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Ramsey theory

H → (G )edge
r

Goal: for given G , minimize H.
Two variants:

Ramsey numbers: min. # of vertices of H

(attained when
H = Kn)

r(G ) = min{n : Kn → G}.

Size-Ramsey numbers: min. # of edges of H

r̂(G ) = min{e(H) : H → G}.
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A question of Erdős, Faudree, Rousseau and Schelp

Question (1978): For the path Pn,

r̂(Pn)

n
→∞ ?

r̂(Pn)

n2
→ 0 ?
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Linear bounds

Theorem [Beck (1983)]: r̂(Pn) < 900n.

Let Gn,∆ be the set of all graphs G on n vertices with ∆(G ) ≤ ∆.

Theorem [Chvátal-R-Szemerédi-Trotter (1983)]:

r(G ) < c∆n for every G ∈ Gn,∆

Same proof yields:

r̂(G ) = o(n2) for every G ∈ Gn,∆

Problem [Beck]: r̂(G )
???
< c∆n for every G ∈ Gn,∆?

Answer [R-Szemerédi]: No, i.e., r̂(G )� n for some G ∈ Gn,3.
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Construction of the graph G

Goal: construct G on n vertices with ∆(G ) = 3 such that

H 6→ G if e(H) ≤ n(log n)1/30.

Proof: Take t and m = 2t−1 satisfying

2 log n

log log n
≤ m ≤ 4 log n

log log n
.
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Construction of the graph G

Building block: binary tree of height t − 1.
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Construction of the graph G

Tree T

# of vertices = 2 +
t∑

i=1

2i = 2t+1 = 4m
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Construction of the graph G

Automorphisms of T

Number of choices = 220 × 221 × 222
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Construction of the graph G

Automorphisms of T

|Aut(T )| = 21+2+···+2t−1
= 22t−1.
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Construction of the graph G

Basic component G i of G :

G i = T + C i , where C i is a Hamiltonian cycle on the 2m leaves
of T .
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Construction of the graph G

Two isomorphic components
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Construction of the graph G

# of possible (labeled) Hamiltonian cycles on 2m leaves

=
(2m)!

2m

# of non-isomorphic basic components

(2m)!

2m |Aut(T )|
>

(2m − 1)!

22t =
(2m − 1)!

22m
> · · · > mm > n >

n

4m
=: q

since m ≥ 2 log n
log log n .
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Construction of the graph G

G = disjoint union of q pairwise non-isomorphic G i = T + C i .
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Construction of the graph G
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Some facts about G

every vertex of G has degree either 2 or 3;

|V (G )| = n and |E (G )| ≤ 3n

2
;

α(G ) ≤ 3n

5
.
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Some facts about G

every vertex of G has degree either 2 or 3;

|V (G )| = n and |E (G )| ≤ 3n

2
;

α(G ) ≤ 3n

5
.

Let I be a maximum independent set of G .

e(I ,V (G ) \ I ) ≥ 2 |I | = 2α

e(I ,V (G ) \ I ) ≤ 3 |V (G ) \ I | = 3(n − α).

Therefore
2α ≤ 3(n − α)

and α ≤ 3n

5
.
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Lower bound on r̂(G )

Let ` = (log n)1/30 and suppose H has n` edges. Then H 6→ G .

Define k = 10` and

Vhigh = {x ∈ V (H) : degH(x) > k}

Vlow = {x ∈ V (H) : degH(x) ≤ k}.

Note: |Vhigh| < n
5 .
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Lower bound on r̂(G )

An edge e ∈ H[Vlow] can see the cycle C i , if there is a copy of G i

in H[Vlow] in which the edge e is the “root edge” of T .

On generalized Ramsey numbers



Lower bound on r̂(G )

Question: How many cycles can an edge e see?

k2

(
k

2

)(2+···

+2t−1

)

× k2m−1︸ ︷︷ ︸
# of cycles spanned by 2m vertices

< k6m.
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Lower bound on r̂(G )

Question: How many cycles can an edge e see?
Answer: at most k6m.

k6m≤n4/5+o(1).

Claim: ∃ i0 ∈ [q] for which C i0 can be seen by at most n5/6 edges.

Proof: On average a cycle can be seen by at most

1

q
|E (H[Vlow])|·k6m

≤ n` · n4/5+o(1)

q
=︸︷︷︸

q= n
4m

logarithms︷ ︸︸ ︷
(4m) · ` ·n4/5+o(1) < n5/6

edges.
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k = 10(log n)1/30, m ≤ 4 log n

log log n
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The coloring:
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Lower bound on r̂(G )

The coloring:

Red edges:

edges incident to Vhigh

Ei0 = {e ∈ H[Vlow] : e can see C i0}, |Ei0 | ≤ n5/6.

All other edges are blue.
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Lower bound on r̂(G )

No BLUE copy of G since no blue edge can see the cycle C i0 .
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Lower bound on r̂(G )

No RED copy of G : any subgraph of Hred of order n has an inde-
pendent set of size

≥ n − |Vhigh| −
∣∣∣ ⋃
e∈Ei0

e
∣∣∣ ≥ n − n

5
− 2n5/6 >

3n

5
.

On the other hand α(G ) ≤ 3n

5
. �

On generalized Ramsey numbers



Summary

Gn,∆ = {G : |V (G )| = n,∆(G ) ≤ ∆}

r̂n,∆ = max{r̂(G ) : G ∈ Gn,∆}.

Just proved: r̂n,3 ≥ n(log n)1/30 � n.

Conjecture [R-Szemerédi (2000)]:

∀ ∆ ≥ 3 ∃ ε > 0, n1+ε ≤ r̂n,∆ ≤ n2−ε.

Theorem [Kohayakawa-R-Schacht-Szemerédi (2010)]:

r̂n,∆ ≤ n2−1/∆+o(1) for all ∆ ≥ 3
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Universal Ramsey graphs

H → Gn,∆ ⇔ H → G for all G ∈ Gn,∆.

Theorem [KRSS]: For all ∆ ≥ 3 there exist an H such that

H → Gn,∆

and

|E (H)| ≤ n2−1/∆+o(1).

Fact: If H ⊇ G for every G ∈ Gn,∆ then

|E (H)| ≥ n2−2/∆.

Question: Is r̂n,∆ < n1.99 for every ∆?
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