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ABSTRACT:

We present a concise, contemporary proof (i.e., one using Sze-
merédi’'s regularity lemma) for the following classical stability
result of Simonovits 1968:

If an n-vertex F-free graph G is almost extremal, x(F) =p+ 1,
then the structure of G is close to a p-partite Turan graph.

More precisely, for V F and € > 0, 3 § > 0 and ng (depending on
F and ¢) such that if n > ng and

e(G) > (1 — %) (2) - on?

then one can change (add and delete) at most en? edges of G
and obtain a complete p-partite graph.



Notations

[n] :={1,2,...,n}

Gn, graph on n vertices

x(G) := chromatic number,

e(G) := number of edges,

deg(x) degree of vertex x of graph G

Neg(xz) C V, neighborhood  (x & N(x))



Th.p = the Turan graph,
the p-chromatic graph having the most edges.
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The Turan Graph




Turan’s theorem
Turan type graph problems

Theorem. Mantel (1903) (for K3)
Turan (1940)

Unique extremal graph for K, ;.

E.g.: the largest triangle-free graph is the complete
bipartite one with |n?/4| edges.




General question: Given a family F of forbidden
graphs, what is the maximum of e(Gy,) if G, does
not contain subgraphs F € F7?

Notation: ext(n,F) := maxe(G)

ext(n, K,41) = (1 — %) (g) + O(n).




Degree majorization

Theorem (Erd&s, 1970)
Suppose G is K, 1-free. Then
there is a p-chromatic H on the same vertex set,

V(H) =V(G)
with

degy(xz) > degg(x).

H majorizes the degrees of G for every x € V.



Proof of Erd6s’ degree majorization: (An Algorithm.)

Input: G (with no K1)
Output: Vi, Vo,...,V, a p-partition of V(G).
H = K(Vy,...,Vp) a p-partite complete graph

Let =1 ;= a vertex with max degree.
Let V3 .=V \ N(z1).

Let x; := a vertex with max degree on the graph of
the rest of the vertices, of G — (VJU...V;_1).
Procedure stops in p steps, {x1,x>,...,2p} Spans a

complete graph. Q.e.d.



Vye Vi deg(y) <deg(zy) =:d

e(V1) +e(V1, V1) < d(n —d).



Toward a general theory:
The Erdds-Stone theorem (1946)

ext(n, K,y1(t,...,t)) = ext(n, K,41) + o(n?).

Here K,41(t,...,t) is the blow up of the K, .
ttis a dyp+1)p+1-



General asymptotics

Erdds-Stone-Simonovits (1946), (1966)

If
min x(F) =p+1
minx(F) =p

then

ext(n, F) = (1 — %) (Z) + o(n?).

The asymptotics depends only on the
minimum chromatic number.




How to prove the asymptotic from Erdds-Stone?

— pick F € F with x(F') =p+ 1.
— pick t with F C Kp+1(t,...,t).
— apply Erdds-Stone:

ext(n, F) < ext(n, F) ext(n, Kp41(t,...,t))

<
< e(Tnp) +en”

On the other hand
e(Th.p) < ext(n,F).
Q.e.d.



Corollary Og = Octahedron graph, Pig = Petersen
graph, D>g = Dodecahedron graph. (x = 3.)

@ ext(n,Og) = %nQ + o(n?)
@ ext(n, Pig) = %nz + o(n?)
@ ext(n, Dog) = %nQ + o(n?).

Corollary G171 = Groetsch graph, 11, = Icosahedron
graph. (Here x =4.)

@ ext(n,Gq11) = %nQ + o(n?)
@ ext(n,I15) = %nQ + o(n?).



Exact Extrema:
Simonovits’ Dodecahedron Theorem

Dodecahedron: Dog H(n,2,5) . =T,_52® Ks.

For D>g, H(n,2,5) is the (only) ex-
tremal graph for n > ng.

H(n,2,5) cannot contain a Dy since one
can delete 5 points of H(n,2,5) to get a
bipartite graph but one cannot delete 5
points from D>g to make it bipartite.

H(n,2,5)




Octahedron Theorem

Erdds-Simonovits (Bollobas, Erdés, Simonovits, Szemerédi)
For n > ng, the extremal Og-free graph is

a complete bipartite graph +
on one side an extremal Cy4-free +

on the other side a matching.

0= Que®0 0 G0 O==0 O

Excluded: octahedron, Og extremal graph



STRUCTURAL STABILITY

Each extremal graph was close to some 7, ,. More is true:

If p4+ 1 = x(F) then the extremal or almost extremal
graphs are very similar to Ty p.

Erdds and Simonovits
For every e > 0 and F thereisa 6 > 0, and ng such

that if F £ Gp, n > ng and

1\ n
e(Gp) > (1 _ ;> (2) _ §n2,

then
E(Gn) & E(Tnp) < en®.




Almost extremal F-free graphs are almost p-colorable.

I.e., one can change (add and delete) at most en?

edges of G and obtain a complete p-partite graph.

(Same result for the class F, instead of F').

AIM of talk:
to present a new proof for the Stability Thm.



Stability of ext(n, K, 1)

First: stability for Kp_|_1.
Very first: Large p-chromatic subgraphs

Theorem 1 (ZF 2010, new and simple)
Suppose K, 1 ¢ G, |[V(G)| =n and

e(G) > e(Tnp) —t.

Then there exists a p-chromatic subgraph Hy,
E(Hp) C E(G) such that

e(Hp) > e(G) —t.



Large p-chromatic subgraphs:

There are other (more exact) stability results, but!
Advantage of this one:
No €,0,ng,..., it is true for every n and t.

If t <n/(2p) —O(1) then G itself is p-chromatic
(Hanson, Toft 1991), there is no need to delete.

E. Gybri 1987, 1991
e(Hp) > e(G) — O(t? /n?).
One can delete at most ¢/2 edges to make G bipartite

(Erdos). (at most e/p to make it p-chromatic)
Gen's: Alon 1996, Tuza et al., Bollobas & Scott, ...



Proof of Thm. 1 (3 large p-partite Hy C G)

Algorithm. Input: G
Output: V1, V5,...,Vp, a partition of V(G) such that

> e(GlVy) <t.

(2
Consider the previous partition V1, Vs, ..., Vp, d; = deg(x;).
We have deggvuv;,,..uv,(¥) < d; for y € V;. Then

e(G) <) Vil x d; = e(K(V1,V2,...,Vp)) < e(Tnp).

However! edges inside V; are counted twice:

e(G)+ > e(GIV) <e(Tnp) == > <t O



Stability of ext(n, Kp_|_1)

Theorem 2 (ZF 2010)

Suppose Gy, is Kpt1-free with e(G) > e(Tnp) — t.
Then 4 a complete p-chromatic graph H,

V(H) =V(G), such that

E(G) A E(H)| < 3t.

Proof.: Delete t edges to make it p-partite,
add at most 2t to make it complete p-partite.

Q.e.d.



Proof of stability of F

TOOLS:
Theorem 2. i.e., the stability for Kp—l—l'
(We suppose x(F)=p—+1.)

&

Szemerédi’'s regularity lemma.

Usually we use 'Counting lemma’ 4+ 'Removal lemma’
+ ‘Blow-up lemma.’

Here we will use a corollary we call: Subgraph lemma.



Szemerédi’s Lemma asserts:

that every graph can be approximated by quasi-random
graphs.



Basic notion of quasi-randomness:

Def: G(A, B) bipartite graph is a-regular, (a-quasi
random) if for all A’ ¢ A, |A'| > «alA|] and B’ C B,
|B’| > o|B| one has

|dG(A/7 B/) o dG(A7 B)| S «,

where
e(G[A', B)
|A’||B'|
is the density of the induced bipartite subgraph G[A’, B].

da(A', B =



T he Regularity Lemma

Theorem (Szemerédi 1978)

For every a > 0 and integer g, there exist integers
Lo = Lo(a,£y) and ng = no(a,fpy) so that for every
graph G = (V,E), |V| > ng, V admits a partition
V=Viu...uVy, bo < L < Lg, satisfying

(i) MW <Wal <. <V < Vil +1 and

(i) all but at most a(g) pairs (V;,V;), 1 <i<j <L,
are a-regular.

In many versions: we also have a set V5 C V, |W| < a|V], a small

set of ‘exceptional’ vertices.



The Cluster Graph

Given G, having a Szemerédi-partition
V=VuViuU...UVy, most applications use the
Cluster Graph (= reduced graph, skeleton graph).

G — R B-reduced cluster graph
where R has L vertices {1,2,...,L} and
(i,7) € E(R) if (V;,V;) is a-regular with density > g.

Here we will have g >> «, but still small, defined later.



How to obtain the cluster graph R

Start with G, «. Add new vertices {1,2,..., L}
Identify p-dense a-reg pairs. Obtain R.




The Subgraph Lemma

Many properties of G are inherited by R,
one can count embeddings, homomorphisms.

Subgraph Lemma. (Folklore, easy corollary.)
If G is F-free, 8 > 2a1/p2, then R is Kp_l_l—free.

Early forms: Szemerédi, Ruzsa & Szemerédi.

Contemporary forms: Lovasz, Szegedy, Elek, et al.

Surveys: Komlos-Simonovits 1996,
Komlds-Shokoufandeh-Simonovits-Szemerédi 2002.

For hypergraphs: Frankl, Rodl, Nagle, Skokan, Soly-

mosi, Tao, Gowers etc.



How to prove Erdos-Stone?

Start with an F-free graph Gn, x(F) =p+ 1.

e No K, 7 in the Cluster graph R
e Apply Turan’'s theorem, e(R) < (1 — ]l)) (g) + L

e Estimate the edges of the original graph:

e(Gn) < e(R) (%)2 +0(a + B)n2



How to prove Stability?
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e NO Kp—l-l in the Cluster graph R
e Apply Turan’'s theorem with stability

e Estimate the edges of the original graph



Sketch of the proof of stability for F

Given G with n > ng, G is F-free, x(F) = p+ 1 and
e(G) > (1 — %)(g) — n2. (& will be defined later).

Apply Szemerédi's regularity lemma to G, with o > O.
Obtain regular partition Vq,..., V7.

eave out edges of

— irregular pairs

— inner edges (inside V;'s)

— low density pairs (less than density 3), i.e.,
consider the g-reduced cluster graph Ron {1,2,..., L}.



By the subgraph lemma: R is Kp_H—free.
So e(R) < (1 — %>(g) + L by Turan.
On the other hand

e(R)(%F + O(a + B)n? > e(G) >

—1
P n? — dn?.
Hence e(R) > e(Ty ) — (e + B+ 8§)L2.

Remainder term: ¢, it is 'small’.

Use stability for Kp_|_1: One can change 3¢t edges of
R to get a complete p-partite one.

This corresponds changing O(tn?/L?) edges of G to
make it complete p-partite. Q.e.d.




