Making a C_{6}-free graph C_{4}-free and bipartite

Casey Tompkins
Joint work with Ervin Győri and Scott Kensell
Central European University

Let $e(G)$ denote the number of edges in a graph G, and let C_{k} denote a k-cycle. It is well-known that every graph has a bipartite subgraph with at least half as many edges. Győri showed that any bipartite, C_{6}-free graph contains a C_{4}-free subgraph containing at least half as many edges. Applying these two results in sequence we see that every C_{6}-free graph, G, has a bipartite C_{4}-free subgraph, H, with $e(H) \geq e(G) / 4$. We show that the factor of $1 / 4$ can be improved to $3 / 8$:

Theorem 1. Let G be a C_{6}-free graph, then G contains a subgraph with at least $3 e(G) / 8$ edges which is both C_{4}-free and bipartite.

The proof uses probabilistic ideas combined with a charactarization of C_{6}-free graphs due to Füredi, Naor and Verstraëte.

