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ABSTRACT:

We present a concise, contemporary proof (i.e., one using Sze-
merédi’s regularity lemma) for the following classical stability
result of Simonovits 1968:

If an n-vertex F -free graph G is almost extremal, χ(F ) = p+1,
then the structure of G is close to a p-partite Turán graph.

More precisely, for ∀ F and ε > 0, ∃ δ > 0 and n0 (depending on
F and ε) such that if n > n0 and

e(G) > (1−
1

p
)
(n
2

)
− δn2

then one can change (add and delete) at most εn2 edges of G
and obtain a complete p-partite graph.



Notations

[n] := {1,2, . . . , n}

Gn graph on n vertices

χ(G) := chromatic number,

e(G) := number of edges,

degG(x) degree of vertex x of graph G

NG(x) ⊂ V , neighborhood (x /∈ N(x))



Tn,p := the Turán graph,

the p-chromatic graph having the most edges.

The Turán Graph



Turán’s theorem
Turán type graph problems

Theorem. Mantel (1903) (for K3)

Turán (1940)

e(Gn) > e(Tn,p) =⇒ Kp+1 ⊆ Gn.

Unique extremal graph for Kp+1.

E.g.: the largest triangle-free graph is the complete

bipartite one with ⌊n2/4⌋ edges.



General question: Given a family F of forbidden

graphs, what is the maximum of e(Gn) if Gn does

not contain subgraphs F ∈ F?

Notation: ext(n,F) := max e(G)

ext(n,Kp+1) =
(
1− 1

p

) (
n
2

)
+O(n).



Degree majorization

Theorem (Erdős, 1970)

Suppose G is Kp+1-free. Then

there is a p-chromatic H on the same vertex set,

V (H) = V (G)

with

degH(x) ≥ degG(x).

H majorizes the degrees of G for every x ∈ V .



Proof of Erdős’ degree majorization: (An Algorithm.)

Input: G (with no Kp+1)

Output: V1, V2, . . . , Vp a p-partition of V (G).

H := K(V1, . . . , Vp) a p-partite complete graph

Let x1 := a vertex with max degree.

Let V1 := V \N(x1).

Let xi := a vertex with max degree on the graph of

the rest of the vertices, of G− (V1 ∪ . . . Vi−1).

Procedure stops in p steps, {x1, x2, . . . , xp} spans a

complete graph. Q.e.d.
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xp−1

...

...

∀y ∈ V1 deg(y) ≤ deg(x1) =: d

e(V1) + e(V1, V1) ≤ d(n− d).



Toward a general theory:

The Erdős-Stone theorem (1946)

ext(n,Kp+1(t, . . . , t)) = ext(n,Kp+1) + o(n2).

Here Kp+1(t, . . . , t) is the blow up of the Kp+1.

It is a Tt(p+1),p+1.



General asymptotics

Erdős-Stone-Simonovits (1946), (1966)

If

min
F∈F

χ(F ) = p+1

then

ext(n,F) =

(
1−

1

p

)(n
2

)
+ o(n2).

The asymptotics depends only on the

minimum chromatic number.



How to prove the asymptotic from Erdős-Stone?

– pick F ∈ F with χ(F ) = p+1.

– pick t with F ⊆ Kp+1(t, . . . , t).

– apply Erdős-Stone:

ext(n,F) ≤ ext(n, F ) ≤ ext(n,Kp+1(t, . . . , t))

≤ e(Tn,p) + εn2.

On the other hand

e(Tn,p) ≤ ext(n,F).

Q.e.d.



Corollary O6 = Octahedron graph, P10 = Petersen

graph, D20 = Dodecahedron graph. (χ = 3.)

ext(n,O6) = 1
4n

2 + o(n2)

ext(n, P10) = 1
4n

2 + o(n2)

ext(n,D20) = 1
4n

2 + o(n2).

Corollary G11 = Groetsch graph, I12 = Icosahedron

graph. (Here χ = 4.)

ext(n,G11) = 1
3n

2 + o(n2)

ext(n, I12) = 1
3n

2 + o(n2).



Exact Extrema:

Simonovits’ Dodecahedron Theorem

Dodecahedron: D20 H(n,2,5) := Tn−5,2 ⊗K5.

H(n,2,5)

For D20, H(n,2,5) is the (only) ex-
tremal graph for n > n0.
H(n,2,5) cannot contain a D20 since one
can delete 5 points of H(n,2,5) to get a
bipartite graph but one cannot delete 5
points from D20 to make it bipartite.



Octahedron Theorem

Erdős-Simonovits (Bollobás, Erdős, Simonovits, Szemerédi)

For n > n0, the extremal O6-free graph is

a complete bipartite graph +

on one side an extremal C4-free +

on the other side a matching.

Excluded: octahedron, O6 extremal graph



STRUCTURAL STABILITY

Each extremal graph was close to some Tn,p. More is true:

If p+1 = χ(F ) then the extremal or almost extremal

graphs are very similar to Tn,p.

Erdős and Simonovits
For every ε > 0 and F there is a δ > 0, and n0 such

that if F ̸⊆ Gn, n > n0 and

e(Gn) ≥
(
1−

1

p

)(n
2

)
− δn2,

then

E(Gn)△ E(Tn,p) ≤ εn2.



Almost extremal F -free graphs are almost p-colorable.

I.e., one can change (add and delete) at most εn2

edges of G and obtain a complete p-partite graph.

(Same result for the class F, instead of F ).

AIM of talk:

to present a new proof for the Stability Thm.



Stability of ext(n,Kp+1)

First: stability for Kp+1.

Very first: Large p-chromatic subgraphs

Theorem 1 (ZF 2010, new and simple)

Suppose Kp+1 ̸⊂ G, |V (G)| = n and

e(G) ≥ e(Tn,p)− t.

Then there exists a p-chromatic subgraph H0,

E(H0) ⊂ E(G) such that

e(H0) ≥ e(G)− t.



Large p-chromatic subgraphs:

There are other (more exact) stability results, but!

Advantage of this one:

No ε, δ, n0, . . ., it is true for every n and t.

If t < n/(2p)−O(1) then G itself is p-chromatic

(Hanson, Toft 1991), there is no need to delete.

E. Győri 1987, 1991

e(H0) ≥ e(G)−O(t2/n2).

One can delete at most e/2 edges to make G bipartite

(Erdős). (at most e/p to make it p-chromatic)

Gen’s: Alon 1996, Tuza et al., Bollobás & Scott, . . .



Proof of Thm. 1 (∃ large p-partite H0 ⊂ G)

Algorithm. Input: G

Output: V1, V2, . . . , Vp, a partition of V (G) such that∑
i

e(G|Vi) ≤ t.

Consider the previous partition V1, V2, . . . , Vp, di = deg(xi).

We have degG|Vi∪Vi+1...∪Vp(y) ≤ di for y ∈ Vi. Then

e(G) ≤
∑

|Vi| × di = e(K(V1, V2, . . . , Vp)) ≤ e(Tn,p).

However! edges inside Vi are counted twice:

e(G) +
∑
i

e(G|Vi) ≤ e(Tn,p) =⇒
∑

≤ t. �



Stability of ext(n,Kp+1)

Theorem 2 (ZF 2010)

Suppose Gn is Kp+1-free with e(G) ≥ e(Tn,p)− t.

Then ∃ a complete p-chromatic graph H,

V (H) = V (G), such that

|E(G)△ E(H)| ≤ 3t.

Proof: Delete t edges to make it p-partite,

add at most 2t to make it complete p-partite.

Q.e.d.



Proof of stability of F

TOOLS:

Theorem 2. i.e., the stability for Kp+1.

(We suppose χ(F ) = p+1.)

&

Szemerédi’s regularity lemma.

Usually we use ’Counting lemma’ + ’Removal lemma’

+ ‘Blow-up lemma.’

Here we will use a corollary we call: Subgraph lemma.



Szemerédi’s Lemma asserts:

that every graph can be approximated by quasi-random

graphs.



Basic notion of quasi-randomness:

Def: G(A,B) bipartite graph is α-regular, (α-quasi

random) if for all A′ ⊂ A, |A′| ≥ α|A| and B′ ⊂ B,

|B′| ≥ α|B| one has

|dG(A′, B′)− dG(A,B)| ≤ α,

where

dG(A
′, B′) =

e(G[A′, B′])

|A′||B′|
is the density of the induced bipartite subgraph G[A′, B′].



The Regularity Lemma

Theorem (Szemerédi 1978)

For every α > 0 and integer ℓ0, there exist integers

L0 = L0(α, ℓ0) and n0 = n0(α, ℓ0) so that for every

graph G = (V,E), |V | ≥ n0, V admits a partition

V = V1 ∪ . . . ∪ VL, ℓ0 ≤ L ≤ L0, satisfying

(i) |V1| ≤ |V2| ≤ . . . ≤ |VL| ≤ |V1|+1 and

(ii) all but at most α
(
L
2

)
pairs (Vi, Vj), 1 ≤ i < j ≤ L,

are α-regular.

In many versions: we also have a set V0 ⊂ V , |V0| < α|V |, a small

set of ‘exceptional’ vertices.



The Cluster Graph

Given G, having a Szemerédi-partition

V = V0 ∪ V1 ∪ . . . ∪ VL, most applications use the

Cluster Graph (= reduced graph, skeleton graph).

G → R β-reduced cluster graph

where R has L vertices {1,2, . . . , L} and

(i, j) ∈ E(R) if (Vi, Vj) is α-regular with density ≥ β.

Here we will have β >> α, but still small, defined later.



How to obtain the cluster graph R

Start with G, α. Add new vertices {1,2, . . . , L}
Identify β-dense α-reg pairs. Obtain R.

tional
Excep−

set

Gn

iV

Vj

tional
Excep−

set

Gn

iV

Vj

tional
Excep−

set

Gn

iV

Vj

tional
Excep−

set

Gn

iV

Vj



The Subgraph Lemma

Many properties of G are inherited by R,

one can count embeddings, homomorphisms.

Subgraph Lemma. (Folklore, easy corollary.)

If G is F -free, β > 2α1/p2, then R is Kp+1-free.

Early forms: Szemerédi, Ruzsa & Szemerédi.

Contemporary forms: Lovász, Szegedy, Elek, et al.

Surveys: Komlós-Simonovits 1996,

Komlós-Shokoufandeh-Simonovits-Szemerédi 2002.

For hypergraphs: Frankl, Rödl, Nagle, Skokan, Soly-

mosi, Tao, Gowers etc.



How to prove Erdős-Stone?

Start with an F -free graph Gn, χ(F ) = p+1.

tional
Excep−

set

Gn

iV

Vj

• No Kp+1 in the Cluster graph R

• Apply Turán’s theorem, e(R) ≤ (1− 1
p)
(
L
2

)
+ L

• Estimate the edges of the original graph:

e(Gn) ≤ e(R)
(
n

L

)2
+O(α+ β)n2.



How to prove Stability?

tional
Excep−

set

Gn

iV

Vj

• No Kp+1 in the Cluster graph R

• Apply Turán’s theorem with stability

• Estimate the edges of the original graph



Sketch of the proof of stability for F

Given G with n > n0, G is F -free, χ(F ) = p + 1 and

e(G) > (1− 1
p)
(
n
2

)
− δn2. (δ will be defined later).

Apply Szemerédi’s regularity lemma to G, with α > 0.

Obtain regular partition V1, . . . , VL.

Leave out edges of

– irregular pairs

– inner edges (inside Vi’s)

– low density pairs (less than density β), i.e.,

consider the β-reduced cluster graph R on {1,2, . . . , L}.



By the subgraph lemma: R is Kp+1-free.

So e(R) ≤ (1− 1
p)
(
L
2

)
+ L by Turán.

On the other hand

e(R)(
n

L
)2 +O(α+ β)n2 > e(G) >

p− 1

2p
n2 − δn2.

Hence e(R) > e(TL,p)− (α+ β + δ)L2.

Remainder term: t, it is ’small’.

Use stability for Kp+1: One can change 3t edges of

R to get a complete p-partite one.

This corresponds changing O(tn2/L2) edges of G to

make it complete p-partite. Q.e.d.


