# A proof of

# the stability of extremal graphs.

#### Simonovits' stability from Szemerédi's regularity

### Zoltán Füredi

University of Illinois at Urbana-Champaign (till Aug 15, 2011)

 ${\tt z-furedi@math.uiuc.edu, and}$ 

Rényi Alfréd Mathematical Institute, Budapest

A lecture to honour E. Szemerédi Aug. 3, 2010. Budapest

#### ABSTRACT:

We present a concise, contemporary proof (i.e., one using Szemerédi's regularity lemma) for the following classical stability result of Simonovits 1968:

If an *n*-vertex *F*-free graph *G* is almost extremal,  $\chi(F) = p + 1$ , then the structure of *G* is close to a *p*-partite Turán graph.

More precisely, for  $\forall F$  and  $\varepsilon > 0$ ,  $\exists \delta > 0$  and  $n_0$  (depending on F and  $\varepsilon$ ) such that if  $n > n_0$  and

$$e(G) > (1 - \frac{1}{p})\binom{n}{2} - \delta n^2$$

then one can change (add and delete) at most  $\varepsilon n^2$  edges of G and obtain a complete p-partite graph.

# Notations

$$[n] := \{1, 2, \dots, n\}$$

 $G_n$  graph on n vertices

 $\chi(G) :=$  chromatic number,

e(G) := number of edges,

 $\deg_G(x)$  degree of vertex x of graph G

 $N_G(x) \subset V$ , neighborhood  $(x \notin N(x))$ 

 $T_{n,p} :=$ the Turán graph,

the *p*-chromatic graph having the most edges.



### Turán's theorem Turán type graph problems

Theorem. Mantel (1903) (for  $K_3$ )

Turán (1940)

 $e(G_n) > e(T_{n,p}) \implies K_{p+1} \subseteq G_n.$ 

Unique extremal graph for  $K_{p+1}$ .

E.g.: the largest triangle-free graph is the complete bipartite one with  $\lfloor n^2/4 \rfloor$  edges.

General question: Given a family  $\mathcal{F}$  of forbidden graphs, what is the maximum of  $e(G_n)$  if  $G_n$  does not contain subgraphs  $F \in \mathcal{F}$ ?

Notation:  $ext(n, \mathcal{F}) := max e(G)$ 

 $\operatorname{ext}(n, K_{p+1}) = \left(1 - \frac{1}{p}\right) \binom{n}{2} + O(n).$ 

### **Degree** majorization

**Theorem** (Erdős, 1970) Suppose G is  $K_{p+1}$ -free. Then there is a p-chromatic H on the same vertex set,

V(H) = V(G)

with

 $\deg_H(x) \ge \deg_G(x).$ 

*H* majorizes the degrees of *G* for every  $x \in V$ .

**Proof** of Erdős' degree majorization: (An Algorithm.)

Input: G (with no  $K_{p+1}$ ) Output:  $V_1, V_2, \ldots, V_p$  a p-partition of V(G).  $H := K(V_1, \ldots, V_p)$  a p-partite complete graph

Let  $x_1 :=$  a vertex with max degree. Let  $V_1 := V \setminus N(x_1)$ .

Let  $x_i :=$  a vertex with max degree on the graph of the rest of the vertices, of  $G - (V_1 \cup \ldots V_{i-1})$ . Procedure stops in p steps,  $\{x_1, x_2, \ldots, x_p\}$  spans a complete graph. Q.e.d.



 $\forall y \in V_1 \quad \deg(y) \le \deg(x_1) =: d$  $e(V_1) + e(V_1, \overline{V_1}) \le d(n - d).$ 

### Toward a general theory: The Erdős-Stone theorem (1946)

 $ext(n, K_{p+1}(t, ..., t)) = ext(n, K_{p+1}) + o(n^2).$ 

Here  $K_{p+1}(t,...,t)$  is the blow up of the  $K_{p+1}$ . It is a  $T_{t(p+1),p+1}$ .

### **General asymptotics**

Erdős-Stone-Simonovits (1946), (1966)

$$\min_{F\in\mathcal{F}}\chi(F)=p+1$$

then

If

$$\mathbf{ext}(n,\mathcal{F}) = \left(1 - \frac{1}{p}\right) \binom{n}{2} + o(n^2).$$

The asymptotics depends only on the **minimum chromatic number**.

How to prove the asymptotic from Erdős-Stone?

- pick  $F \in \mathcal{F}$  with  $\chi(F) = p + 1$ .
- pick t with  $F \subseteq K_{p+1}(t, \ldots, t)$ .
- apply Erdős-Stone:

 $\frac{\operatorname{ext}(n,\mathcal{F}) \leq \operatorname{ext}(n,F)}{\leq} \frac{\operatorname{ext}(n,K_{p+1}(t,\ldots,t))}{\leq} \frac{\operatorname{ext}(n,K_{p+1}(t,\ldots,t))}{\epsilon n^2}$ 

On the other hand

$$e(T_{n,p}) \leq \operatorname{ext}(n,\mathcal{F}).$$

Q.e.d.

**Corollary**  $O_6 = Octahedron graph, P_{10} = Petersen$ graph,  $D_{20} = Dodecahedron graph.$  ( $\chi = 3.$ )

$$ext(n, O_6) = \frac{1}{4}n^2 + o(n^2)$$

$$ext(n, P_{10}) = \frac{1}{4}n^2 + o(n^2)$$

$$ext(n, D_{20}) = \frac{1}{4}n^2 + o(n^2).$$

**Corollary**  $G_{11} =$ *Groetsch* graph,  $I_{12} =$ *Icosahedron* graph. (Here  $\chi = 4$ .)

ext
$$(n, G_{11}) = \frac{1}{3}n^2 + o(n^2)$$

$$\mathbf{ext}(n, I_{12}) = \frac{1}{3}n^2 + o(n^2).$$

### Exact Extrema: Simonovits' Dodecahedron Theorem



Dodecahedron:  $D_{20}$   $H(n, 2, 5) := T_{n-5,2} \otimes K_5.$ 



H(n, 2, 5)

For  $D_{20}$ , H(n, 2, 5) is the (only) extremal graph for  $n > n_0$ . H(n, 2, 5) cannot contain a  $D_{20}$  since one can delete 5 points of H(n, 2, 5) to get a bipartite graph but one cannot delete 5 points from  $D_{20}$  to make it bipartite.

## **Octahedron Theorem**

**Erdős-Simonovits** (Bollobás, Erdős, Simonovits, Szemerédi) For  $n > n_0$ , the extremal  $O_6$ -free graph is a complete bipartite graph + on one side an extremal  $C_4$ -free + on the other side a matching.





Excluded: octahedron,  $O_6$ 

extremal graph

### STRUCTURAL STABILITY

Each extremal graph was close to some  $T_{n,p}$ . More is true:

If  $p + 1 = \chi(F)$  then the extremal or almost extremal graphs are very similar to  $T_{n,p}$ .

For every  $\varepsilon > 0$  and F there is a  $\delta > 0$ , and  $n_0$  such that if  $F \not\subseteq G_n$ ,  $n > n_0$  and  $e(G_n) \ge \left(1 - \frac{1}{p}\right) \binom{n}{2} - \delta n^2,$ then

$$E(G_n) \bigtriangleup E(T_{n,p}) \le \varepsilon n^2.$$

Almost extremal *F*-free graphs are almost *p*-colorable.

I.e., one can change (add and delete) at most  $\varepsilon n^2$  edges of G and obtain a complete p-partite graph.

(Same result for the class  $\mathcal{F}$ , instead of F).

#### AIM of talk:

to present a new proof for the Stability Thm.

Stability of  $ext(n, K_{p+1})$ 

First: stability for  $K_{p+1}$ . Very first: Large *p*-chromatic subgraphs

**Theorem 1** (*ZF* 2010, new and simple) Suppose  $K_{p+1} \not\subset G$ , |V(G)| = n and

 $e(G) \ge e(T_{n,p}) - t.$ 

Then there exists a *p*-chromatic subgraph  $H_0$ ,  $E(H_0) \subset E(G)$  such that

 $e(H_0) \ge e(G) - t.$ 

#### Large *p*-chromatic subgraphs:

There are other (more exact) stability results, but! Advantage of this one: No  $\varepsilon, \delta, n_0, \ldots$ , it is true for every n and t.

If t < n/(2p) - O(1) then G itself is p-chromatic (Hanson, Toft 1991), there is no need to delete.

E. Győri 1987, 1991

$$e(H_0) \ge e(G) - O(t^2/n^2).$$

One can delete at most e/2 edges to make G bipartite (Erdős). (at most e/p to make it p-chromatic) Gen's: Alon 1996, Tuza et al., Bollobás & Scott, ... **Proof** of Thm. 1 ( $\exists$  large *p*-partite  $H_0 \subset G$ ) Algorithm. Input: *G* Output:  $V_1, V_2, \ldots, V_p$ , a partition of V(G) such that

$$\sum_{i} e(G|V_i) \le t.$$

Consider the previous partition  $V_1, V_2, \ldots, V_p$ ,  $d_i = \deg(x_i)$ . We have  $\deg_{G|V_i \cup V_{i+1} \ldots \cup V_p}(y) \le d_i$  for  $y \in V_i$ . Then

$$e(G) \leq \sum |V_i| \times d_i = e(K(V_1, V_2, \dots, V_p)) \leq e(T_{n,p}).$$

However! edges inside  $V_i$  are counted twice:

$$e(G) + \sum_{i} e(G|V_i) \le e(T_{n,p}) \implies \sum \le t.$$

# Stability of $ext(n, K_{p+1})$

**Theorem 2** (*ZF* 2010) Suppose  $G_n$  is  $K_{p+1}$ -free with  $e(G) \ge e(T_{n,p}) - t$ . Then  $\exists$  a complete *p*-chromatic graph *H*, V(H) = V(G), such that

### $|E(G) \bigtriangleup E(H)| \leq \mathbf{3}t.$

Proof: Delete t edges to make it p-partite, add at most 2t to make it complete p-partite. Q.e.d.

## **Proof of stability of** F

TOOLS: Theorem 2. i.e., the stability for  $K_{p+1}$ . (We suppose  $\chi(F) = p + 1$ .)

&

Szemerédi's regularity lemma.

Usually we use 'Counting lemma' + 'Removal lemma' + 'Blow-up lemma.'

Here we will use a corollary we call: Subgraph lemma.

## Szemerédi's Lemma asserts:

that **every** graph can be approximated by quasi-random graphs.

Basic notion of **quasi-randomness:** 

Def: G(A, B) bipartite graph is  $\alpha$ -regular, ( $\alpha$ -quasi random) if for all  $A' \subset A$ ,  $|A'| \ge \alpha |A|$  and  $B' \subset B$ ,  $|B'| \ge \alpha |B|$  one has

$$|d_G(A', B') - d_G(A, B)| \le \alpha,$$

where

$$d_G(A', B') = \frac{e(G[A', B'])}{|A'||B'|}$$

is the **density** of the induced bipartite subgraph G[A', B'].

### The Regularity Lemma

Theorem (Szemerédi 1978)

For every  $\alpha > 0$  and integer  $\ell_0$ , there exist integers  $L_0 = L_0(\alpha, \ell_0)$  and  $n_0 = n_0(\alpha, \ell_0)$  so that for every graph G = (V, E),  $|V| \ge n_0$ , V admits a partition  $V = V_1 \cup \ldots \cup V_L$ ,  $\ell_0 \le L \le L_0$ , satisfying (i)  $|V_1| \le |V_2| \le \ldots \le |V_L| \le |V_1| + 1$  and (ii) all but at most  $\alpha {L \choose 2}$  pairs  $(V_i, V_j)$ ,  $1 \le i < j \le L$ , are  $\alpha$ -regular.

In many versions: we also have a set  $V_0 \subset V$ ,  $|V_0| < \alpha |V|$ , a small set of 'exceptional' vertices.

## The Cluster Graph

Given G, having a Szemerédi-partition  $V = V_0 \cup V_1 \cup \ldots \cup V_L$ , most applications use the Cluster Graph (= reduced graph, skeleton graph).

### $G \rightarrow R \beta$ -reduced cluster graph where R has L vertices $\{1, 2, ..., L\}$ and $(i, j) \in E(R)$ if $(V_i, V_j)$ is $\alpha$ -regular with density $\geq \beta$ .

Here we will have  $\beta >> \alpha$ , but still small, defined later.

## How to obtain the cluster graph R

Start with G,  $\alpha$ .

Add new vertices  $\{1, 2, \ldots, L\}$ 

Identify  $\beta$ -dense  $\alpha$ -reg pairs. Obtain R.









### The Subgraph Lemma

Many properties of G are inherited by R, one can count embeddings, homomorphisms.

**Subgraph Lemma.** (Folklore, easy corollary.) If G is F-free,  $\beta > 2\alpha^{1/p^2}$ , then R is  $K_{p+1}$ -free.

Early forms: Szemerédi, Ruzsa & Szemerédi. Contemporary forms: Lovász, Szegedy, Elek, et al. Surveys: Komlós-Simonovits 1996,

Komlós-Shokoufandeh-Simonovits-Szemerédi 2002. For hypergraphs: Frankl, Rödl, Nagle, Skokan, Solymosi, Tao, Gowers etc.

### How to prove Erdős-Stone?

Start with an *F*-free graph  $G_n$ ,  $\chi(F) = p + 1$ .



- No  $K_{p+1}$  in the Cluster graph R
- Apply Turán's theorem,  $e(R) \leq (1 \frac{1}{p})\binom{L}{2} + L$
- Estimate the edges of the original graph:

$$e(G_n) \le e(R) \left(\frac{n}{L}\right)^2 + O(\alpha + \beta)n^2.$$

# How to prove Stability?



- No  $K_{p+1}$  in the Cluster graph R
- Apply Turán's theorem with stability
- Estimate the edges of the original graph

### Sketch of the proof of stability for F

Given G with  $n > n_0$ , G is F-free,  $\chi(F) = p + 1$  and  $e(G) > (1 - \frac{1}{p}) {n \choose 2} - \delta n^2$ . ( $\delta$  will be defined later).

Apply Szemerédi's regularity lemma to G, with  $\alpha > 0$ . Obtain regular partition  $V_1, \ldots, V_L$ .

Leave out edges of

- irregular pairs
- inner edges (inside  $V_i$ 's)
- low density pairs (less than density  $\beta$ ), i.e.,

consider the  $\beta$ -reduced cluster graph R on  $\{1, 2, \ldots, L\}$ .

By the subgraph lemma: R is  $K_{p+1}$ -free. So  $e(R) \le (1 - \frac{1}{p}) {L \choose 2} + L$  by Turán. On the other hand

$$e(R)(\frac{n}{L})^2 + O(\alpha + \beta)n^2 > e(G) > \frac{p-1}{2p}n^2 - \delta n^2.$$

Hence  $e(R) > e(T_{L,p}) - (\alpha + \beta + \delta)L^2$ . Remainder term: t, it is 'small'.

Use stability for  $K_{p+1}$ : One can change 3t edges of R to get a complete p-partite one.

This corresponds changing  $O(tn^2/L^2)$  edges of G to make it complete p-partite. Q.e.d.