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Szemerédi and WTT 

Fact   We are very close and have been for more 
than 30 years.  In fact, back to back!!! 
 
E. Szemerédi, Regular partitions of graphs, 
Problèmes combinatoires et théorie des graphes 
(Colloq. Internat. CNRS, Univ. Orsay, Orsay, 1976), 
Colloq. Internat. CNRS, 260, Paris: CNRS, pp. 399–
401. 
 
Just check out the very next article!!! 



General Framework 

Two players, BUILDER and ASSIGNER. 
 
BUILDER constructs a graph one point at a time. 
 
ASSIGNER colors the graph as it is built. 
 
All moves are permanent and correct. 
 



Coloring a Tree can be Hard! 

Trees are 2-colorable and are trivial to color off-line.  On-
line the situation is more complicated and the number of 
colors needed goes to infinity with the number of 
vertices. 
 
Theorem (Bean)  The minimum number of colors required 
to color trees on  n  vertices on-line is  1 + lg n . 

 
Remark   First Fit is optimal. 
 



Bipartite Graphs are About the Same 

Remark  First Fit can be forced to use  n  colors on a 
bipartite graph having  2n – 1  vertices. 
 
Theorem (Lovász, Saks and Trotter) 
The minimum number  f(2,n)  of colors required to color 
bipartite graphs on-line satisfies  f(2,n) = Θ(lg n) 
 



3-Colorable Graphs are Hard! 

Theorem (Alon, Kierstead)  The minimum number  
f(3,n)  of colors required to color  3-colorable graphs 
on-line satisfies: 
 
          lg 2 n   <   f(3,n)   <   n2/3 /lg 2/3 n 
 



Some On-Line Problems are Easier 

Theorem (Kierstead and Trotter)   The 
minimum number of colors required to color 
on-line interval graphs with maximum clique 
size  k  is  3k - 2. 
 
Remark  First Fit is not optimal when  k  is 
large.  



First Fit Coloring of Interval Graphs 

Theorem (Woodall; Brightwell, Kierstead, Trotter; 
Pemmaraju, Raman and Varadajan; Babu and 
Narayansamy; Smith; Qin; Chrobak and Slusarek; 
Howard)    
 
On interval graphs with maximum clique size  k,  First 
Fit can be forced to use at least  (5-o(1)) k  colors … 
but cannot be forced to use more than  8k - 4  colors. 



Posets  Off-Line 

Theorem (Dilworth)   The minimum number of 
chains required to cover a poset of width  w  
is  w. 
 
Theorem   The minimum number of antichains 
required to cover a poset of height  h  is  h.  
 
Question   How do the corresponding on-line 
problems behave? 



On-Line Antichain Partitioning 

Theorem (Schmerl and Szemerédi)   The minimum 
number of antichains required to cover posets of 
height  h  is  h(h+1)/2. 
 

x 

Assign the new point  x  
to antichain A(i, j)  when  
x  is at depth   i + 1  and 
height  j + 1 



Szemerédi’s Observation 

With height  h, BUILDER can force 
ASSIGNER to use  h(h + 1)/2 antichains 
and use at least  h  on the set of maximal 
elements alone.  



On-Line Chain Partitioning 

Remark   First Fit can be forced to use 
arbitrarily many chains, even on posets of 
width  2. 
 
Theorem (Kierstead)  Posets of width  w  can 
be partitioned on-line into  (5w – 1)/4  chains. 
 
Theorem  (Bosek and Krawczyk)  Posets of 
width  w  can be partitioned on-line into 
O(w16log w)  chains. 



Interval Orders 

A poset  P  is an interval order if there exists a 
function  I  assigning to each  x  in  P  a closed 
interval  I(x)  = [ax, bx]  of the real line  R  so that   
x  <  y  in  P  if and only if  bx  <  ay  in  R. 



Semiorders – Unit Interval Orders 

A poset  P  is a semiorder if there exists a function  
I  assigning to each  x  in  P  a closed interval  I(x)  = 
[ax, bx = ax + 1]  of the real line  R  so that   x  <  y  in  
P  if and only if  bx  <  ay  in  R. 



Recognizing Interval Orders 

Theorem (Fishburn)  Interval orders are just the 
posets excluding  2 + 2. 

 

Theorem (Scott and Suppes)  Semiorders are just 
the interval orders excluding  3 + 1.   



Interval Orders On-Line 

Remark  It is very easy to recognize interval orders 
and semiorders.  So in on-line problems, BUILDER 
can present such a poset just by giving the order 
relation.  On the other hand, BUILDER could 
actually present an interval representation.  The 
second approach may be more restrictive. 



Linear Discrepancy 

L1 = b < e < a < d < g < c < f 

L2 = a < b < c < d < e < f < g 

L3 = a < b < e < c < d < g < f  

Goal  Find a  “fair” linear extension of a poset, 
i.e., one that keeps incomparable points close 
together. 



Linear Discrepancy 

Definition   The linear discrepancy ld (L)  of a 
linear extension  L  of a poset  P  is the maximum 
value of  |hL(x) – hL(y)|, taken over all pairs  x, y  
of incomparable points in  P.  

Definition  The linear discrepancy  ld (P)  of a 
poset  P  is the minimum value of  ld (L), taken 
over all linear extensions of  P. 



Linear Discrepancy and Bandwidth 

Theorem   (Fishburn, Tannebaum and Trenk, 
Brightwell)  The linear discrepancy of a poset  P  
is the bandwidth of its incomparability graph. 

Remark   FTT reduced the problem to interval 
orders.  Kleitman and Vohra gave an efficient 
algorithm for the bandwidth of an interval graph, 
which was order preserving on the complement. 

Remark  Brightwell has given (as yet unpublished) 
a direct argument, using local exchanges.  Very 
clever! 



Hard to Compute 

Instance:     Poset  P 

                     Integer  d 

 

Question:     Is  ld (P) ≤ d? 

 

Result:  This is an NP-complete problem. 



Easy to Approximate 

Fact  If  L  is any linear extension of a poset  P, 
then 

                      ld (L) ≤  3 ld (P) 



The On-Line Problem 

BUILDER constructs a poset  P  and ASSIGNER 
assembles a linear extension  L  of  P, both 
proceeding one point at a time.   After a week or 
two, the game is halted and the referee 
determines that the linear discrepancy of  P  is  k.  
The absolute worst that ASSIGNER can do is to 
produce an  L  with  ld (L) = 3k.   Is there a 
strategy for ASSIGNER that will do better? 

 



On-Line Linear Discrepancy 

Theorem (Keller, Streib and T)  There is an on-line 
strategy  S  for ASSIGNER that will construct a linear 
extension  L  of  P  so that: 

1.  If  ld (P) = k, then ld (L) ≤  3k – 1.   

2.  If  P  is a semiorder and  ld (P) = k, then  ld (L) ≤ 2k. 



Two Reasonable Strategies 

Strategy  M  (Middle):  Always inserting the new 
point as close to the middle. 

Strategy  G (Greedy):  Insert the new point so 
that the linear discrepancy is minimized. 



Reasonable Not Optimal 

Fact   For each  k ≥  1, BUILDER can construct a 
semiorder  P  with  ld (P) = k while forcing an 
ASSIGNER using Strategy  M, to assemble a linear 
extension  L  with  ld (L) = 3k – 1. 

 

Fact   For each  k ≥  1, BUILDER can construct a 
semiorder  P  with  ld (P) = k while forcing an 
ASSIGNER using Strategy  G, to assemble a linear 
extension  L  with  ld (L) =  2k + (k – 1)/2 . 



Reasonable Not Optimal (2) 

Fact   For each  k ≥  1, BUILDER can construct a 
poset  P  with  ld (P) = k while forcing an 
ASSIGNER using Strategy  M, to assemble a linear 
extension  L  with  ld (L) = 3k. 



Our Result is Best Possible 

Fact  For each k ≥  1, even when restricted to the 
class of interval orders excluding  5 + 1, BUILDER 
can construct a poset  P  with  ld (P)  = k  while 
forcing ASSIGNER to assemble a linear extension  L  
with  ld (L) ≥ 3k – 1. 

 

Remark  If BUILDER is restricted to interval orders 
excluding  4 + 1, we can only show a lower bound of  
2k + (k – 1)/2 . 



Interval Representations 

Theorem (Keller, Streib and T)  There is an on-line 
strategy  L  for ASSIGNER that will construct a linear 
extension  L  of  an interval order  P  presented in terms 
of an interval representation  so that: 

1.  If  ld (P) = k, then ld (L) ≤  2k.   

2.  If  P  is a semiorder and  ld (P) = k, then  ld (L) = k. 



This Result is Also Best Possible 

Fact  For each k ≥  1, even when restricted to the 
class of interval orders excluding  4 + 1, BUILDER 
can construct a poset  P  with  ld (P)  = k  while 
forcing ASSIGNER to assemble a linear extension  
L  with  ld (L) ≥ 2k. 

 

Remark  If BUILDER is restricted to interval 
orders excluding  3 + 1, we can only show a lower 
bound of  k + (k – 1)/2 . 


