Making a C_6 -free graph C_4 -free and bipartite

Casey Tompkins Joint work with Ervin Győri and Scott Kensell Central European University

Let e(G) denote the number of edges in a graph G, and let C_k denote a k-cycle. It is well-known that every graph has a bipartite subgraph with at least half as many edges. Győri showed that any bipartite, C_6 -free graph contains a C_4 -free subgraph containing at least half as many edges. Applying these two results in sequence we see that every C_6 -free graph, G, has a bipartite C_4 -free subgraph, H, with $e(H) \ge e(G)/4$. We show that the factor of 1/4 can be improved to 3/8:

Theorem 1. Let G be a C_6 -free graph, then G contains a subgraph with at least 3e(G)/8 edges which is both C_4 -free and bipartite.

The proof uses probabilistic ideas combined with a characterization of C_6 -free graphs due to Füredi, Naor and Verstraëte.