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Understanding sumsets

Aim: to understand the structure of sumsets; mainly: the structure

of sets A for which 2A = A + A is small.

Important tool: cardinality inequalities.

Well understood: sets in commutative groups.

Examples: if |A| = n, |2A| = αn, then

|A − A| ≤ α2n, |3A| ≤ α3n.

Noncommutative groups: things are

– often not true,

– even if true, diffcult/impossible to prove.
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Plünnecke’s inequality for sumsets

Theorem. Let j < h be integers, A, B sets in a commutative

group and write |A| = m, |A + jB| = αm. There is an X ⊂ A,

X 6= ∅ such that

|X + hB| ≤ αh/j |X|.

Generally X = A is not a good choice. |A + hB| can be much

larger, it can be greater than m1+C(h), even if α < 2. X has to be

selected carefully.
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Since |X+hB| ≥ |hB| and |X| ≤ m, we get the following immediate

consequence.

Corollary. Let j < h be integers, A, B sets in a commutative

group and write |A| = m, |A + jB| = αm. We have

|hB| ≤ αh/jm.
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Sums and differences

A less trivial consequence (which suffices for 99 % of applications):

Theorem. Let A, B be finite sets in a commutative group and

write |A| = m, |A + B| = αm. For arbitrary nonnegative integers

k, l we have

|kB − lB| ≤ αk+lm.

To get differences we need the following:

Theorem. Let A, Y, Z be sets in a (not necessarily commutative)

group. We have

|A||Y − Z| ≤ |A − Y ||A − Z|.
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The noncommutative case: examples

Some disheartening examples . . .

We take a free group, which is “very noncommutative”. Generators

a, b.

Example 1: 2A small, 3A large.

A = {a, 2a, . . . , na, b}.

We have |A| = n+1, |2A| = 4n and |3A| > n2 since all the elements

ia + b + ja, 1 ≤ i, j ≤ n are distinct.

(In a commutative group we would have |3A| ≤ 43n.)
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Example 2: difference set small, sumset large.

A = {ia + b : 1 ≤ i ≤ m}.

Then both difference sets A−A and −A+A have 2m−1 elements,

while |2A| = m2.

In the commutative case we have

|A| = m, |A − A| ≤ αm ⇒ |2A| ≤ α2m.
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Example 3: one difference set small, other large.

A = {ia + b : 1 ≤ i ≤ m} ∪ {ia : 1 ≤ i ≤ m}.

Then |A| = 2m and

−A = {−b − ja : 1 ≤ j ≤ m} ∪ {−ja : 1 ≤ j ≤ m}.

A − A contains the 2m2 different elements ia ± b − ja,

−A+A = {(i−j)a}∪{(i−j)a+b} ∪{−b+(i−j)a}∪{−b+(i−j)a+b},

4m elements.

Comment: we have

|A||Y − Z| ≤ |A − Y ||A − Z|

without commutativity, so if |A| = m, |2A| ≤ αm, then |−A+A| ≤

α2m and |A − A| ≤ α2m.
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First way out: two, three, many

If 3A is small, not just 2A, then everything else is, just by an

iterated use of the inequality

|A||Y − Z| ≤ |A − Y ||A − Z|.

Theorem. Let A, B be finite sets in a group and write

m = min{|A|, |B|}.

If |A + B − A| ≤ αm or |A + 2B| ≤ αm, then

|A±B . . . ± B
︸ ︷︷ ︸

k summands

−A| ≤ α2km.
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Corollary. (case B = ±A) Let |A| = m, and assume that the

size of one of the triple sum-differences ±A ± A ± A is at most

αm. Then, for 6 of the possible 8 combinations of signs, any k-fold

sum-difference combination has cardinality at most α2km.

2 cases not covered: A − A + A and −A + A − A. They may be

small and 2A large (free-group example as above).
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From 2 to 3 with an extra condition

Between double and triple sums we have the following inequality

without commutativity:

|X + Y + Z|2 ≤ |X + Y ||Y + Z|max
y∈Y

|X + y + Z|.

Problem. Let A, B be finite sets in a noncommutative group, and

define α by

max
b∈B

|A + b + B| = α|A|.

Must there exist a nonempty X ⊂ A such that

|X + 2B| ≤ α′|X|

with an α′ depending only on α?
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An important particular case:

Theorem (Tao).

If

max
a∈A

|A + a + A| ≤ αm,

then |3A| ≤ αcm.
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Part 2: Plünnecke’s graphs

A, B finite sets in a commutative group.

To understand the cardinality properties of the sets A, A + B,

A + 2B, . . . , we build a directed (h + 1) -partite graph with the

sets A, A + B, . . . , A + hB as parts, and with edges going from

each x ∈ A + jB to all x + b ∈ A + (j + 1)B, b ∈ B.

This is the addition graph.

These graphs have certain properties which follow from the

commutativity of addition, and hence Plünnecke called them

commutative.
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Commutative graphs

Directed graphs G = (V, E), (vertices, edges).

Edge from x to y: x → y.

A graph is semicommutative, if for every collection (x; y; z1, z2, . . . , zk)

of distinct vertices such that x → y and y → zi there are distinct

vertices y1, . . . , yk such that x → yi and yi → zi (we can replace a

broom by a fork).

x → y

z1

↗ ·
·

↘ ·
zk

⇒ x

y1 → z1

↗ · ·
· ·

↘ · .
yk → zk
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G is commutative, if both G and the graph Ĝ with edges reversed

are semicommutative.

x1

· ↘
·
· ↗

xk

y → z ⇒

x1 → y1

· · ↘
· ·
· · ↗

xk → yk

z

The commutativity of the addition graph follows from the

possibility of replacing a path x → x + b1 → x + b1 + b2

by x → x + b2 → x + b1 + b2.
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Layered graphs

An h–layered graph is a graph with a fixed partition of the set of

vertices

V = V0 ∪ V1 ∪ . . . ∪ Vh

into h+1 disjoint sets (layers) such that every edge goes from some

Vi−1 into Vi. (For the addition graph, A, A + B, . . . )

For X, Y ⊂ V , the image of X in Y is

im(X, Y ) = {y ∈ Y : ∃ a directed path from some x ∈ X to y}.

The magnification ratio is

µ(X, Y ) = min

{
| im(Z, Y )|

|Z|
: Z ⊂ X, Z 6= ∅

}

.

In layered graph write

µj(G) = µ(V0, Vj).
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Plünnecke’s graph theorem

sounds as follows.

Theorem. In a commutative layered graph µ
1/j
j is decreasing.

That is, µh ≤ µ
h/j
j for j < h.

Typically the only available upper estimate for µj is |Vj |/|V0|. This

yields the following corollary (in fact, an equivalent assertion).

Corollary. Let j < h be integers, G a commutative layered graph

on the layers V0, . . . , Vh. Write |V0| = m, |Vj | = αm. There is an

X ⊂ V0, X 6= ∅ such that

| im(X, Vh)| ≤ αh/j |X|.
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Different summands

The commutativity of the addition graph requires two assumptions:

one is the commutativity of addition, the other is that the same

set B is added repeatedly.

The second assumption can be removed quite well.

Case j = 1:

Theorem. Let A, B1, . . . , Bh be sets in a commutative group G

and write |A| = m, |A + Bi| = αim. There is an X ⊂ A, X 6= ∅

such that

|X + B1 + . . . + Bh| ≤ α1α2 . . . αh|X|.

The case of general j is in a paper by Gyarmati, Matolcsi, Ruzsa,

Building Bridges vol.
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Left, right, left, right

Plünnecke’s method can be modified to handle some noncommutative

situations.

Theorem. Let A, L, R be sets in a (typically noncommutative

group) G and write |A| = m, |L + A| = αm, |A + R| = βm. There

is an X ⊂ A, X 6= ∅ such that

|L + X + R| ≤ αβ|X|.
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Commutative graph
from noncommutative operation

A

L + A
↗ ↘
↘ ↗

A + R

L + A + R

y + x + z1

↗ .
y + x ∈ L + A .

↗ ↘ .
x y + x + zk

changes into

x → x + z1 ∈ A + R → y + x + z1

↘ . . .
x + zk ∈ A + R → y + x + zk
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More than two

Reason for above: multiplication from left and multiplication from

right do commute (assocativity): (bx)c = b(xc).

No more directions: you cannot multiply from above and below.

For > 2 summands we need an extra condition.

Definition. A collection of sets B1, . . . , Bk in a (noncommutative)

group is exocommutative , if for all x ∈ Bi, y ∈ Bj with i 6= j we

have x + y = y + x.
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Theorem. Let A, L1, L2, . . . , Lk, R1, R2, . . . , Rl be sets in a

(typically noncommutative) group G and write |A| = m, |Li + A| =

αim, i = 1, . . . , k, |A + Rj | = βjm, j = 1, . . . , l. Assume that both

collections L1, . . . , Lk and R1, . . . , Rl are exocommutative. There

is a set X ⊂ A, X 6= ∅ such that

|L1 + . . . + Lk + X + Ri + . . . + Rl| ≤ α1 . . . αkβ1 . . . βl|X|.
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From set addition to maps

The role of A and of L, R are very different.

Each b ∈ L induces a map of G: x 7→ bx.

Each c ∈ R induces a map of G: x 7→ xc.

Theorem. Let H be a set, G the group of permutations of H. Let

B1, . . . , Bk ⊂ G, and write |A| = m, |Bi(A)| = αim, i = 1, . . . , k.

Assume that both B1, . . . , Bk are exocommutative. Then there is

an X ⊂ A, X 6= ∅ such that

|B1B2 . . . Bk(A)| ≤ α1 . . . αk|X|.
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Finding a large subset

Typically the set X whose existence is asserted in our theorems is

a proper subset of the starting set A. However, once we can find

some subset, by repeating the selection we can find a subset that

contains 99 % of the elements of A.

Theorem. Let A, L, R be sets in a group G and write |A| = m,

|L + A| = αm, |A + R| = βm. Let a real number ε be given,

0 ≤ ε < m. There exists an X ⊂ A, |X| > (1 − ε)m such that

|L + X + R| ≤ αβ|X|

(
2

ε
− 1

)

.
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Corollary. Let A be a finite set in a group G and write |A| = m,

|A + A| = αm. Let a real number ε be given, 0 ≤ ε < m. There

exists an X ⊂ A, |X| > (1 − ε)m such that

|3X| ≤ |A + X + A| ≤ αβ|X|

(
2

ε
− 1

)

.


