966),

20-35.
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