
GAUSS’ LEMMA AND VALUATION THEORY

P. N. ÁNH AND M. F. SIDDOWAY

Abstract. Gauss’ Lemma is not only critically important in showing that polynomial rings
over unique factorization domains retain unique factorization; it unifies valuation theory. It
figures centrally in Krull’s classical construction of valued fields with pre-described value
groups, and plays a crucial role in our new short proof of the Ohm–Jaffard-Kaplansky the-
orem on Bezout domains with given lattice-ordered abelian groups. Furthermore, Eisen-
stein’s Criterion on the irreducibility of polynomials as well as Chao’s beautiful extension of
Eisenstein’s Criterion over arbitrary domains, in particular over Dedekind domains, are also
obvious consequences of Gauss’ lemma.

1. Basic notions, preliminary results

The study of the integers under multiplication together with GCD and LCM led to the
study of lattice-ordered abelian groups. A group is lattice-ordered if it is also a lattice,
i.e., a set endowed with two binary operations ∧(GCD) and ∨(LCM), called meet and join
satisfying a∧(a∨ b) = a = a∨ (a∧ b) for any two elements a, b such that the multiplication is
distributive on both meets and joins. Lattice-ordered groups can be characterized as partially
ordered groups such that any two elements have both infimum and supremum. Examples for
lattice-ordered abelian groups are the additive group of integers with the usual order and the
multiplicative group of positive rationals with the partial ordering given by divisibility, i.e.,
a ≤ b iff b = na for some natural number n. The first example is also an example of an
ordered group or a valuation group, i.e., of a lattice-ordered group where any two elements are
comparable. The positive cone of a lattice-ordered abelian group G under addition is the set
P = {a ∈ G|a∧ 0 = 0}. Hence −P ∩ P = 0 holds and so P is a cancellative lattice-ordered
monoid with the unique invertible element 0. Moreover, the partial order on P is natural in
the sense that a ≤ b iff b = a + x with x = b − a ∈ P . Each of P and G determines the
other uniquely: P is the positive cone of G which is the quotient group of P via subtraction.
Lattice-ordered abelian groups are subgroups of vector spaces over rationals, i.e., torsion
free. Any submonoid X of a torsion free group G satisfying −X ∩ X = 0 can be extended
to the positive cone making G an ordered group. Positive cones of lattice-ordered abelian
groups appear naturally in the study of divisibility in classical number rings. Their study
led to several important classes of domains like PIDs, UFDs, Dedekind and Prüfer domains,
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as well as valuation domains which naturally arise from valuation theory. For details on
lattice-ordered groups and divisibility theory of domains we refer to the books [9], [10] and
[13]. Recent developments in the divisibility of rings can be found in papers [1], [2] and the
forthcoming [3].

2. Gauss’ Lemma and Valuation theory

The divisibility theory of a commutative ring (domain) is the monoid of (non-zero) principal
ideals partially ordered by inverse inclusion, i.e., by divisibility. This is the positive cone of
a lattice-ordered abelian group when the ring is a valuation domain or UFD. Therefore the
map sending an element to its principal ideal, is a valuation in the following sense.

Definition 2.1. Let F be a field and G a lattice-ordered group together with the extra
greatest element ∞ (whence g +∞ =∞ =∞+∞.) F is called a (global) valued field with
values in G if there is a surjective map ‖ ‖ : F → G ∪∞ such that

(1) ‖a‖ =∞⇐⇒ a = 0
(2) ‖ab‖ = ‖a‖+ ‖b‖ holds for any two elements a, b ∈ F .
(3) ‖a + b‖ ≥ ‖a‖∧ ‖b‖

By this definition, as an obvious consequence of Gauss’ Lemma that products of primitive
polynomials are again primitive, a valuation of a UFD can be extended naturally to the
field of its rational functions without changing the value group. Recall that the content of a
polynomial in one variable over a UFD is a GCD of its nonzero coefficiennts and a valuation
of a UFD maps naturally a nonzero element to the associated element of the free abelian
group generated on the set of prime principal ideals partially ordered in the obvious way.
Moreover, continueing this idea, one can define a canonical map from the polynomial ring
A[x] or from the power series ring A[[x]] sending an element to the degree of the smallest
power of x with a nonzero coefficient. Thus, elements of A map to 0 and the fact that
polynomial ring or power series ring over a domain are domains, says that these canonical
maps are exactly valuations. It is obvious to ask about extensions of a valuation to an
algebraic field extension. To illustrate the subtle circumstances that can arise in the case of
algebraic extensions, one can consider the settings of the Gaussian integers and Z[

√
−5]. The

first is a principal ideal domain and the second is a (proper) Dedekind domain. In the first
case, there are integral primes which are no longer primes as Gaussian integers, i.e., no longer
free generators in the value group. In the second case, the valuation map is not surjective
because the free generators are prime ideals which are, in general, not principal. Moreover, in
both cases, the degree of the extension is 2 over Q. This suggests that the extension problem
is of interest even in the case of quadratic number fields. It is also interesting to ponder an
appropriate framework for valuations of rings with zero-divisors, i.e., to search for appropriate
value monoids and requirements on valuation maps.

Krull’s valuation theory established a dictionary between valued fields and ordered abelian
groups. This dictionary was extended later by the Jaffard-Ohm-Kaplansky Theorem between
Bezout domains and lattice-ordered abelian groups. In both cases, the proofs are essentially
verifications of Gauss’ Lemma.

In the rest of this note G is a lattice-ordered abelian group with positive cone P and K is
an arbitrary field. Since P is a lattice-ordered monoid, one can use the combined language
of both ring theory and partial orders. A subset F of P is a filter if it is closed under meets,
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and b ∈ F whenever a ≤ b, a ∈ F . Hence filters are ideals in the classical sense, but the
converse is not necessarily true. For example, the positive cone of the multiplicative group of
positive rationals is the monoid of positive integers where the set of multiples of either 3 or
5 is an ideal, but not a filter.

If we identify the elements g ∈ G with the symbol Xg, then the group algebra KG can
be considered as a ring of generalized (Laurent) polynomials p =

∑
kgX

g. Recall that the
content c(p), of an element p =

∑
agx

g ∈ KG is the GCD of the power g ∈ G appearing
in the canonical expression of p, and p is called primitive if its content is 0, whence p is in
particular an element of the monoid algebra KP . The first obvious application of Gauss’
Lemma shows a well-known classical result that group algebras of torsion-free abelian groups
over fields are domains.

Lemma 2.1. KG is a domain. In particular, KP is a domain, too.

Proof. Since G is torsion-free, there exists a total-ordering of G. Denote this ordering by ≺.
For arbitrary elements

p =
∑

agx
g 6= 0 6= q =

∑
bhx

h

let g0, h0 be the smallest (or largest) exponents in p, q, respectively. Then the coefficient of
x(g0+h0) is nonzero. �

Remark 2.2. The above proof shows clearly that the usual verification of the fact that both
polynomial rings and power series rings over domains are also domains, is a particular case
of Gauss’ Lemma.

Theorem 2.3 (Gauss’ Lemma for valuations). Products of primitive polynomials in KG are
also primitive.

Proof. Let p =
∑

g∈S agx
g and q =

∑
h∈S bhx

h be primitive and assume indirectly that pq is

not primitive, i.e., t = c(pq) > 0. Then t lies in some maximal filter M of P . The complement
P\M is closed under addition, for, if a, b ∈ P\M , then by the maximality of the filter M
there are x, y ∈M with a∧x = 0 = b∧ y. Thus for z = x∧ y ∈M one has a∧ z = 0 = b∧ z
whence 0 = (a∧ z) + (b∧ z) = (a + b)∧ z, i.e., a + b is not contained in M and thus P\M is
closed under addition.

Now, write p = p1 + p2 where the exponents of p1 are outside M , and the exponents of
p2 are in M . Similarly write q = q1 + q2. By primitivity of p, q, both p1, q1 are not zero,
consequently their product p1q1 is also not 0 by Lemma 2.1. Since pq = p1q1 + r where r is
a polynomial with exponents in M and the exponents of p1q1 are not in M , one obtains that
the content t = c(pq) is not contained in M , a contradiction. �

Remark 2.4. The above proof of Theorem 2.3 is exactly the rewriting of the usual proof of
the classical Gauss’ Lemma in the language of lattice-ordered abelian groups!

As applications we have

Theorem 2.5 (Jaffard–Ohm–Kaplansky). For a positive cone P of an arbitrary lattice-
ordered abelian group G there is a Bezout domain R whose divisibility theory is just P .

Recall ring is a Bezout ring if its finitely generated ideals are principal ideals. Bezout
rings are special cases of the so-called arithmetical rings, that is, rings whose lattice of ideals
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is distributive. Arithmetical domains are Prüfer domains, i.e., domains over them finite
generated fractionnal ideals are invertible. Theorem 2.5 provides a large class of examples
of Bezout domains. The factors of these Bezout domains are examples of Bezout rings with
zero-divisors.

Proof. By Theorem 2.3 the set T of all primitive polynomials in the semigroup algebra KP
is multiplicatively closed. Let R be the localization (KP )T . Since every element p ∈ KP can
be written as the product of Xc(p) with a primitive polynomial by the naturality of the partial
order of P , every principal ideal of R is generated by an element Xs, s ∈ P . Consequently,
if I is a finitely generated ideal of R, say, with generators Xs1 , . . . , Xsn , then by putting
s = ∧ni=1 si, si = s + ti one has

0 = s− s =
n
∧
i=1

si − s =
n
∧
i=1

(s + ti)− s =
n
∧
i=1

(s + ti − s) =
n
∧
i=1

ti,

whence
i=n∑
i=1

X ti is a primitive polynomial. The equalities

i=n∑
i=1

Xsi = Xs(
i=n∑
i=1

X t1) & Xsi = XsX ti ∀ i = 1, . . . , n

imply I = (Xs) showing that R is a Bezout domain whose divisibility theory is obviously
order-isomorphic to P . �

Remark 2.6. The naturality of the partial order of P is crucial because it ensures that every
polynomial in KP can be written as a product of its content with a primitive polynomial.

Definition 2.2. A polynomial over a commutative ring is irreducible if it can not be written
as the product of non-zero, non-constant non-invertible polynomials.

Remark 2.7. If f = gh ∈ R[x] is a factoriztion of f , then the degree of f is obviously the
sum of ones of g and h in the case that R is a domain. However, if R has zero-divisors, then it
can happen that both the degrees of g and h are greater than one of f . For example, over Z6

we have 2x = (x+3x2)(2x) and over Z8 we have 4x3 = (2x+4x4)(6x2+4x6). This observation
shows why it is reasonable only to discuss irreducibility of polynomials over domains although
Gauss’ lemma holds over arbitrary rings. Eisenstein’s criterion is stated in Marcus’ book
[12] for an arbitrary ring and its maximal ideal. As we just noted, the classical proof of
Eisenstein’s Criterion cannot extended canonically to rings with zero-divisors. Therefore one
need eventually new proof to the case of general rings.

However, for domains we have certainly

Theorem 2.8 (Eisenstein’s Criterion, Chao’s version revisited). Let f = a0 + a1x + · · · +
anx

n ∈ R[x] be a polynomial with coefficients in a commutative domain R. If there is a prime
ideal P of R and 0 ≤ k 6= l ≤ n such that ak /∈ P ; ai ∈ P (i 6= k but al /∈ P 2 and f = gh, then
the degree of g or h is at least |k − l|. In particular, f is irreducible if {k, l} = {0, n}.

Proof. If f = gh; g = b0 + b1x + · · ·+ bmx
m, h = c0 + c1x + · · ·+ csx

s;n = m + s > m, s ≥ 1,
then by passing to polynomials over the domain R/P one obtains that all coefficients of g
except one bu and all coefficients of h except one ct are contained in P and u + t = k holds.
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However, the condition al /∈ P 2 shows l ≥ min{u, t} otherwise one has al =
i=l∑
i=0

bicl−i ∈ P 2. If

k > l, then, then one of u or v is at least k − l by k = u + t whence the statement. If k < l,
then l − k < l − u < s, l − k < l − s < m, completing the proof. �

Remarks 2.9. (1) If the prime ideal P in Theorem 2.8 is a principal ideal P = (p) then
we obtain the usual form of Eisenstein’s Criterion. Eisenstein’s Criterion is an imme-
diate and beautiful example that demonstrates the implication of global results from
local conditions. Eisenstein’s Criterion can be applied effectively to polynomials over
Dedekind domains where the unique factorization of prime ideals holds. Sometimes,
one can substitute the variable ax+ b for x with an appropriate unit a and a constant
b getting a new polynomial which admits application of Eisenstein’s Criterion. The
substitution x−1 for x provides a version of Eisenstein’s Criterion where the role of
the first and last coefficients a0, an are interchanged. For the history of Eisenstein’s
Criterion we refer to the recent paper of Cox [6].

(2) If R is a UFD, then by using the prime factorization of coefficients (when we know
this), one can easily check the applicability of Eisenstein’s Criterion. In the general
case, let I be the ideal generated by a0, a1, . . . , an−1. If either some power of an is
in I or a0 ∈ I2, then Eisenstein’s Criterion is not applicable. Otherwise, at least in
principal, one can check Eisenstein’s Criterion for each prime ideal P containing I but
excluding an where such a prime ideal P is ensured by Zorn’s Lemma. In particular,
Eisenstein’s Criterion is a powerful tool for constructing irreducible polynomials.

(3) 2x2−2x+3 is an irreducible polynomial over Z[
√
−5] but it is reducible over Q[

√
−5].

Therefore (2X2− 2x+ 3)Z[
√
−5] is not a principal prime ideal. This example demon-

strates the usefulness of the extension of Eisenstein’s Criterion from unique factoriza-
tion domains to arbitary rings, in particular to Dedekind domains. Together with the
remark above (after Definition 2.1) on the extension of a global valuation to an al-
gebraic field extension, this simple example suggests exciting potential approaches to
the classification of prime polynomials over Dedekind domains and even over number
rings.

One can naively define the content of a polynomial as the ideal generated by its coefficients
and call a polynomial primitive if its content is the whole ring (see [4], Exercise 2(iv), Chapter
I and [11], Exercise 9, Section 1-1). However, as Eisenstein’s Criterion indicates, it is more
natural to say that a polynomial is P -primitive with respect to a prime ideal P , if P does not
contain its content. Then the same argument again implies that products of (P )-primitive
polynomials are (P )-primitive. It is clear that a polynomial is primitive if it is P -primitive
for any prime ideal P . Therefore, using the content as a valuation of the field Q(x) of rational
functions over a Dedekind (or even a Prüfer) domain D with the quotient field Q, one can
construct a pid (a Bezout domain) D ⊆ R ⊆ Q(x) whose ideal lattice is isomorphic to the
ideal lattice of D. In the case of a Bezout ring R, possibly with zero-divisors, every polynomial
f = a0 + a1x + · · ·+ anx

n ∈ R[x] can be written as a product of a primitive polynomial and
its content c(f) if and only if there exist bi ∈ R such that ai = dbi, i = 0, 1, . . . , n and the
bi generate R. It is well-known (cf. Lemma 4 in [7]) that the latter condition characterizes
Hermite rings, i.e., rings whose matrices admit triangular reduction, that is, to an arbitrary
m by n matrix M there exist invertible square matrices P ∈ Rn and Q ∈ Rm such that MP
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is triangular (i.e, elements below the main diagonal are 0) and QM is triangular. Examples
for Hermite rings are principal ideal domains and more generally, Bezout domains. Further
examples of hermite rings with zero-divisors can be found on [8]. Gauss’ Lemma can be
reformulated for Hermite rings as follows.

Theorem 2.10 (Gauss’ Lemma for Hermite rings). If S is the divisibility theory of a Hermite
ring R, i.e., the multiplicative monoid of principal ideals partially ordered by reverse inclusion,
then the valuation map ‖ ‖ : R→ S : a ∈ R 7→ ‖a‖ = aR ∈ S can be extended to a valuation
of R[x] with values in S by sending f = a0 + a1x+ · · ·+ anx

n ∈ R[x] to its content c(f) ∈ S.
In particular, primitive polynomials are non-zero-divisors and the ring of quotients of R[x] by
inverting primitive polynomials is again a Hermite ring whose principal ideals are generated
by elements of R.

For the proof we note that every f ∈ R[x] can be written as f = aF, a ∈ R,F ∈ R[x]
where F is a primitive polynomial ring because R is a Hermite ring. Since products of
primitive rings are again primitive, the theorem follows. This new result shows also that the
divisibility theory of a Hermite ring can be extended ti the polynomial ring without changing
its divisibility theory .

References
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