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Understanding sumsets

Aim: to understand the structure of sumsets; mainly: the structure
of sets A for which 2A = A 4+ A is small.

Important tool: cardinality inequalities.
Well understood: sets in commutative groups.

Examples: if |A| = n, [24] = an, then
|A — A] < a?n, |34] < o?n.

Noncommutative groups: things are
— often not true,

— even if true, diffcult /impossible to prove.



Plinnecke’s inequality for sumsets

Theorem. Let j < h be integers, A, B sets in a commutative
group and write |A| = m, |A+ jB| = am. There is an X C A,
X # ) such that

| X + hB| < aMi|X]|.

Generally X = A is not a good choice. |A 4+ hB| can be much
larger, it can be greater than m'T¢(") even if & < 2. X has to be

selected carefully.



4

Since | X+hB| > |hB| and | X | < m, we get the following immediate
consequence.
Corollary. Let j < h be integers, A, B sets in a commutative

group and write |A| = m, |A + jB| = am. We have

IhB| < oim.



Sums and differences
A less trivial consequence (which suffices for 99 % of applications):

Theorem. Let A, B be finite sets in a commutative group and
write |A| = m, |A + B| = am. For arbitrary nonnegative integers
k,l we have

kB —IB| < o*im,

To get differences we need the following:

Theorem. Let A,Y, Z be sets in a (not necessarily commutative)

group. We have

AllY — 2| < |[A-Y]|A- 2],



The noncommutative case: examples
Some disheartening examples ...

We take a free group, which is “very noncommutative”. Generators
a,b.

Example 1: 2A small, 3A large.

A ={a,2a,...,na,b}.

We have |A| = n+1, |2A4| = 4n and |3A| > n? since all the elements
ta+ b+ ja, 1 <1,7 <n are distinct.

(In a commutative group we would have |3A4| < 43n.)



Example 2: difference set small, sumset large.

A={ia+b:1<i<m}.

Then both difference sets A— A and — A+ A have 2m — 1 elements,
while |24 = m?2.

In the commutative case we have

Al =m, |A—A| <am = |24| < o?m.



Example 3: one difference set small, other large.

A={ia+b:1<i<m}U{ia:1<i<m}.

Then |A| = 2m and
—A={-b—ja:1<j<m}U{—ja:1<j<m}
A — A contains the 2m? different elements ia + b — ja,
—A+A = {(i—j)a}{(i—7)a+b} U{—b+(i—j)a}U{—=b+(i—j)a+b},
4m elements.
Comment: we have
A|lY — Z| <|A-Y||A - Z]

without commutativity, so if |A| = m, |24| < am, then |- A+ A| <
a?m and |[A — A] < a?m.



First way out: two, three, many

If 3A is small, not just 2A, then everything else is, just by an

iterated use of the inequality

AlY — 2] < |A-Y|A-2].

Theorem. Let A, B be finite sets in a group and write
m = min{|A|, |B|}.
If [ A+ B— Al <am or |A+2B| < am, then

|A+B...+ B —A| < a*m.

k summands



10

Corollary. (case B = +A) Let |A|] = m, and assume that the
size of one of the triple sum-differences +A + A + A is at most
am. Then, for 6 of the possible 8 combinations of signs, any k-fold

sum-difference combination has cardinality at most a?*m.

2 cases not covered: A — A+ A and —A+ A — A. They may be

small and 2A large (free-group example as above).



11

From 2 to 3 with an extra condition

Between double and triple sums we have the following inequality

without commutativity:
X +Y +Z)? < (X +Y[[Y + Z|max | X +y + Z|.
y
Problem. Let A, B be finite sets in a noncommutative group, and

define a by
max |A + b+ B| = «afA|.
beB

Must there exist a nonempty X C A such that
| X +2B| < d/|X]

with an o/ depending only on a?



An important particular case:
Theorem (Tao).

If

max |A +a + A| < am,
acA

then |3A| < a‘m.
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Part 2: Pliunnecke’s graphs
A, B finite sets in a commutative group.

To understand the cardinality properties of the sets A, A + B,
A+ 2B, ..., we build a directed (h + 1) -partite graph with the
sets A, A+ B, ..., A+ hB as parts, and with edges going from
eachx € A+ jBtoallz+be A+ (j+1)B,be B.

This is the addition graph.

These graphs have certain properties which follow from the
commutativity of addition, and hence Pliinnecke called them

commautative.
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Commutative graphs
Directed graphs G = (V, E), (vertices, edges).
Edge from z to y: * — y.

A graph is semicommutative, if for every collection (z;y; 21, 22, - . ., 2k)
of distinct vertices such that x — y and y — z; there are distinct
vertices yi,...,yx such that x — y; and y; — z; (we can replace a

broom by a fork).

21 Y1 — 2

2k Y — 2k
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G is commutative, if both G and the graph G with edges reversed

are semicommutative.

T rr — U1
N\ : CN
y—z = - . A
/ : e

Tk Ty — Yk

The commutativity of the addition graph follows from the
possibility of replacing a path + — = + b7 — x + b1 + by
byx—>:c—|—b2—>x—|—b1—|—bg



16

Layered graphs

An h-layered graph is a graph with a fixed partition of the set of
vertices
V=WuWhiu...uVv,

into h+ 1 disjoint sets (layers) such that every edge goes from some
Vi_1 into V;. (For the addition graph, A, A+ B, ...)

For X,Y C V, the image of X inY is
im(X,Y) ={y € Y : 3 a directed path from some = € X to y}.

The magnification ratio is

1(X,Y) = min {

In layered graph write

|im(Z,Y)|

Z :ZCX,Z#@}.
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Pliinnecke’s graph theorem

sounds as follows.

Theorem. In a commutative layered graph u;/ 7 s decreasing.

That is, up < u?/j for j < h.

Typically the only available upper estimate for 41; is |V;|/|Vo|. This

yields the following corollary (in fact, an equivalent assertion).

Corollary. Let j < h be integers, G a commutative layered graph
on the layers Vp, ..., Vs. Write [Vp| = m, |V;| = am. There is an
X C Vo, X # ) such that

[im(X, V)| < a™/7|X].
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Different summands

The commutativity of the addition graph requires two assumptions:
one is the commutativity of addition, the other is that the same

set B is added repeatedly.
The second assumption can be removed quite well.
Case j = 1:

Theorem. Let A, By,..., Bj be sets in a commutative group G
and write |A| = m, |A+ B;| = aym. Thereisan X C A, X # ()
such that

I X +B1+...+ Bn| <agas...ap|X|.

The case of general j is in a paper by Gyarmati, Matolcsi, Ruzsa,
Building Bridges vol.
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Left, right, left, right

Pliinnecke’s method can be modified to handle some noncommutative

situations.

Theorem. Let A, L, R be sets in a (typically noncommutative
group) G and write |A| =m, |L + A| = am, |A+ R| = fm. There
isan X C A, X # () such that

L+ X + R| <apf|X]|.



Commutative graph

from noncommutative operation

L+ A

/ N
A\ //L+A+R

A+ R
y+r+2

/
y+xelL+ A
/ N :
T Y+ T+ 2
changes into
r — x4+21€A+R — y+zr+2n

. . . .
r+z € A+ R — y+ax+ 2
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More than two

Reason for above: multiplication from left and multiplication from

right do commute (assocativity): (bx)c = b(xc).

No more directions: you cannot multiply from above and below.

For > 2 summands we need an extra condition.

Definition. A collection of sets By, ..., By in a (noncommutative)
group is exocommutative , if for all x € B;, y € B; with ¢ # j we

have z +y =y + .
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Theorem. Let A,Ly,Lo,..., L, R1,Ro,...,R; be sets in a
(typically noncommutative) group G and write |A| = m, |L; + A| =
am,i=1,...,k, |[A+ R;| =B;m, j=1,...,1. Assume that both
collections L1,...,Lr and Rq,..., R; are exocommutative. There
is aset X C A, X # () such that

‘L1—|—+Lk;—|—X‘|‘Rz+‘|‘Rl|§06104k;6161|X‘
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From set addition to maps
The role of A and of L, R are very different.
Each b € L induces a map of G: = — bx.
Each ¢ € R induces a map of G: x +— zc.

Theorem. Let H be a set, G the group of permutations of H. Let
Bi,...,Br C G, and write |A| = m, |B;(A)| = aym, i =1,...,k.
Assume that both By,..., B are exocommutative. Then there is
an X C A, X # () such that

|BlBgBk<A)‘ S a1 .. O{k’X|
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Finding a large subset

Typically the set X whose existence is asserted in our theorems is
a proper subset of the starting set A. However, once we can find
some subset, by repeating the selection we can find a subset that

contains 99 % of the elements of A.

Theorem. Let A, L, R be sets in a group G and write |A| = m,
|IL+ A| = am, |A+ R| = fm. Let a real number ¢ be given,
0 < e < m. There exists an X C A, |X| > (1 — )m such that

2
L+ X+ R| <ap|X| (g_1>'
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Corollary. Let A be a finite set in a group G and write |A| = m,
|A 4+ A| = am. Let a real number ¢ be given, 0 < & < m. There
exists an X C A, | X| > (1 — ¢)m such that

2
3X| <|A+ X 4+ A| < af|X] (g_1>'



