
Hypergraphs and Geometry

Noga Alon, Tel Aviv University

All four birthday boys have obtained beautiful results combining geometric tools
and ideas with extremal questions on graphs and hypergraph. After a brief dis-
cussion of some of these results I will describe a recent application of properties
of high dimensional Euclidean spaces in the study of an extremal hypergraph
problem extending a question of Erdős and Rothschild.
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Ramsey numbers of ordered graphs

Martin Balko

(joint work with Karel Kral and Jan Kyncl)

An ordered graph G< is a graph G with vertices ordered by the linear ordering <.
The ordered Ramsey number R(G<, c) is the minimum number N such that every
ordered complete graph with c-colored edges and at least N vertices contains a
monochromatic copy of G<.
For unordered graphs it is known that Ramsey numbers of graphs with degrees
bounded by a constant are linear with respect to the number of vertices. In
contrast with this result we show that there are arbitrarily large ordered match-
ings M<(n) on n vertices for which R(M<(n), 2) grows super-polynomially in n.
This implies that ordered Ramsey numbers of the same graph can grow super-
polynomially in the size of the graph in one ordering and remain polynomial in
another ordering.
We also prove that for every ordered graph its ordered Ramsey number grows
either polynomially or exponentially in the number of colors.
For a few special classes of ordered paths, stars or matchings, we give asymptot-
ically tight bounds on their ordered Ramsey numbers. For so-called monotone
cycles we compute their ordered Ramsey numbers exactly. This result implies
exact formulas for geometric Ramsey numbers of cycles introduced by Károlyi et
al.
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On the typical structure of sum-free sets.

József Balogh, Szeged University and UIUC

(Based on joint work results with Alon, Morris, Samotij and Warnke)

First we study sum-free subsets of the set {1, . . . , n}, that is, subsets of the
first n positive integers which contain no solution to the equation x + y = z.
Cameron and Erdős conjectured in 1990 that the number of such sets is O(2n/2).
This conjecture was confirmed by Green and, independently, by Sapozhenko. We
prove a refined version of their theorem, by showing that the number of sum-
free subsets of [n] of size m is 2O(n/m)

(dn/2e
m

)
, for every 1 ≤ m ≤ dn/2e. For

m ≥
√
n, this result is sharp up to the constant implicit in the O(·). Our proof

uses a general bound on the number of independent sets of size m in 3-uniform
hypergraphs, proved recently by the authors, and new bounds on the number of
integer partitions with small sumset.
Then we study sum-free sets of order m in finite Abelian groups. We deter-
mine the typical structure and asymptotic number of sum-free sets of order m in
Abelian groups G whose order n is divisible by a prime q with q ≡ 2 (mod 3),
for every m ≥ C(q)

√
n log n, thus extending and refining a theorem of Green and

Ruzsa. In particular, we prove that almost all sum-free subsets of size m are
contained in a maximum-size sum-free subset of G.
Finally, we explain connection with recent ”independent sets in hypergraph” gen-
eral theorems, and describing typical structure of graphs.
In the talk I try to have different approach from other talks on ”independent sets
in hypergraph” general theorems.
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Partition regularity and the columns property

Ben Barber, University of Birmingham

A system of linear equations with integer coefficients is partition regular if, when-
ever the natural numbers are finitely coloured, there is a monochromatic solution.
In 1933 Rado showed that a finite system of equations is partition regular if and
only if its matrix of coefficients has the ”columns property”.
It is easy to write down infinite systems which have the columns property but are
not partition regular. However, all known examples of infinite partition regular
systems do have the columns property. Must all infinite partition regular systems
have the columns property?
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EDGE-COLORINGS OF GRAPHS AVOIDING COMPLETE GRAPHS

WITH A PRESCRIBED COLORING PATTERN

FABRÍCIO SIQUEIRA BENEVIDES, CARLOS HOPPEN, AND RUDINI MENEZES SAMPAIO

Abstract. For any �xed graph F , we say that a graph G is F -free if it does not contain F
as a subgraph. We denote by ex(n, F ) the maximum number of edges in a n-vertex graph
which is F -free, known as the Turán number of F .

In 1974, Erd®s and Rothschild considered a related question where we count the number
of certain colorings. Given an integer r, by an r-coloring of a graph G we mean any r-edge-
coloring of G. In particular, it does not have to be proper and does not have to use all
r colors. Let cr,F (G) be the number of r-colorings of G such that every color class is F -

free. They considered the problem of �nding cr,F (n) = max{cr,F (G)} where the maximum
is over all n-vertex graphs G. Let us say that G is extremal for cn,F (n) if it realizes the
above maximum. Clearly, cr,F (n) ≥ rex(n,F ), as we take G to be the Turán graph and color
it arbitrarily. The problem of determining cr,F (n) was investigates by several authors, for
various classes of graphs such as: complete graphs [1, 8, 9], odd cycles [1], matchings [4],
paths and stars [5]. And for hypergraphs [3, 6, 7]. One common concern is to determine
when the Turán Graph is extremal for cr,F (n) (with r �xed and n large).

Here we consider a natural generalization of the above. Given an r-colored k-vertex graph
F̂ , we consider the number of r-edge-colorings of a larger graph G that avoids the `color
pattern' of F̂ . More formally, cr,F̂ (G) denote the number or r-colorings of G such there are

no k vertices of G that induce a colored graph isomorphic to F̂ . For example, the above
problem consists of the case where F̂ is a colouring of F that uses only one of the r colors.
We de�ne cr,F̂ (n) and extremal graphs as before.

We note that Balogh [2] had also considered a related but not analogous �colored version�
of the problem. He considered the number Cr,F̂ (G) of colorings of G which do not have a

set of k-vertices colored exactly as in F̂ . In this case, for example, if F̂ has only one color,
Cr,H(G) is the number of coloring of G which does not contains F̂ in this particular color
class.So cr,F̂ (G) ≤ Cr,F̂ (G). Balogh proved that in the case where r = 2 and F̂ is a 2-coloring

of a clique that uses both colors then C2,F̂ (n) = 2ex(n,F̂ ) for n large enough.

Here, we focus on the case where r = 3. Let F̂3 be a 3-colored K3. We proved that if the
three colors are used in F̂3 then the complete graph on n vertices is the extremal graph for
c3,F̂3

(n). And if only two colors are used in F3 then the Turán Graph is extremal for c3,F̂3
(n)

(whereas this is trivially not true for C3,F̂3
(n)). Much more generally we prove the following:

with r = 3, let F̂k be a coloring of Kk that uses only two colors one of which induces a graph
H whose Ramsey Number is smaller than k, then the Turán Graph is extremal for c3,F̂k

(n).
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Some developments of the weighted EGZ theorem

Arie Bialostocki

(joint work with Matthew Conroy)

It has been conjectured that for n even if A and B are two zero sum sequences,
over Zn, each of length n, then there exists a permutation which permutes the
elements of B resulting a sequence B′ such that the inner product of A and B′ is
0 in Zn. First, we extend the above conjecture to n odd, provided A and B do
not belong to two exceptional cases. Next, we provide some information about
the exceptional cases and other cases of interest.
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Large standard examples in posets of high dimension

Csaba B́ıró, Louisville University

(joint work with Péter Hamburger and Attila Pór)

A classic theorem by Hiraguchi states that the dimension of a partially ordered
set of n elements is not more than n/2. Bogart and Trotter proved that if the
dimension is exactly n/2, then the poset is isomorphic to one specific poset called
the ”standard example”. A natural question is the following: if the dimension
is slightly less than n/2, is the poset largely similar to a standard example? We
study several questions in the area, and we get positive and negative answers
depending on the setting.
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The Time of Bootstrap Percolation –
Extremal and Probabilistic Results

Béla Bollobás
Cambridge, Memphis and LIMS

Classical r-neighbour bootstrap percolation, introduced by Chalupa,
Leath and Reich in 1979, can be viewed as an oversimplified model of
the spread of an infection: given a graph G and a set A0 of ‘infected’
vertices at time 0, for t ≥ 0 we define

At+1 = At

⋃{
x ∈ V (G) : x has at least r neighbours in At

}
to be the set of infected vertices at time t + 1. The set A0 is said to
percolate if its closure, [A0] =

⋃
t At, is the entire vertex set V (G). The

percolation time of A0 is

T (A0) = min{t : At = V (G)}.
Most of the work in the last thirty years has been about what happens
when the initial set A0 is chosen at random, with major contributions
by Aizenman, Balogh, Bollobás, Cerf, Cirillo, Duminil-Copin, Holroyd,
Lebowitz, Manzo, Morris, and others.

In the first half of this talk I shall sketch the most significant of these
results, and then I shall turn to some recent work of Balister, Benevides,
Bollobás, Holmgren, Przykucki and Smith, emphasizing the extremal
problems that arise.

The second part of the talk concerns graph bootstrap percolation, a
rather different kind of bootstrap percolation I introduced in 1968 un-
der another name, about which the first beautiful results were obtained
by Frankl, Kalai and Alon in the 1980s. My aim is to say a little about
a number of recent extremal and probabilistic results of Balogh, Bol-
lobás, Koch, Morris and Przykucki.
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Cross-intersecting families

Peter Borg

Department of Mathematics, University of Malta

Extremal set theory is the study of how small or how large a system
of sets can be under certain conditions. A problem in this field that has
recently attracted much attention is that of determining the maximum sum
or the maximum product of sizes of k ≥ 2 cross-t-intersecting subfamilies
of a given family F of sets; families A1,A2, . . . ,Ak are said to be cross-
t-intersecting if for every i and j in {1, 2, . . . , k} with i 6= j, each set in
Ai intersects each set in Aj in at least t elements. Solutions have been
obtained for various important families F , such as power sets, levels of power
sets, hereditary families, families of permutations, and families of integer
sequences. The talk will provide an outline of these results, together with
some general observations and results.
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Minkowski valuations on lattice polytopes

Károly Böröczky, Central European University

(joint work with Monika Ludwig)

We characterize translation invariant, and either SL(n, Z) equivariant or SL(n, Z)
contravariant Minkowski valuations on lattice polytopes.
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Copies of �xed graphs in random distance graphs

Anton Burkin
∗

The problem of appearance of an arbitrary �xed graph in Erd�os�R�enyi random graph Gn,p was studied thor-
oughly by a number of authors (see, e.g., [1]). For a certain model of random distance graphs this issue was
investigated by M. Zhukovskii in [2]. We consider a class of distance graphs G(n, r, s) = (V (n, r), E(n, r, s)) de�ned
as follows:

V (n, r) = {x = (x1, . . . , xn) : xi ∈ {0, 1}, x1 + . . .+ xn = r}, E(n, r, s) = {{x,y} : (x,y) = s},

where (x,y) is the Euclidean scalar product.
We study the random distance graphs G(G(n, r, s), p) where each edge from the set E(n, r, s) is included in

the graph with probability p independent of other edges. We �nd the threshold probabilities for the property of
containing a �xed graph and investigate the distribution of the number of subgraphs isomorphic to a given graph
when the probability p is critical. We also �nd the theshold probabilities for planarity in these graphs.
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Three Open Questions related to the Tick Data
Decomposition Problem

Krisztian Buza, Gábor I. Nagy∗

Budapest University of Technology and
Economics, Hungary

buza@cs.bme.hu, nagy.gabor.i@gmail.com

Alexandros Nanopoulos

University of Eichstätt-Ingolstadt,
Germany

alexandros.nanopoulos@ku.de

Keywords: combinatorial optimization, tick data, data storage

The tick data decomposition problem is a combinatorial optimization problem motivated by real-world
applications, in particular, by the need for efficient storage structures for discrete-valued multivariate
time-series, such as the data describing financial transactions, or bag of words vectors of dynamically
changing texts such as blogs or Wikipedia pages. Here, we will describe the tick data decomposition
problem and we will point out three open questions related to the tick data decomposition problem.

In many applications, various attributes of an object are measured continuously over time. A tick data
matrix M is a matrix where columns correspond attributes or features while rows correspond observations
of the same features at different time points. Rows of the matrix are ordered according to the order of
observations, i.e., the values of the i-th row were observed before the values of the j-th row if and only
if i < j. While the observations are made, a new row is added whenever the value of one or more
attribute(s) change(s). However, as long as none of the attribute-values changes no new row is added to
the matrix, therefore two rows of a tick data matrix differ in the value of at least one attribute. There is
an additional column that is used to index the rows of a tick data matrix. This additional index column
may contain, for example, ascending integer numbers (like the number of the corresponding row) or a
time-stamp (see the Time column in the example shown in Figure 1). We use the term regular column
for all the columns other than the index column.

With decomposition of a tick data matrix M we mean the partitioning of the regular columns of M into
k disjoint partitions Pi, 1 ≤ i ≤ k, i.e., for each regular column cj of M : cj ∈ P1 ∨ cj ∈ P2 ∨ ...∨ cj ∈ Pk;
and for all i, j with i 6= j Pi ∩ Pj = ∅. Note that this partitioning refers to the regular columns only, i.e.,
in this formulation, the index column does not belong to any cluster. Then, for each cluster Pi, a matrix
Mi is derived from M by selecting the index column and those columns of M that belong to cluster
Pi. Subsequent rows of a derived matrix Mi may contain the same values in all the regular columns.
In such cases we only keep the first row. For example, in Figure 1, P1 = {Humidity, Pressure}, P2 =
{Temperature, Wind (velocity), Wind (direction), Radiation, Outlook} and the corresponding matrices
M1 and M2 are shown in the bottom left and bottom right of the Figure 1.

We can easily see that the original matrix can be reconstructed from the decomposition described
above, and therefore, instead of the original matrix M , one can use this decomposition to calculate
the results of search and analytic queries. Furthermore, as we have shown in our previous works, this
decomposition allows to process queries efficiently, i.e., without the explicit need for decompressing the
data, and simultaneously it leads to substantial improvements in terms of storage space [1, 2].

Consequently, we can state the tick data decomposition problem as follows.

Problem 1 For a given number of clusters k, we aim at finding a decomposition so that the total number
of the cells in all the matrices Mi is minimized.

The above problem statement directly gives two variants of the tick data decomposition problem: while
counting the number of cells in the matrices Mi, we can either count the cells in the index column or not.

∗We thank DAAD and Magyar Ösztönd́ıj Bizottság (MÖB) for supporting the researcher exchange program between
the University of Eichstätt-Ingolstadt and the Budapest Univ. of Techn. and Economics (project No. 39859). Research
partially performed within the framework of the grant of the Hungarian Scientic Research Fund (grant No. OTKA 108947).
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Figure 1: An illustrative example for tick data. Features describing the weather are monitored contin-
uously. Whenever the value of one of the features changes, a new row is inserted into the recordings
(section a). Decomposition of such tables by features (columns) that change their values simultaneously
may substantially reduce the required storage space (section b).

Furthermore, the above problem statement implicitly assumes uniform storage costs for all the cells, as
it simply targets to minimize the number of cells in the decomposition. Other variants of the tick data
decomposition problem may not assume uniform storage cost for each cells.

We note that k is usually relatively small: for example, for the storage of tick data of financial
transactions, the user is most interested in the decomposition into k = 2 or k = 3 clusters. This is
because, in case of real data, according to our observations, the decomposition into two or three partitions
already leads to substantial gain in terms of storage space, and the decomposition into more partitions
do leads to only minor further improvements, whereas the average computational costs of a query may
grow with increasing k, see also [1].

In our previous work, we proposed an iterative, greedy algorithm for the tick data decomposition
problem [2]. In the first iteration, this algorithm considers each column as a separate partition, then,
in each iteration, it merges those two partitions that lead to optimal storage size. In [1], we gave a
computationally cheap lower bound for the storage size in order to speed up the algorithm.

Despite its relevance from the point of view of applications, the theoretical foundations of the tick
data decomposition problem are largely unclear and the authors are not aware of other combinatorial
optimization problems that are equivalent to this problem. Therefore, in order to motivate discussions,
we pose the following open questions related to the tick data decomposition problem:

1. Under which assumptions is it possible to find a good decomposition of a tick data table, i.e., a
decomposition that leads to substantial improvements in terms of storage size?

2. What is the complexity of the tick problem? Depending on the assumptions about the data, are
there cases in which the optimal decomposition is “simple” (or “difficult”) to find?

3. In which cases do simple greedy algorithms find the optimal, or close to optimal decompositions?

Similar questions were successfully studied in context of various optimization problems resulting in cel-
ebrated results such as the theorems related to bin packing or Kruskal’s algorithm for searching for the
minimal spanning tree in graphs. We hope that the study of the above questions may contribute to
establish the theoretical framework of the tick data decomposition problem.
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On property B of hypergraphsD.D. Cherkashin 1I am going to speak about a classical quantity m(n) introduced by Erd}os and Hajnal in 1961 (see[1]).A hypergraphH = (V;E) is said to have property B, if there is a 2-coloring of V with no monochro-matic edges. Denote by m(n) the minimum number of edges in a hypergraph that does not haveproperty B.The best known bounds for m(n) are as follows:c√ nlnn2n < m(n) < c′n22n:The lower bound is due to Radhakrishnan and Srinivasan (see [2]), and the upper bound was givenby Erd}os.I want to present a new simple proof of the lower bound (based on ideas by A. Pluh�ar from [3])and a new lower bound for a quantity m(n; r) that generalizes m(n) onto the case of r colors.This is my joint work with J. Kozik.References[1] P. Erd}os, A. Hajnal, \On a property of families of sets", Acta Mathematica of the Academy ofSciences, 12:1-2 (1961), 87{123.[2] J.Radhakrishnan, A.Srinivasan, \Improved bounds and algorithms for hypergraph two-coloring",Random Structures and Algorithms, 16:1 (2000), 4{32.[3] A. Pluh�ar, \Greedy colorings for uniform hypergraphs", Random Structures and Algorithms, 35:2(2009), 216{221.
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An efficient Extension for Sperner families:  

based upon from m-cardination Sperners sets to m+1-cardination 

 

Ben-shung Chow, National Sun Yet-sen University, Taiwan, ROC 

bschow@mail.ee.nsysu.edu.tw 

 

Abstract 

Sperner family (or Sperner system) is a set system {S( E)}where S(E), the 

Sperner set with the generating set E, is a set in which no element is contained in 

another. Formally, S( E) is composed of the elements, i.e. Sperner elements, from 

power set of E and for any different X, Y in S( E), X is not contained in Y and Y is not 

contained in X. Great efforts have been made to compute or estimate the number N, 

the cardination of the{S( E)} with n, the cardination of E. N increases rapidly with n. 

For example, N=7579 for n=5 and N=7828352 for n=6. So far the largest N is known 

for n=7. Therefore, the construction of Sperner family for large n is still a changeling 

problem in present days.  

 

It is noted that the Sperner family is the set of the all Sperner sets for a specified 

E. We therefore classify the Sperner family into different categories (sub-family) by 

the cardination of the Sperner set. Furthermore, we recursively construct the Sperner 

set with cardination increasing from m to m+1. A direct recursive computation from 

m to m+1 is to check the 2 
n 

different 1-cardination Sperner elements for 

compatibilities with the interested m-cardination Sperner sets, which costs 2 
n
 * m 

inclusion comparisons. Instead, we find the compatibility for a specific child Sperner 

element from its possibly r younger brothers with a same parent of m-1-cardination 

Sperner set. It is noted that the above specific child is corresponding to a specific 

Sperner set of m-cardination and thus reduces the inclusion comparisons from 2 n * m 

to r instead of C(r, 2), selecting 2 from r. The number r is small in general and m is 

from 1 to C(n, (n-1)/2) according to the Sperner theorem. 

 

A proof of correctness for no missing Sperners set and no repeating one in 

extension by the proposed strategy is also discussed in this paper. An example 

diagram is also provided for illustrating the realization idea.  

 

 

 

Keywords: Sperner family, Sperner set, Sperner element, recursive computation 
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An example diagram for illustrating the realization idea: 

 

 

Fig. 1 Sperner elements (n=5) with their containing relationship represented in graph 

 

 

 
Fig. 2 One instance of Sperner set extension from 3-cardination to 4-cardination: The 

first extension is successful but the second and the third are not. (14 = 01110, …..) 



Füredi–Hajnal constants are typically subexponential

Josef Cibulka and Jan Kynčl

Abstract

A binary matrix is a matrix with entries from the set {0, 1}. We say that a binary
matrix A contains a binary matrix B if B can be obtained from A by removal of some
rows, some columns, and changing some 1-entries to 0-entries. If A does not contain B,
we say that A avoids B. A permutation matrix P is a binary square matrix with exactly
one 1-entry in every row and one 1-entry in every column.

The Füredi–Hajnal conjecture, proved by Marcus and Tardos in 2004, states that for
every permutation matrix P , there is a constant cP such that for every n ∈ N, every
n × n binary matrix A with at least cPn 1-entries contains P . Klazar proved that the
Füredi–Hajnal conjecture implies the Stanley–Wilf conjecture, which states the following.
For every permutation matrix P , there is a constant sP such that for every n ∈ N, the
number of n× n permutation matrices avoiding P is at most snP .

Fox recently found a randomized construction showing that for every k, there are k×k

permutation matrices P with cP ≥ 2Ω(k1/4). He additionally showed that as k goes to

infinity, almost all k × k permutation matrices satisfy cP ≥ 2Ω((k/ log(k))1/4). Fox also

improved the original Marcus–Tardos upper bound cP ≤ 2k4
(
k2

k

)
to cP ≤ 28k (which can

be easily lowered to cP ≤ 26k), for all k × k permutation matrices P .
A 1-entry in a matrix is identified by the pair (i, j) of the row index i and the column

index j. The distance vector between the entries (i1, j1) and (i2, j2) is (i2 − i1, j2 − j1).
We say that a k× k permutation matrix P is scattered if every pair (d, d′) is the distance
vector of at most log2(k) pairs of 1-entries of P . As k goes to infinity, almost all k × k
permutation matrices are scattered.

We show that cP ≤ 2O(k2/3 log7/3(k)) for every scattered k × k permutation matrix P .
The main part of the proof is showing that every 4k × 4k binary matrix with at most
O(k4/3/ log1/3(k)) 0-entries contains every k × k scattered permutation matrix.

We also further improve the upper bound on cP to cP ≤ 2(4+o(1))k, for all k × k
permutation matrices P .

All the bounds mentioned here imply similar bounds on the Stanley-Wilf limit, sP ,
since it is known that cP ≤ O(s4.5

P ) and sP ≤ O(c2
P ) for every permutation matrix P .
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On 2-Limited Packings of Complete Grid Graphs

Nancy E. Clarke, Acadia University, Wolfville Canada

For a fixed integer k, a set of vertices B of a graph G is a k-limited packing
of G provided that the closed neighourhood of any vertex in G contains at
most k elements of B. The size of a largest possible k-limited packing in G
is denoted Lk(G) and is the k-limited packing number of G. In this paper,
we investigate the 2-limited packing number of Cartesian products of paths.
We show that the function ∆[L2(Pk�Pn)] = L2(Pk�Pn) − L2(Pk�Pn−1) is
eventually periodic, and thereby give closed formulas for L2(Pk�Pn), k =
1, 2, . . . , 5. The techniques we use are suitable for establishing other types of
packing and domination numbers for Cartesian products of paths and, more
generally, for graphs of the form H�Pn. This is joint work with R.P. Gallant.
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Matroid union,
Graphic? Binary? Neither?

Csongor György Csehi

cscsgy@math.bme.hu

Budapest University of Technology and Economics

Joint work with András Recski

Graphic matroids form one of the most significant classes in matroid theory. When introducing

matroids, Whitney concentrated on relations to graphs. Thedefinition of some basic operations like

deletion, contraction and direct sum were straightforwardgeneralizations of the respective concepts

in graph theory. Most matroid classes, for example those of binary, regular or graphic matroids, are

closed with respect to these operations. This is not the casefor the union (also referred to as sum).

The union of two graphic matroids can be nongraphic.

The first paper in this area was that of Lovász and Recski: theyexamined the case if several copies

of the same graphic matroid are given. Then Recski conjectured thirty years ago that if the union of

graphic matroids is not graphic then it is nonbinary. He alsostudied the case if we fix one simple

graphic matroid and take its union with every possible graphic matroid.

If there are two matroids and the first one can be drawn as a graph with two points, then a necessary

and sufficient condition is given for the other matroid to ensure the graphicity of the union. A similar

case has been proved where the first matroid is a circuit with loops and bridges.

Theorem. If M(G0) consists of loops and a single circuit of length n or n parallel edges (n ≥ 2)

and M(G1) is an arbitrary graphic matroid in the same ground set then the graphicity of the union

can be decided in polynomial time.

Applying some steps of the proof of this theorem we also provethat the above conjecture holds

for these cases.

One can ask further questions about the classes formed by those graphic (or arbitrary) matroids

whose union with any graphic (or arbitrary) matroid is graphic (or either graphic or nonbinary). These

23 variations define8 matroid classes. We present some results about their relations and properties.

Acknowledgement:Part of the research has been supported by the grant OTKA-108947.



Vizing’s Theorem and Kőnig’s Line Coloring Theorem for graphings

Endre Csóka, University of Warwick

(joint work with Gábor Lippner and Oleg Pikhurko)

Vizing’s Theorem states that if the maximum degree of a graph is d, then its
edge-chromatic number is at most d + 1. Kőnig’s Line Coloring Theorem states
that for bipartite graphs, the edge-chromatic number is always d. We investigate
the analogous questions for measurable graphs called graphings. We show that
d+O(

√
d) is an upper bound for graphings, and d+1 is the sharp upper bound for

bipartite graphings. We show that a generalization of Vizing’s Theorem (for finite
graphs) would imply that d + 1 is an upper bound for non-bipartite graphings,
as well.
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Covering 2-edge-colored graphs with a pair of cycles

Louis DeBiasio, Miami University

(joint work with Luke Nelsen)

Lehel conjectured that in every 2-coloring of the edges of Kn, there is a vertex
disjoint red and blue cycle which span V (Kn).  Luczak, Rödl, and Szemerédi
proved Lehel’s conjecture for large n, Allen gave a different proof for large n,
and finally Bessy and Thomassé gave a proof for all n. Balogh, Barát, Gerbner,
Gyárfás, and Sárközy proposed a strengthening of Lehel’s conjecture where Kn

is replaced by any graph G with δ(G) ≥ 3n/4, and they proved an approximate
version of their conjecture. We prove that their conjecture holds for sufficiently
large n..

1



Maximum measures of spherical sets
avoiding orthogonal pairs of points

Evan DeCorte, University of Delft

(joint work with Oleg Pikhurko.)

Let an be the supremum of the Lebesgue (surface) measure of I, where I ranges
over all measurable sets of unit vectors in Rn such that no two vectors in I are
orthogonal, and where the surface measure is normalized so that the whole sphere
gets measure 1. The problem of determining an was first stated in a 1974 note
by H. S. Witsenhausen, where he gave the upper bound of 1/n using a simple
averaging argument. In a 1981 paper by Frankl and Wilson, they prove their
well-known theorem and use it to attack this problem; there it was shown that
an decreases exponentially. In this talk, we focus on the case n = 3, where we
improve Witsenhausen’s 1/3 upper bound to 0.313. The proof involves some basic
harmonic analysis and infinite-dimensional linear programming.
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Rainbow copies of C4 in edge-colored hypercubes

Michelle Delcourt, University of Illinois, Urbana-Champaign

(joint work with József Balogh, Bernard Lidick, and Cory Palmer.)

For positive integers k and d such that 4 ≤ k < d and k 6= 5, we determine
the maximum number of rainbow colored copies of C4 in a k-edge-coloring of the
d-dimensional hypercube Qd. Interestingly, the k-edge-colorings of Qd yielding
the maximum number of rainbow copies of C4 also have the property that every
copy of C4 which is not rainbow is monochromatic.
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On Induced Paths, Holes and Trees
in Random Graphs

Kunal Dutta, Max-Planck-Institut fr Informatik, Saarbrücken

(joint work with C. R. Subramanian)

We study the concentration of the largest induced paths, trees and cycles (holes)
in the Erdos-Renyi random graph model and prove a 2-point concentration for
the size of the largest induced path and hole, for all p = Ω(n?1/2 ln2 n). As a
corollary, we obtain an improvement over a result of Erdos and Palka concerning
the size of the largest induced tree in a random graph. Further, we study the
path chromatic number and tree chromatic number i.e. the smallest number of
parts into which the vertex set of a graph can be partitioned such that every
The arguments involve the application of a modified version of a probabilistic
inequality of Krivelevich, Sudakov, Vu and Wormald.
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Linear Forests on Hamiltonian Cycles

Ralph J. Faudree

Department of Mathematical Sciences

University of Memphis

Memphis, TN 38152

Abstract

Given integers k, s, t with 0 ≤ s ≤ t and k ≥ 0, a (k, t, s)-linear for-
est F is a graph that is the vertex disjoint union of t paths with a total
of k edges and with s of the paths being single vertices. Given integers
m and n with k + t ≤ m ≤ n, a graph G of order n is (k, t, s,m)-
pancyclic if for any (k, t, s)-linear forest F and for each integer r with
m ≤ r ≤ n, there is a cycle of length r containing the linear forest
F . If the paths of the forest F are required to appear on the cycle
in a specified order, then the graph is said to be (k, t, s,m)-pancyclic
ordered. If, in addition, each path in the system is oriented and must
be traversed in the order of the orientation, then the graph is said
to be strongly (k, t, s,m)-pancyclic ordered. Minimum degree condi-
tions and minimum sum of degree conditions of nonadjacent vertices
that imply a graph is (k, t, s,m)-pancylic, as well as degree conditions
that imply a graph is (strongly) (k, t, s,m)-pancylic ordered will be
given. Examples showing the sharpness of the conditions will be de-
scribed. Also, minimum degree conditions that imply fixed vertices
can be placed on Hamiltonian cycle at predetermined distances will be
presented. Problems and open questions related to these conditions
will be presented.



Extremal Combinatorics, Geometry, and Algebra

Jacob Fox, Massachusets Institute of Technology

Famous Ramsey, Turán, and Szemerédi-type results prove the existence of certain
patterns in graphs and hypergraphs under mild assumptions. We survey recent
results of János Pach and his collaborators which have shown much stronger
results for graphs and hypergraphs that arise from geometry or algebra.
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Z2-embeddings of Clustered Graphs

Rado Fulek

(joint work with J. Kynčl, I. Malinović and D. Pálvölgyi)

Hanani–Tutte theorem is a classical result proved for the first time in 1930s that
characterizes planar graphs as graphs that admit a drawing in the plane in which
every pair of edges not sharing a vertex cross an even number of times. We gen-
eralize Hanani–Tutte theorem to clustered graphs with two disjoint clusters, and
show that a straightforward extension of our result to flat clustered graphs with
three or more disjoint clusters is not possible. Similarly as Hanani-Tutte theo-
rem, our generalization gives a polynomial-time algorithm for clustered planarity
testing in the case of two clusters. We also discuss possible extensions of our
results and their consequences for other variants of planarity.

1



Extremal results for Berge-hypergraphs

Dániel Gerbner, MTA Rényi Institute

(joint work with Cory Palmer)

Let H be a hypergraph and G be a graph. We say that H contains G if we can
embed G into the vertex set of H such that each edge of G can be associated
with a distinct edge of H containing it. We say H is G-free if it does not contain
G. (When H is a graph this is the ordinary notion that H does not contain G as
a subgraph).
We would like to determine the maximum possible size of the sum of the vertex
degrees in an G-free hypergraph H on n vertices. (When H is a graph this
maximum is twice the extremal number of G). Győri and Lemons showed that
for 3-uniform hypergraphs, when G is an even cycle that this maximum has the
same order as the extremal number of even cycle in graphs. Surprisingly, for
cycles of length 2k + 1 the parameter is the same order as for cycles of length 2k
(this is significantly different from the extremal number of odd cycles in graphs).
We examine this question in a slightly more general setting and show that for
any graph G, the maximum degree sum cannot behave too differently from the
extremal number of G. We then focus on the particular case when G is a complete
bipartite graph to get an analogue of the Kővari-Sós-Turán theorem.

1



Maximum density of exact copies of a graph in
the n-cube and a Turán surprise.

John Goldwasser, West Virginia University

Let G be an induced subgraph of the d-cube Qd. We define f(d,G), the d-cube
density of G, to be the limit as n goes to infinity of the maximum fraction, over
all subsets J of the vertex set of the n-cube Qn, of sub-d-cubes of Qn whose
intersection with J induces an exact copy of G (isomorphic to G, with the same
embedding in Qd). In general, it is difficult to determine f(d,G). We show that
if C is a perfect 8-cycle (4 pairs of vertices at distance 4) then f(4, C) = 3/32.
Amazingly, to establish the upper bound we needed to determine the Turán
density of {F,H}, where F = {1234, 1235, 1245} and G = {1234, 1235, 1456}
and where the only 4-graphs allowed are those where there is a bipartition of the
vertex set such that each edge has two vertices in each part. We note that the
link graphs of the vertex 1 in F and G are the two forbidden 3-graphs in Bollobas
well-known theorem on the maximum number of edges in a 3-graph where no
edge contains the symmetric difference of two others.

1



ANTI-RAMSEY NUMBERS IN COMPLETE SPLIT GRAPHS

IZOLDA GORGOL

A subgraph of an edge-coloured graph is rainbow if all of its edges have different
colours. For graphs G and H the anti-Ramsey number ar(G,H) is the maximum
number of colours in an edge-colouring of G with no rainbow copy of H. The no-
tion was introduced by Erdős, Simonovits and V. Sós and studied in case G = Kn.
Afterwards exact values or bounds for anti-Ramsey numbers ar(Kn, H) were estab-
lished for various H among others by Alon, Jiang & West, Montellano-Ballesteros
& Neumann-Lara, Schiermeyer. There are also results concernig bipartite graphs,
cubes or product of cycles as G obtained by Axenovich, Li, Montellano-Ballesteros,
Schiermeyer and others. In the talk we give the survey of these results and also
there will be presented numerous results with a complete split graph Kn + Km as
the host graph G.

Department of Applied Mathematics, Lublin University of Technology, Nadbystrzy-

cka 38D, 20-618 Lublin, Poland

E-mail address: I.Gorgol@pollub.pl

1991 Mathematics Subject Classification. 05D10, 05C55.
Key words and phrases. anti-Ramsey number, rainbow number.
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The clique, independence and chromatic numbers of randomsubgraphs of distance graphsA.S. Gusev, M.M. Pyaderkin, A.M. RaigorodskiiOur talk is concerned with the classical Nelson{Hadwiger problem on �nding the chromatic numbers ofdistance graphs in R
n. We introduce a class of graphs G(n; r; s) = (V (n; r); E(n; r; s)) de�ned as follows:V (n; r) = {x = (x1; x2; : : : ; xn) : xi ∈ {0; 1}; x1 + x2 + : : :+ xn = r}; E(n; r; s) = {{x; y} : (x; y) = s};where (x; y) is the Euclidean scalar product.We study the random graphs G(G(n; r; s); p) whose edges are chosen independently from the setE(n; r; s) each with probability p. We obtain sharp asymptotic bounds for the clique, independenceand chromatic numbers of such graphs depending on some relations between the parameters n; r; s.
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Score and imbalance sets of multigraphs

Antal Iványi, Zoltán Kása, Shariefuddin Pirzada

We consider two problems:

1. How to test the potential score sets of multigraphs, how many score
sets have the multigraphs, and how to reconstruct the correspond-
ing graphs?

2. How to test the potential imbalance sets of directed multigraphs,
how many imbalance sets have the directed multigraphs and how
to reconstruct the corresponding graphs?
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A hypergraph Turán theorem via a
generalised notion of hypergraph Lagrangian.

Matthew Jenssen, London School of Economics

The theory of hypergraph Lagrangians, developed by Frankl and Füredi [Bull.
Inst. Math. Acad. Sin. 16 (1988), 305–313] and Sidorenko [Mat. Zametki 41
(1987), 433–455], is a valuable tool in the field of hypergraph Turán problems.
Here we present a generalised notion of the hypergraph Lagrangian and use the
Karush-Kuhn-Tucker conditions from the theory of non-linear programming to
exploit some of it’s properties. As an application we show that the maximum
Lagrangian of an r-graph H with the property that for all e, f ∈ E(H), e ∩ f 6=
r − 2 is attained by K

(r)
r+1, the complete r-graph on r + 1 vertices in the cases

r = 3, 4, 5, 6, 7and 8. As a consequence we determine the Turán density of what
we shall call the ‘r-uniform generalised K4’ for these values of r. More precisely,
the r-uniform generalised K4, denoted by K(r)

4 , is the r-graph on the 5r−6 vertices
{xi, yj, zijk : i = 1, . . . , r, j = 1, 2, k = 1, . . . r − 2} and with the 6 edges

{x1, . . . , xr}, {y1, y2, x3, . . . , xr} and {xi, yj, zij1, . . . , zij(r−2)} for i, j ∈ {1, 2}.

We note that K(2)
4 = K4, the complete graph on 4 vertices, so that the above

results may be viewed as hypergraph extensions of known Turán results on K4.
The generalised K4 is naturally related to the generalised triangle, whose Turán
density is considered (either implicitly or explicitly) in the works of Frankl and
Füredi [J. Combin. Theory Ser. A 52 (1989), 129–147] and Pikhurko [Combina-
torica 28 (2008) 187–208] amongst others.
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Convex Polygons are Self-Coverable

Balázs Keszegh, MTA Rényi Institute of Mathematics

(joint work with Dömötör Pálvölgyi)

We introduce a new notion for geometric families called self-coverability and show
that homothets of convex polygons are self-coverable. As a corollary, we obtain
several results about coloring point sets such that any member of the family with
many points contains all colors. This is dual (and in some cases equivalent) to
the much investigated cover-decomposability problem.
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Polynomial Time Algorithms for the 3-Dimensional VLSI
Routing in the Cube

Attila Kiss1,2, András Recski1,3

1 Department of Computer Science, L. Eötvös University, Faculty of Science, Budapest, Hungary,
{kissat, recski}@cs.elte.hu

2 Distributed Events Analysis Research Laboratory, Institute for Computer Science and Control, Hungarian Academy
of Sciences, Budapest, Hungary

3 Department of Computer Science and Information Theory, Budapest University of Technology and Economics,
Faculty of Electrical Engineering and Informatics, Budapest, Hungary ?

Abstract. In previous works some polynomial time algorithms were presented
for special cases of the 3-Dimensional VLSI Routing problem. Solutions were
given to problems when all the terminals are either on a single face (SALP -
Single Active Layer Problem) or on two opposite faces (3DCRP - 3-Dimensional
Channel Routing Problem) or on two adjacent faces (3DΓRP - 3-Dimensional
Gamma Routing Problem) of a rectangular cuboid. We prove that combining
these algorithms one can solve any given problem on cubes and we give some
polynomial time algorithms to find these solutions.

Keywords: VLSI design, 3-dimensional routing, Steiner-tree

Routing in the design of VLSI (Very Large Scale Integrated) circuits is an important area
of modern applied mathematics, in particular combinatorial optimization. There were a lot
of interesting results in this area in the last four decades. Although more and more prob-
lems are proved to be NP-complete, there are a lot of heuristic solutions, approximating
the optimum of these problems with a good rate of efficiency (for a further view read [1]).
There are many well known technologies to construct electric circuits for this model. We
give a new theoretical model that can be a future direction in the development of new cir-
cuits. We would like to construct "routing boxes" that means one can place terminals in all
the faces of a rectangular cuboid formed by the circuit boards layered together.
From a graph-theoretical point of view the 2-dimensional detailed routing problems (in
particular, the most often studied channel routing and switchbox routing problems) search
for vertex-disjoint Steiner-trees (trees with given sets containing specific terminals) on a
(2-dimensional) square grid while the 3-dimensional ones search on a (3-dimensional) cu-

? The research was partially supported by the Hungarian Scientific Research Fund (grants No. OTKA 108947 and
OTKA 106374).



bic grid.
Since even the Channel Routing Problem (when all the terminals are on two opposite
boundaries of the square grid) cannot always be solved, one has to introduce several par-
allel layers. In the last four decades hundreds or perhaps thousands of papers studied the
possibilities of routing a channel or switchbox using a possibly small number of layers.
However, no universal constant exists for the number of layers to make every switchbox
routing (with any size and shape) possible.
Similarly, even the simplest 3-dimensional problem (the Single Active Layer Routing
Problem, when all the terminals are on a single external face of the cubic grid) cannot
always be solved, one has to make the grid "finer". A spacing of size s in a given di-
rection means that we introduce s extra lines between any two consecutive lines in that
direction (plus s extra lines after the last original one). In a complete analogy with the
2-dimensional case, no universal refinement (that is, maximal spacing size) will do for
3-dimensional switchboxes of any size and shape.
In this paper we prove the existence of a universal spacing size if the switchbox is a cube
(of arbitrary size). Our upper bound will be of theoretical interest only but we expect that
it can drastically be reduced (we successfully decreased the size of the spacing in some
special cases).
To our best knowledge three special cases of the 3-dimensional switchbox routing prob-
lem have already been studied, namely: Single Active Layer Routing Problem [2],[3],
3-Dimensional Channel Routing Problem [4], 3-Dimensional Γ Routing Problem [5],[6].
In addition to these three subproblems we have six further cases. We proved the following:

Theorem 1. Combining the methods used by the three previous subproblems all the six
new cases on a cube can be solved with a fixed maximum number of spacings needed. Our
solution can be found in polynomial time.
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POLYNOMIAL-TIME PERFECT MATCHINGS IN DENSE

HYPERGRAPHS

PETER KEEVASH, FIACHRA KNOX AND RICHARD MYCROFT

In this talk we consider the decision problem for the existence of a perfect
matching in a k-uniform hypergraph (or k-graph) H on n vertices. Since
for k ≥ 3 this problem was one of Karp’s 21 NP-complete problems [1],
it is natural to seek conditions on H which render it tractable. For any
A ⊆ V (H), the degree d(A) = dH(A) of A is the number of edges of H
containing A. The minimum (k − 1)-degree δk−1(H) of H is the minimum
of d(A) over all subsets A of V (H) of size k − 1.

Let PM(k, δ) be the decision problem of determining whether a k-graph
H with δk−1(H) ≥ δn contains a perfect matching. Szymańska [3] proved
that for δ < 1/k the problem PM(k, 0) admits a polynomial-time reduction
to PM(k, δ) and hence PM(k, δ) is also NP-complete. We describe an
algorithm which shows that the opposite is true for δ > 1/k:

Theorem 1. Fix k ≥ 3 and γ > 0. Then there is an algorithm with running

time O(n3k
2−7k+1), which given any k-graph H on n vertices with δk−1(H) ≥

(1/k + γ)n, finds either a perfect matching or a certificate that no perfect
matching exists.

Previously, Karpiński, Ruciński and Szymańska [2] showed that there
exists ε > 0 such that PM(k, 1/2− ε) is in P.

To prove Theorem 1 we establish a strong stability result which states that
if H is a k-graph on n vertices, and δk−1(H) ≥ n/k + o(n), then H either
contains a perfect matching or is close to one of a family of lattice-based
constructions termed ‘divisibility barriers’. While the precise statement of
this result for general k requires significant preliminaries, which we cover in
the talk, the special case k = 3 may be stated as follows:

Theorem 2. For any γ > 0 there exists n0 = n0(γ) such that the following
statement holds. Let H be a 3-graph on n ≥ n0 vertices, such that 3 divides
n and δ2(H) ≥ (1/3 + γ)n, and suppose that H does not contain a perfect
matching. Then there is a subset A ⊆ V (H) such that |A| is odd but every
edge of H intersects A in an even number of vertices.
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K(s,t)-saturated bipartite graphs

Dániel Korándi, ETH Zürich

(joint work with Wenying Gan and Benny Sudakov)

An n-by-n bipartite graph is H-saturated if the addition of any missing edge
between its two parts creates a new copy of H. In 1964, Erdős, Hajnal and Moon
made a conjecture on the minimum number of edges in a K(s,s)-saturated bipartite
graph. This conjecture was proved independently by Wessel and Bollobás in a
more general, but ordered, setting: they showed that the minimum number of
edges in a K(s,t)-saturated bipartite graph is n2−(n−s+1)(n−t+1), where K(s,t)

is the ”ordered” complete bipartite graph with s vertices in the first color class
and t vertices in the second. However, the very natural question of determining
the minimum number of edges in the unordered K(s,t)-saturated case remained
unsolved. This problem was considered recently by Moshkovitz and Shapira who
also conjectured what its answer should be. We give a bound on the minimum
number of edges in a K(s,t)-saturated bipartite graph that is only smaller by an
additive constant than the conjectured value. In this talk we sketch the ideas
behind the proof.
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Turán problems and shadows

Alexandr Kostochka, University of Illinois Urbana-Champaign

(joint work with Dhruv Mubayi and Jacques Verstraëte)

The Turán number, exr(n, F ) of an r-uniform hypergraph F is the maximum
number of edges in an r-uniform hypergraph with n vertices not containing copies
of F . All the four Honorees of the meeting have strong results on Turán numbers.
The expansion G+ of a graph G is the 3-uniform hypergraph obtained from G
by enlarging each edge of G with a vertex disjoint from V (G) such that distinct
edges are enlarged by distinct vertices.
We determine ex3(n,G

+) exactly when G is a path or cycle, thus settling conjec-
tures of Füredi and Jiang (for cycles) and Füredi, Jiang and Seiver (for paths).
We find the asymptotics for ex3(n,G

+) when G is any fixed forest. This settles
a conjecture of Füredi. We also show that for each graph G, either ex3(n,G

+) ≤(
1
2

+ o(1)
)
n2 or ex3(n,G

+) ≥ (1 + o(1))n2, thereby exhibiting a jump for the
Turán number of expansions. In addition, for the graph Q3 of the 3-dimensional
unit cube, we show ex3(n,Q3) = Θ(n2).
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Title: Randomness in Maker-Breaker games

Gal Kronenberg

Tel Aviv University

Abstract: We consider two random versions of Maker-Breaker games.
The first setting is the random-turn Maker-Breaker games, firstly introduced by Peres, Schramm,
Sheffield and Wilson in 2007. A p-random-turn Maker-Breaker game is the same as an ordinary
Maker-Breaker game, except that instead of alternating turns, the players toss a coin before
each turn to decide the identity of the next player to move (the probability of Maker to move
is p).
In the second setting we consider the biased random-player Maker-Breaker game. In this ver-
sion, one of the players plays according to an optimal strategy, while the other plays randomly.
Under this setting we actually have two different games: the (m : 1) random-Maker game and
the (1 : b) random-Breaker game. We call m and b the bias of the game.
We analyze the two random versions of several classical games such as the game Box (intro-
duced by Chvátal and Erdős in 1987), the Hamilton cycle game and the k-connectivity game
(both played on the edge set of Kn). For each such game, we show an efficient strategies for
the typical winner of the game.

Joint work with: Asaf Ferber and Michael Krivelevich.
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Spanning quadrangulations of triangulated surfaces

André Kündgen,

(joint work with Carsten Thomassen)

While on any fixed surface there are only finitely many minimal graphs that are
not 5-vertex-colorable, there is no such characterization for 4-vertex-coloring on
any surface other than the sphere. On the positive side, a triangulation of a
surface is 4-vertex-colorable if and only if the edges can be labeled with 3 colors
such that the union of any two color classes forms a bipartite spanning quad-
rangulation. We explore this idea by establishing connections between spanning
quadrangulations and cycles in the dual graph which are noncontractible and
alternating with respect to a perfect matching.
We show that the dual graph of an Eulerian triangulation of an orientable surface
other than the sphere has a perfect matching M and an M -alternating noncon-
tractible cycle. As a consequence, every Eulerian triangulation of the torus has a
nonbipartite spanning quadrangulation. For an Eulerian triangulation G of the
projective plane the situation is different: If the dual graph of G is nonbipartite,
then it has no noncontractible alternating cycle, and all spanning quadrangu-
lations of G are bipartite. If the dual graph of G is bipartite, then it has a
noncontractible, M -alternating cycle for some (and hence any) perfect matching
M , and thus G has a bipartite spanning quadrangulation and also a nonbipartite
spanning quadrangulation.
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On random subgraphs of a Kneser graph.

Andrey Kupavskii*

June 17, 2014

Our talk is devoted to the study of a Kneser graph 𝐾𝐺𝑛,𝑘. The vertices of the graph are the 𝑘-subsets
of 𝑛-element set. Two 𝑘-sets are joined by an edge if they are disjoint. These graphs were first investigated
by Martin Kneser [3]. He showed that 𝜒(𝐾𝐺𝑛,𝑘) ≤ 𝑛 − 2𝑘 + 2 and conjectured that this bound is tight.
The conjecture was proved by László Lovász [4] over 20 years later. He used tools from algebraic topology,
giving birth to the field of topological combinatorics. Later, a very nice and short proof was given by
Joshua E. Greene [2].

Several papers we devoted to the study of the chromatic number of Kneser graphs of set systems. For
any system of 𝑘-sets 𝒜 ⊂

(︀
[𝑛]
𝑘

)︀
we can define the Kneser graph 𝐾𝐺(𝒜) in the following natural way. The

vertices of 𝐾𝐺(𝒮) are the elements of 𝒜, while two of them are joined if and only if they are disjoint. In
particular, there were results by Dolnikov [1] and Schrijver [5].

Such graphs are induced subgraphs of 𝐾𝐺𝑛,𝑘. We, in turn, study spanning subgraphs of 𝐾𝐺𝑛,𝑘.
Namely, we study the chromatic number of a random graph 𝐾𝐺𝑛,𝑘(𝑝). This graph has the same set of
vertices as 𝐾𝐺𝑛,𝑘, and each edge from 𝐾𝐺𝑛,𝑘 is included in 𝐾𝐺𝑛,𝑘(𝑝) with probability 𝑝. Informally, for a
large range of values of parameters we show that the chromatic number of the random subgraph is w.h.p.
close to the chromatic number of the original graph. In particular, we have the following

Theorem. 1. If 𝑝 is fixed, 0 < 𝑝 ≤ 1, and 𝑘 ≫ 𝑛
3
2𝑙 , then w.h.p. 𝜒(𝐾𝐺𝑛,𝑘(𝑝)) ≥ 𝜒(𝐾𝐺𝑛,𝑘)− 2𝑙.

2. If for some 𝑝 = 𝑝(𝑛), 0 < 𝑝 ≤ 1, we have 𝑘 ≫ 𝑛3/4𝑝−1/4 + (𝑛1/2 ln𝑛)𝑝−1/2, then w.h.p. 𝜒(𝐾𝐺𝑛,𝑘(𝑝)) ≥
𝜒(𝐾𝐺𝑛,𝑘)− 4.
3. Let 𝑝 is fixed, 0 < 𝑝 ≤ 1, and 𝑛− 2𝑘 = 𝑜(

√
𝑛), then w.h.p. 𝜒(𝐾𝐺𝑛,𝑘(𝑝)) ≥ 𝜒(𝐾𝐺𝑛,𝑘)− 2.
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Graphs with and without cycles

Nathan Lemons, Los Alamos National Laboratory

A well known question of Erdős asks: How many pentagons can there be in a
triangle free graph? We consider a couple of variants to this problem in both
graphs and hypergraphs. We discuss a connection to the problem of relating the
extremal sizes of graphs excluding a cycle of length 2k and graphs of girth at
least 2k + 1.
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March 12, 2014

Abstract

Let m,n, and k be integers satisfying 0 < k 6 n < 2k 6 m. A family of
sets F is called an (m,n, k)-intersecting family if

([n]
k

)
⊆ F ⊆

([m]
k

)
and any

pair of members of F have nonempty intersection. Maximum (m, k, k)- and
(m, k + 1, k)-intersecting families are determined by the theorems of Erdős-Ko-
Rado and Hilton-Milner, respectively. We determine the maximum families for
the cases n = 2k − 1, 2k − 2, 2k − 3, or m sufficiently large.

Joint work with Bor-Liang Chen, Kuo-Ching Huang, and Ko-Wei Lih.
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On the number of K4-saturating edges

Hong Liu, UIUC

(Joint work with József Balogh.)

Let G be a K4-free graph, an edge in its complement is a K4-saturating edge if
the addition of this edge to G creates a copy of K4. Erdős and Tuza conjectured
that for any n-vertex K4-free graph G with bn2/4c + 1 edges, one can find at
least (1 + o(1))n

2

16
K4-saturating edges. We construct a graph with only 2n2

33
K4-

saturating edges. Furthermore, we prove that it is best possible, i.e., one can
always find at least (1 + o(1))2n

2

33
K4-saturating edges in an n-vertex K4-free

graph with bn2/4c + 1 edges.
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New bounds for 3-part Sperner-families

András Mészáros, ELTE

We give a new upper and lower bound on the size of maximum 3-part Sperner
families. We prove that 1, 05 < d3 < 1, 072. Further we disprove a conjecture
of Aydinian, Czabarka, Erdős, Székely on the maximum size of k-part Sperner
families for the case of equal parts of size 2` − 1.
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Cyclic chain decomposition method for forbidding subposets

Abhishek Methuku, CEU

(joint work with Casey Tompkins.)

We introduce a new method for determining the size of the largest family of sub-
sets of [n] not containing any of one or more given posets as a weak subposet. The
method involves decomposing the set of intervals along a cyclic permutation into
chains of a certain type called as ”Oscillating chains” and considering the inter-
action between consecutive Oscillating chains. In particular, we consider a poset
which strictly contains the butterfly poset as a subposet and show that the same
bound holds, thereby generalizing a result of DeBonis, Katona and Swanepoel.
We determine La(n, P1, P2) for an infinite set of pairs (P1, P2), one of which pro-
vides a second generalization of their result. Other possible decompositions of
the set of intervals and a conjecture will be presented.
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On Saturated k-Sperner Systems

Natasha Morrison, Oxford University

(joint work with Jonathan Noel and Alex Scott)

Given a set X, a collection F ⊆ P(X) is said to be k-Sperner if it does not contain
a chain of length k + 1 under set inclusion and it is saturated if it is maximal
with respect to this property. Gerbner, Keszegh, Lemons, Palmer, Pálvölgyi and
Patkós conjectured that, if |X| is sufficiently large with respect to k, then the
minimum size of a saturated k-Sperner system F ⊆ P(X) is 2k−1. In this talk we
disprove this conjecture by showing that there exists ε > 0 such that for every
k and |X| ≥ n0(k) there exists a saturated k-Sperner system F ⊆ P(X) with
cardinality at most 2(1−ε)k.
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Perfect packings in hypergraphs

Richard Mycroft, University of Birmingham

Let G and H be graphs or k-graphs (k-uniform hypergraphs). Then a perfect H-
packing in G is a collection of vertex-disjoint copies of H in G which together cover
all vertices of G. For graphs, the minimum degree condition needed to ensure the
existence of a perfect H-packing in G was considered by several authors, before
finally Kühn and Osthus gave a condition for any graph H which is best-possible
up to an additive constant. However, very few analogous results for k-graphs are
known outside the case of a perfect matching (when H consists of a single edge).
In this talk I will outline some recent developments for this problem.
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Union-intersecting set systems

Dániel T. Nagy
Eötvös Loránd University, Budapest

Joint work with Gyula O.H. Katona

Three intersection theorems are proved. First, we determine the size of
the largest set system, where the system of the pairwise unions is l-intersecting.
Then we investigate set systems where the union of any s sets intersect the union
of any t sets. The maximal size of such a set system is determined exactly if
s + t ≤ 4, and asymptotically if s + t ≥ 5. Finally, we exactly determine the
maximal size of a k-uniform set system that has the above described (s, t)-union-
intersecting property, for large enough n.
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Saturation Games

Alon Naor, Tel Aviv University

Let P be a monotone increasing graph property and let G be a graph on n vertices
which does not satisfy P . An edge e ∈ Kn \G is called legal (with respect to G and P) if
G ∪ {e} does not satisfy P . In the saturation game (n,P) two players, called Shorty and
Prolonger, build together a graph G ⊆ Kn which does not satisfy P . Shorty and Prolonger
take turns is claiming legal edges (starting from the empty graph on n vertices) until none
exist. At this point the game is over, and the resulting graph G is said to be P saturated.
The score of the game is the number of edges in G at the end of the game. Shorty’s goal is to
minimize the score of the game, while Prolonger’s goal it to maximize the score of the game.

We analyze saturation games for several graph properties, including P = “having chro-
matic number at least k” and P = “containing a k-matching”, showing some surprising
results.

Joint work with Dan Hefetz, Michael Krivelevich and Miloš Stojaković.
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Exactly m-coloured graphs

Bhargav Narayanan, Cambridge University

(joint work with Teeradej Kittipassorn)

Given an edge-colouring of a graph with a set of m colours, we say that the graph
is exactly m-coloured if each of the colours is used. If we are given an edge-
colouring of the complete graph on the natural numbers with infinitely many
colours, for which numbers m can one always find an exactly m-coloured com-
plete subgraph? Stacey and Weidl asked this question in 1999, noting that the
injective colouring leaves only numbers of the form n(n− 1)/2 as potential can-
didates. Teeradej Kittipassorn and I answered this question recently; we proved
that whenever the complete graph on the natural numbers is coloured with in-
finitely many colours, there is a complete (n(n − 1)/2)-coloured subgraph for
every natural number n. In this talk, I will talk about this theorem and various
other related questions and results.
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Some Covering Problems in Geometry

Márton Naszódi, ELTE

We discuss variations of the following problem: given a set in Euclidean n-space
(resp. on the sphere). Bound the minimum number of translates (resp. rotated
copies) that cover another given set (resp. the sphere). We present a method
to obtain upper bounds for these problems. As applications of this method, we
generalize some results of Rogers, and sharpen an estimate by Artstein–Avidan
and Slomka. The key idea which makes our proofs rather simple and uniform
throughout distinct geometric settings is the application of an algorithmic result
of Lovász as opposed to the probabilistic approach taken by others.
If time permits, we discuss a lower bound, too. We consider the illumination
problem (the problem of covering a convex body by translates of its interior).
By a probabilistic argument, we show that arbitrarily close to the Euclidean ball
there is a centrally symmetric convex body of illumination number exponentially
large in the dimension.
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List Colourings of Graphs on a Bounded Number of Vertices

Jonathan Noel, Oxford University

(joint work with Bruce Reed, Doug West, Hehui Wu and Xuding Zhu.)

The choice number (also called list chromatic number) of a graph G is the min-
imum integer k such that for any assignments of lists of size k to the vertices of
G, there is a proper colouring of G in which every vertex is mapped to a colour
in its list. For general graphs, the choice number is not bounded above by any
function of the chromatic number.
In this talk, we will discuss a proof of Ohba’s Conjecture, which states that if the
number of vertices in G is bounded above by 2χ(G)+1, then the choice number of
G is equal to its chromatic number. Moreover, we will provide a generalisation of
this result which gives a tight upper bound on the choice number of graphs with
at most 3χ vertices. We will conclude the talk by posing several open problems
for future study.
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Recency-based preferential attachment models

Liudmila Ostroumova1,2, Egor Samosvat1,3

Preferential attachment models were shown to be very effective in pre-
dicting such important properties of real-world networks as the power-law
degree distribution, small diameter, etc. Many different models are based
on the idea of preferential attachment: LCD, Buckley-Osthus, Holme-Kim,
fitness, random Apollonian network, and many others.

Although preferential attachment models reflect some important proper-
ties of real-world networks, they do not allow to model the so-called recency
property. Recency property reflects the fact that in many real networks
nodes tend to connect to other nodes of similar age. This fact motivated
us to introduce a new class of models – recency-based models. This class
is a generalization of fitness models, which were suggested by Bianconi and
Barabási. Bianconi and Barabási extended preferential attachment models
with pages’ inherent quality or fitness of nodes. When a new node is added
to the graph, it is joined to some already existing nodes that are chosen with
probabilities proportional to the product of their fitness and incoming degree.

We generalize fitness models by adding a recency factor to the attractive-
ness function. This means that pages are gaining incoming links according to
their attractiveness, which is determined by the incoming degree of the page,
its inherent popularity (some page-specific constant) and age (new pages are
gaining new links more rapidly).

We analyze different properties of recency-based models. For example,
we show that some distributions of inherent popularity lead to the power-law
degree distribution.

1Yandex
2Moscow State University
3Moscow Institute of Physics and Technology
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Generalized multiplicative Sidon-sequences
Péter Pál Pach
BME, Budapest

As a generalization of multiplicative Sidon-sequences we investigate
the following question: What is the maximal number of elements which
can be chosen from the set {1, 2, . . . , n} in such a way that the equation
a1a2 . . . ak = b1b2 . . . bk does not have a solution of distinct elements?
Let us denote this maximal number by Gk(n). Erdős studied the case
k = 2: In 1938 he proved that π(n) + c1n

3/4/(log n)3/2 ≤ G2(n) ≤
π(n) + c2n

3/4 and 31 years later improved the upper bound to π(n) +
c2n

3/4/(log n)3/2. Hence, in the lower- and upper bounds for G2(n) not
only the main terms are the same, but the error terms only differ by a
constant factor. We study Gk(n) for k > 2, give asymptotically precise
bounds for every k, and prove some estimates on the error terms.

To estimate Gk(n) extremal graph theoretic results are used, namely
results about the maximal number of edges of C2k-free graphs and of
such C2k-free bipartite graphs, where the number of vertices in the two
classes are fixed.

Note that our question is strongly connected to the following prob-
lem: Erdős, Sárközy, T. Sós and Győri investigated how many numbers
can be chosen from {1, 2, . . . , n} in such a way that the product of any
2k of them is not a perfect square. The maximal size of such a sub-
set is denoted by F2k(n). The functions F and G clearly satisfy the
inequality F2k(n) ≤ Gk(n).
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Product irregularity strength of graphs and hypergraphs

Cory Palmer, University of Montana

(joint work with Jaehoon Kim)

Let G be a graph with no isolated edges and consider an edge-labeling w : E(G) →
{1, 2, 3, . . . , s} of the edges of G. The product degree pd(v) of a vertex v is the
product of weights on edges incident to v, i.e., pd(v) =

∏
e3v w(e). We call

an edge-labeling product-irregular if all product degrees in G are distinct. The
minimal s such that there exists a product-irregular labeling of G with labels
{1, 2, . . . , s} is the product irregularity strength of G. This parameter was intro-
duced by Anholcer who determined the value for some specific classes of graphs
and proved general upper and lower bounds. We establish improved upper and
lower bounds on this parameter for graphs. In fact, our results hold for multi-
hypergraphs (subject to some basic constraints).
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Indecomposable coverings with unit discs

Dömötör Pálvölgyi, ELTE

We disprove the 1980 conjecture of János Pach about the cover-decomposability
of open convex sets by showing that the unit disc is not cover-decomposable. In
fact, our proof easily generalizes to any set with a smooth boundary. We also
show that (the suitable variant of) the conjecture holds for unbounded sets.
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Three-monotone interpolation∗

Josef Cibulka
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Abstract

A function f : R → R is called k-monotone if it is (k − 2)-times dif-
ferentiable and its (k − 2)nd derivative is convex. A point set P ⊂ R

2

is k-monotone interpolable if it lies on a graph of a k-monotone function.
These notions have been studied in analysis, approximation theory etc.
since the 1940s.

We show that 3-monotone interpolability is very non-local: we exhibit
an arbitrarily large finite P for which every proper subset is 3-monotone
interpolable but P itself is not. On the other hand, we prove a Ramsey-
type result: for every n there exists N such that every N -point P with
distinct x-coordinates contains an n-point Q such that Q or its vertical
mirror reflection are 3-monotone interpolable. The analogs for k-monotone
interpolability with k = 1 and k = 2 are classical theorems of Erdős and
Szekeres, while the cases with k ≥ 4 remains open.

We also investigate the computational complexity of deciding 3-mono-
tone interpolability of a given point set. Using a known characterization,
this decision problem can be stated as an instance of polynomial optimiza-
tion and reformulated as a semidefinite program. We exhibit an example
for which this semidefinite program has only doubly exponentially large
feasible solutions, and thus known algorithms cannot solve it in polynomial
time. While such phenomena have been well known for semidefinite pro-
gramming in general, ours seems to be the first such example in polynomial
optimization, and it involves only univariate quadratic polynomials.

∗This research was started at the 3rd KAMÁK workshop held in Vranov nad Dyj́ı, Czech
Republic, September 15-20, 2013, which was supported the grant SVV-2013-267313 (Discrete
Models and Algorithms). J.C. was also supported by this grant. J.M. was supported by the
ERC Advanced Grant No. 267165. P.P. was supported by the grant SVV-2014-260107
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Choosability of Graph Powers

N. Kosar Š. Petř́ıčková B. Reiniger E. Yeager

Abstract

Recently, Kim and Park have found an infinite family of graphs whose
squares are not chromatic-choosable. Xuding Zhu asked whether there
is some k such that all kth power graphs are chromatic-choosable. We
answer this question in the negative. We show that there is a positive
constant c such that for any k there is a family of graphs G with χ(Gk)
unbounded and χ`(G

k) ≥ cχ(Gk) logχ(Gk).
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Sharp Bounds on Davenport-Schinzel Sequences of Every Order

Seth Pettie

A Davenport-Schinzel sequence with order s is a sequence over an n-letter alpha-
bet that avoids subsequences of the form a..b..a..b.. with length s+2. They were
originally used to bound the complexity of the lower envelope of degree-s polyno-
mials or any class of functions that cross at most s times. They have numerous
applications in discrete geometry and the analysis of algorithms.
Let DSs(n) be the maximum length of such a sequence. In this talk I’ll present a
new method for obtaining sharp bounds on DSs(n) for every order s. This work
reveals the unexpected fact that sequences with odd order s behave essentially
like even order s− 1. The results refute both common sense and a conjecture of
Alon, Kaplan, Nivasch, Sharir, and Smorodinsky [2008]. Prior to this work, tight
upper and lower bounds were only known for s up to 3 and even s > 3.
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On the union of arithmetic progressions

Rom Pinchasi, Technion

(joint work with Shoni Gilboa)

We show that for every ε > 0 there is an absolute constant c(ε) > 0 such that the
following is true: The union of any n arithmetic progressions, each of length n,
with pairwise distinct differences must consist of at least c(ε)n2−ε elements. We
show also that this type of bound is essentially best possible, as we can find n
arithmetic progressions, each of length n, with pairwise distinct differences such
that the cardinality of their union is o(n2).
We develop some number theoretical tools that are of independent interest. In
particular we give almost tight bounds on the following question: Given n distinct
integers a1, ..., an at most how many pairs satisfy aj/ai ∈ [n]? More tight bounds
on natural related problems will be presented.
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1 Nonnegative k-sums in a set of numbers.
Alexey Pokrovskiy

Suppose that we have a set of numbers x1, . . . , xn which have nonnegative sum. How many subsets
of k numbers from {x1, . . . , xn} must have nonnegative sum?

By choosing x1 = n−1 and x2 = · · · = xn = −1 we see that the answer to this question can be
at most

(
n−1
k−1
)
. Manickam, Miklós, and Singhi conjectured that for n ≥ 4k this assignment gives

the least possible number of nonnegative k-sums.

Conjecture 1 (Manickam, Miklós, Singhi, [2, 3]). Suppose that n ≥ 4k, and we have n real
numbers x1, . . . , xn such that x1 + · · ·+ xn ≥ 0. Then, at least

(
n−1
k−1
)
subsets A ⊂ {x1, . . . , xn} of

order k satisfy
∑

a∈A a ≥ 0

Despite the apparent simplicity of the statement of Conjecture 1, it has been open for over two
decades.

There have been several results establishing the conjecture when n is large compared to k.
Manickam and Miklós [2] showed that the conjecture holds when n ≥ (k − 1)(kk + k2) + k holds.
Tyomkyn improved this bound to n ≥ k(4e log k)k ≈ eck log log k. Alon, Huang, and Sudakov [1]
showed that the conjecture holds when n ≥ 33k2. Subsequently Frankl gave an alternative proof
of the conjecture in a range of the form n ≥ 3k3/2.

We will talk about a proof of the conjecture in a range which is linear in k.

Theorem 1. Suppose that n ≥ 1046k, and we have n real numbers x1, . . . , xn such that x1 + · · ·+
xn ≥ 0. At least

(
n−1
k−1
)
subsets A ⊂ {x1, . . . , xn} of order k satisfy

∑
a∈A a ≥ 0

The method we use to prove Theorem 1 is inspired by an averaging argument which Katona
used in his proof of the Erdős-Ko-Rado Theorem.
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On cliques in diameter graphs.

Andrey Kupavskii*, Alexandr Polyanskii†

March 14, 2014

Our talk is devoted to the study of the properties of cliques in diameter graphs.
Let us remind the definition of a diameter graph.

Definition. A graph 𝐺 = (𝑉,𝐸) is a diameter graph in R𝑑 (on 𝑆𝑑
𝑟 ), if 𝑉 ⊂ R𝑑 (𝑆𝑑

𝑟 ) is a finite set of
diameter 1 and edges of 𝐺 are formed by vertices that are at unit distance apart.

Note that we assume of the sphere being embedded in R𝑑+1, and the unit distance included from the
ambient space.

Diameter graphs arise naturally in the context of Borsuk’s problem. In 1933 Borsuk [3] asked whether
any set of diameter 1 in R𝑑 can be partitioned into (𝑑+1) parts of strictly smaller diameter. The positive
answer to this question is called Borsuk’s conjecture. This was shown to be true in dimensions up to 3.
In 1993 Kahn and Kalai [6] constructed a finite set of points in dimensions 1325 that does not admit a
partition into 1326 parts of smaller diameter. The minimal dimension in which the counterexample is
known is 64 (see [2], [5]).

We focus on one conjecture, posed by Morić and Pach [12].

Conjecture 1. Any two 𝑑-cliques in a diameter graph in R𝑑 must share at least (𝑑− 2) vertices.

This was proved for 𝑑 = 2 by Hopf and Pannwitz in [7] and for 𝑑 = 3 by V. Dol’nikov in [4]. As it is
shown in [12], the following conjecture (Schur et al., [13]) reduces to Conjecture 1: in any diameter graph
𝐺 in R𝑑 the number of 𝑑-cliques is not greater than the number of vertices.

In [9] we proved Conjecture 1, which is the main topic of our talk. In the papers [1], [8], [10] we studied
similar properties of cliques in diameter graphs in the space R𝑑 and on the sphere 𝑆𝑑

𝑟 of radius 𝑟 > 1/
√
2.

We note that some questions related to Conjecture 1 were studied in different terms by Maehara in
[11]. In that paper he studies sphericity of complete bipartite graphs, where sphericity of a graph is the
smallest dimension 𝑑 such that the vertices of a graph can be represented by closed unit balls in R𝑑 with
two balls intersecting exactly if two corresponding vertices are adjacent. The result he obtained almost
gives the following weaker version of Conjecture 1: any two 𝑑-cliques in a diameter graph in R𝑑 must share
at least one vertex.

Research supported in part by an the grant N MD-3138.2014.1 of President of RF, by the grant N
MD-6277.2013.1 of President of RF and by the grant N 12-01-00683 of the Russian Foundation for Basic
Research.
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Zero-one law for random distance graphs with
vertices in Zn

S.N.Popova 1

Zero-one laws for random graphs have been considered for the �rst time by
Glebskii Y. et al. in [1]. In this work the authors proved the zero-one law for
Erd�os�R�enyi random graph G(n, p). Later S. Shelah and J. Spencer expanded the
class of functions p(n), for which G(n, p) follows the zero-one law (see [2]). M.
Zhukovskii in [3] studied the zero-one law for random distance graphs with vertices
being vectors from {0, 1}n with equal numbers of zero and one coordinates. In [4]
we considered a more general model � random distance graphs with vertices in
{−1, 0, 1}n, depending on a set of parameters.

Let us de�ne the model of a random distance graph with vertices in Zn, generalizing
the models from [3, 4]. Let Gn be the graph (Vn, En) with vertex set

Vn = {v = (v1, . . . , vn) : |{i ∈ {1, . . . , n} : vi = m}| = am(n)}

and edge set
En = {{u,v} ∈ Vn × Vn : (u,v) = c},

where functions am(n) satisfy the condition
∑
m

am(n) = n and (u,v) is the Euclidean

scalar product. The random distance graph with vertices in Zn is the probabilistic
space G(Gn, p) = (ΩGn ,FGn ,PGn,p), where

ΩGn = {G = (V,E) : V = Vn, E ⊆ En},

FGn = 2ΩGn , PGn,p(G) = p|E|(1− p)|En|−|E|.

We prove the following results about the zero-one law for G(Gn, p).

Theorem 1. Let
∑
m

mam = kn, c(n) = k2n, where k ∈ Z and ak(n) → ∞,

n→∞. Then the random distance graph G(Gn, p) follows the zero-one law.

Theorem 2. Let
∑
m

mam = αn, c(n) = α2n, where α ∈ Q. Then there exists a

subsequence G(Gni
, p), following the zero-one law.

1Moscow State University, Mechanics and Mathematics Faculty, Department of Mathematical

Statistics and Random Processes
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Moscow State University

rprosanov@mail.ru

Upper bounds for some generalizations of the chromatic numbers.

Our talk will be devoted to some problems of Euclidian Ramsey theory. Let C ⊂ Rd be a

�nite point set. Denote by χ(C, n) the minimum number of colors needed to color Rd so

that there is no monochromatic copy of C. C is called Ramsey, if χ(C, n)→∞ as n→∞.

The classical conjecture is that C is Ramsey i� C ⊂ Sd−1. This conjecture is proved for

the vertex set of any simplex, products of Ramsey sets and some other sets. Moreover,

Frankl and R�odl showed that χ(C, n) grows exponentially, provided C is the vertex set of

a simplex. Recently, Raigorodsky, Zvonarev, Samirov, Harlamova gave accurate explicit

bounds for the values of χ(C, n). A particular case of C is just a two point set. In this case

χ(C, n) is the classical chromatic number χ(Rn). An important generalization of χ(Rn) is
Rn

K , where R
n
K is a normed space with a norm generated by a convex centrally-symmetric

K ⊂ Rn. Using our general approach based on Larman-Rogers' and Butler's technique,

we prove that χ(Rn
K) ≤ (3 + o(1))n. This bound improves substantially previous results

by Kang-F�uredi and Kupavskii.
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Graph Saturation Games

Ago-Erik Riet, University of Tartu

We study F-saturation games, first introduced by Füredi, Reimer and Seress [1]
in 1991, and named as such by West [2].
A graph G is H-saturated if H is not a subgraph of G, but adding any edge
to G causes H to be a subgraph. We can ask what the minimum or maximum
number of edges in an H-saturated graph on n vertices is - they are known
as the saturation number and Turán number (extremal number), respectively.
Something that is naturally between those values is the game saturation number
or score: two players, prolonger and shortener, start with an empty graph on
n vertices and put down edges alternately, so that H is not a subgraph of the
graph obtained during the game. Prolonger’s strategy is to have as many edges as
possible at the end and shortener has the opposite strategy. The game ends when
the graph is H-saturated. The game saturation number or score is the length of
the game or number of moves or number of edges at the end of the game.
We study the game saturation number for various graphs, digraphs or classes
thereof. We show lower bounds on the length of path-avoiding games, and more
precise results for short paths. We show sharp results for the tree avoiding game
and the star avoiding game. We examine analogous games on directed graphs, and
show tight results on the walk-avoiding game. We also examine an intermediate
game played on undirected graphs, such that there exists an orientation avoiding
a given family of directed graphs, and show bounds on the score. This is joint
work with Jonathan Lee.

References
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On the Richter-Thomassen Conjecture about

Pairwise Intersecting Curves

Natan Rubin∗

Abstract

Let Γ be a family of n closed Jordan curves in the plane, where any two curves
are either tangent or properly intersecting. We discuss a long standing conjecture
of Richter and Thomassen which suggests, in its somewhat stronger form, that the
overall number of intersection points among the curves of Γ must be strictly larger
in asymptotic terms than the number of touching pairs of curves in Γ (as n tends
to infinity).

We confirm the above conjecture in several important cases including x-monotone
curves or, more generally, curves which can be decomposed into constantly many
x-monotone pieces.

This is joint work in progress with János Pach and Gábor Tardos.

∗Université Pierre & Marie Curie, Institut de Mathématiques de Jussieu (UMR 7586), 4 Place Jussieu,
75252 Paris Cedex, France. Email: rubinnat.ac@gmail.com.
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Improved bounds for Pach’s selection theorem

Jan Kynčl, Pavel Paták,

Zuzana Safernová, Martin Tancer

March 15, 2014

Abstract

We improve the estimates on the selection constant in the following geometric selection
theorem by Pach: For every positive integer d there is a constant cd > 0 such that whenever
X1, . . . , Xd+1 are n-element subsets of Rd, then we can find a point p ∈ R

d and subsets Yi ⊆ Xi

for every i ∈ [d + 1], each of size at least cdn, such that p belongs to all rainbow d-simplices
determined by Y1, . . . , Yd+1, that is, simplices with one vertex in each Yi.

We provide a lower bound cd > 2−2
d
2+o(d)

, which is doubly exponentially decreasing in d

(up to a polynomial in the exponent). For comparison, Pach’s original approach yields a triply
exponentially decreasing lower bound. We also show an exponentially decreasing upper bound
cd ≤ κd for a suitable constant κ < 1.

For the lower bound, we improve the ‘separation’ part of the argument by showing that in
one of the key steps only d + 1 separations are necessary, compared to 2d separations in the
original proof. In our construction for the upper bound, we use the fact that the minimum solid
angle of every d-simplex is exponentially small. This fact was previously unknown and might
be of independent interest.
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Warning’s Second Theorem with restricted variables

John R. Schmitt, Middlebury College

(joint work with Pete L. Clark (U. Georgia) and Aden Forrow (M.I.T.))

A well-known theorem of Chevalley states that a system of polynomials contained
in an n-variable polynomial ring over a finite field of order q has a non-trivial zero
whenever each polynomial has zero constant term and the sum of the degrees d
is strictly less than n. In conjunction with this theorem is Warning’s Theorem,
which states, the number of shared zeros of such a polynomial system is divisible
by the characteristic of the finite field. Less well-known is Warning’s Second
Theorem, which states, the number of shared zeros is at least qn−d. We offer a
new proof of this theorem using the polynomial method and a result of Alon and
Füredi. We also provide a “restricted variables” generalization and show how this
is a useful combinatorial tool.
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Around Erdős–Lovász problem on colorings of non-uniform
hypergraphs
Dmitry Shabanov

Lomonosov Moscow State University
Faculty of Mechanics and Mathematics

Department of Probability Theory

The talk deals with combinatorial problems concerning colorings of non-uniform hyper-
graphs. Let H = (V,E) be a hypergraph with minimum edge-cardinality n. We show that if
H is a simple hypergraph (i.e. every two distinct edges have at most one common vertex) and∑

e∈E

r1−|e| 6 c
√
n,

for some absolute constant c > 0, then H is r-colorable. We also obtain a stronger result for
triangle-free simple hypergraphs by proving that if H is a simple triangle-free hypergraph and∑

e∈E

r1−|e| 6 c · n,

for some absolute constant c > 0, then H is r-colorable.

The work was partially supported by Russian Foundation of Fundamental Research (grant
№ 12-01-00683-а), by the program “Leading Scientific Schools” (grant no. NSh-2964.2014.1)
and by the grant of the President of Russian Federation MK-692.2014.1



Subdivisions of a large clique in C6-free graphs.

Maryam Sharifzadeh, UIUC

(Joint work with József Balogh and Hong Liu.)

Mader conjectured that every C4-free graph has a subdivision of a clique of order
linear in its average degree. We show that every C6-free graph has such a subdi-
vision of a large clique.
We also prove the dense case of Mader’s conjecture in a stronger sense, i.e. for
every c, there is a c′ such that every C4-free graph with average degree
cn1/2 has a subdivision of a clique K` with ` = bc′n1/2c where
every edge is subdivided exactly 3 times.
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Algebraic techniques for combinatorial geometry:
Recent developments

Micha Sharir, Tel Aviv University

In the past six years combinatorial geometry has experienced a major revolution,
following the introduction of tools from algebraic geometry by Guth and Katz in
2008 and 2010. In the most exciting accomplishment of the new techniques, Guth
and Katz have almost settled Erdős’s problem on distinct distances in the plane,
but many other significant developments have taken place since then. Many old
problems have been solved, many improved bounds have been obtained, and the
landscape of the field has considerably changed.
In this talk I will survey the recent developments. They include new bounds for
other variants of the distinct distances problem, new bounds for incidences in
various contexts, and re-examination of the theory of Elekes, Rónyai, and Szabó
on polynomials vanishing on grids, and numerous applications thereof.
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Some applications of Szemerédi-Trotter theorem
to additive combinatorics

Ilya Shkredov, Steklov Instittue

We give a survey of recent applications of Szemerédi-Trotter theorem to problems
concerning lower bounds of sumsets of convex sets, sizes of images of several
convex maps and sum-product phenomena.
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G-HAM SANDWICH THEOREMS: HARMONIC ANALYSIS AND
MEASURE PARTITIONS

STEVEN SIMON
WELLESLEY COLLEGE

SSIMON2@WELLESLEY.EDU

Abstract. The Ham Sandwich Theorem – any n finite measures on Rn can be
simultaneously bisected by single hyperplane – is the most classical result of equipar-
tition theory, a topic central to geometric and topological combinatorics. We provide
group-theoretic generalizations of this result, showing how finite measures can be
“G-balanced” by unitary representations of a compact Lie group G. For abelian
groups, such G-Ham Sandwich Theorems have an equivalent interpretation in terms
of vanishing Fourier transforms. In the finite cases, these yield (equi-)partitions by
families of complex regular q-fans of varying q, analogues of the famous Grünabum
problem on equipartitions by families of hyperplanes (i.e., regular 2-fans). For the
torus groups T k, one has center transversal theorems in an L2-sense for families of
complex hyperplanes, similar in spirit to the center-point theorem of Rado.
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Local chromatic number
Gábor Simonyi

Alfréd Rényi Institute of Mathematics, Hungarian Academy of Sciences

The local chromatic number of graphs was introduced in an 1986 paper by Erdős,
Füredi, Hajnal, Komjáth, Rödl. and Seress. It is the minimum number of colors that must
appear in the most colorful closed neighborhood of a vertex in any proper coloring of the
graph (with an arbitrary number of colors). It is (obviously) bounded from above by the
chromatic number. Surprisingly, however, as proved in the above mentioned paper, for
every k ≥ 3 there exist graphs with local chromatic number 3 and chromatic number k.
It was observed more recently, that the local chromatic number is bounded from below by
the fractional chromatic number. This observation triggered the start of investigations of
the local chromatic number for graphs with a large gap between their fractional chromatic
number and (ordinary) chromatic number. There are not too many graph families known
with this property, but those are usually “interesting” families of graphs. These include
Kneser graphs and Schrijver graphs, generalised Mycielski graphs, shift graphs.

The talk tries to give a survey of results found in the last decade about the local chromatic
number. It is based on joint papers with different subsets of the following co-authors:
Bojan Mohar, János Körner, Concetta Pilotto, Gábor Tardos, Sinǐsa Vrećica, Ambrus
Zsbán.



Incidence problems in higher dimensions

József Solymosi, University of British Columbia

Geometric incidence problems have surprising applications in various fields of
mathematics and theoretical computer science. The basic theorems bounding the
maximum number of point-line and point-curve incidences are the Szemerédi-
Trotter theorem (points and lines) and the Pach-Sharir theorem (curves and
lines). There are many open questions for the planar case and even more for the
higher dimensional variants. In this talk we will consider incidence problems in
the real 3-space and in the complex plane.
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Grid Ramsey problem and related questions

Benny Sudakov, ETH

(joint work with Conlon, Fox and Lee)

The Hales-Jewett theorem is one of the pillars of Ramsey theory, from which
many other results follow. A celebrated result of Shelah says that Hales-Jewett
numbers are primitive recursive. A key tool used in his proof, known as the cube
lemma, has become famous in its own right. In its simplest form, it says that
if we color the edges of the Cartesian product Kn × Kn in r colors then, for n
sufficiently large, there is a rectangle with both pairs of opposite edges receiving
the same color.
Hoping to improve Shelah’s result, Graham, Rothschild and Spencer asked more
than 20 years ago whether the cube lemma holds with n which is polynomial in
r. We show that this is not possible by providing a superpolynomial lower bound
in r. We also discuss a number of related questions, among them a solution of a
problem of Erdős and Gyárfás on generalized Ramsey numbers.
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Counting double-normal pairs

Konrad Swanepoel, London School of Economics

(joint work with János Pach)

Given a set of n points, there are various ways of declaring two points to be
”far apart”. Two well-known such notions are diameter pairs, where the distance
between the points equals the diameter of the set (first considered by Erds), or an-
tipodal pairs (introduced by Klee), where there exist parallel hyperplanes through
the two points with the whole set contained in the closed slab bounded by the
hyperplanes. Martini and Soltan (2005) introduced the notion of a double-normal
pair, where we ask in addition to antipodality that the parallel hyperplanes are
perpendicular to the line joining the two points. This notion interpolates between
that of diameter pairs and antipodal pairs.
In this talk we discuss the problems of estimating the maximum number of di-
ameters, antipodal pairs, or double-normal pairs in a set of n points in Euclidean
space. The problems for diameters and antipodal pairs are well known, but noth-
ing has previously been done for double-normal pairs.

1



Grid Ramsey problem and related questions

Endre Szemerédi, MTA Rényi Institute of Mathematics

(joint work with Asif Jamshed)

In 1974, Paul Seymour conjectured that any graph G of order n and minimum
degree at least k

k+1
n contains the kth power of a Hamiltonian cycle. This conjec-

ture was proved with the help of the Regularity Lemma for n ≥ n0 where n0 is
very large. Here we present another proof that avoids the use of the Regularity
Lemma and thus the resulting n0 is much smaller. The main ingredient is a new
kind of connecting lemma.
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Conflict-free coloring of graphs

Gábor Tardos, Rényi Institute, Budapest

(joint work with Roman Glebov and Tibor Szabó)

Conflict-free chromatic number of hypergraphs was introduced Even et al. and
was motivated by a frecvency assignment problem. We study this parameter of
the neighborhood hypergraphs of graphs from extremal and probabilistic points
of view. We resolve a question of Pach and Tardos about the maximum conflict-
free chromatic number the neighborhood hypergraph of an n-vertex graph can
have. Our construction is randomized. In relation to this we study the evolution
of the conflict-free chromatic number of the Erdős-Rényi random graph G(n, p)
and give the asymptotics for p = ω(1/n). We also show that for p ≥ 1/2 the
conflict-free chromatic number differs from the domination number by at most 3.
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Intersecting hypergraphs

Norihide Tokushige, University of the Ryukyus

I will present some problems and results on extremal structures of hypergraphs
satisfying some intersecting properties. Examples include extensions of Erdős-Ko-
Rado theorem, Erdős’s matching conjecture, and L-systems. I will also discuss
tools such as Frankl’s random walk method, and an extension of Hoffman’s ratio
bound.
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Improved bounds on the partitioning of the Boolean lattice into

chains of equal size

Istvan Tomon, Cambridge University

The Boolean lattice 2[n] is the power set of [n] = {1, ..., n} ordered by

inclusion. We prove that if n > 500c2 then 2[n] can be partitioned into chains,

with at most one exception each of length c. This improves a theorem of Lonc

on the conjecture of Griggs. We also show that given a positive integer c and a

poset P , whose Hesse diagram is connected then there exists N(P, c) such that

if n > N(P, c) then the cartesian power Pn can be partitioned into chains, with

at most one exception each of length c.
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Making a C6-free graph C4-free and bipartite

Casey Tompkins
Joint work with Ervin Győri and Scott Kensell

Central European University

Let e(G) denote the number of edges in a graph G, and let Ck denote a k-cycle. It is well-known
that every graph has a bipartite subgraph with at least half as many edges. Győri showed that
any bipartite, C6-free graph contains a C4-free subgraph containing at least half as many edges.
Applying these two results in sequence we see that every C6-free graph, G, has a bipartite C4-free
subgraph, H, with e(H) ≥ e(G)/4. We show that the factor of 1/4 can be improved to 3/8:

Theorem 1. Let G be a C6-free graph, then G contains a subgraph with at least 3e(G)/8 edges
which is both C4-free and bipartite.

The proof uses probabilistic ideas combined with a charactarization of C6-free graphs due to
Füredi, Naor and Verstraëte.
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Decomposing multiple coverings

Géza Tóth, MTA Rényi Institute of Mathematics

A planar set is cover-decomposable if a sufficiently thick covering of the plane by
its translates can always be decomposed into two coverings. More than 30 years
ago János Pach proposed the problem of determining cover-decomposable sets.
He proved that centrally symmetric convex polygons are cover-decomposable.
The problem is still not solved completely. We review the ideas of his proof, and
many interesting improvements, generalizations, and related developments.
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Matchings in balanced hypergraphs

Eberhard Triesch, RWTH Aachen (with R. Scheidweiler)

We investigate d-matchings and d-vertex covers in balanced hypergraphs H = (V,E)
where a weight function d : E → N is given. The d-matching number gd(H) is the
maximum value of

∑
m∈M

d(m) where M is a matching in H. Some function x : V → N.

is called a d-vertex cover if the inequality
∑
v∈e

x(v) ≥ d(e) holds for every edge e ∈ E.

The d-vertex cover number τd(H) is the minimal value of
∑
v∈V

x(v) where x is a d-vertex

cover in H.
Berge and Las Vergnas (Annals of the New York Academy of Science, 175, 1970,

32-40) proved what may be called Kőnig’s Theorem for balanced hypergraphs, namely
gd(H) = τd(H) for all weight functions d : E → N Conforti, Cornuéjols Kapoor and
Vušković (Combinatorica, 16, 1996, 325-329) proved that the existence of a perfect
matching is equivalent to the following analogue of Hall’s condition: If some vertices are
colored red and blue, and if there are more blue than red vertices in total, then there
is an edge containing more blue than red vertices. This generalizes Hall’s Theorem for
bipartite graphs.

We prove a Min-Max Theorem which generalizes both results. In particular, we obtain
a defect version of the generalized Hall Theorem. The proof is purely combinatorial.

Let H = (V,E) denote a balanced hypergraph and assume that a second weight
function b : V → N is given. Define the weight of a partial hypergraph H ′ of H as

w(H ′) :=
∑

e∈E(H′)

d(e)−
∑

v∈V (H′)

(degH′(v)− 1)b(v).

Consider the optimization problem of maximizing w(H ′) over all partial hypergraphs
H ′ ⊆ H.

As a dual notion, let

X := X(H, d, b) := {x|x is a d− vertex cover and 0 ≤ x(v) ≤ b(v) for all v ∈ V }.

Main result:

Theorem 1. Let H = (V,E) be a balanced hypergraph and d : E → N and b : V → N,
such that for all e ∈ E :

∑
v∈e

b(v) ≥ d(e). Then the following minimax-relation holds:

max
H′⊆H

w(H ′) = min
x∈X

∑
v∈V

x(v)



Universality of graphs with few triangles and
anti-triangles

Mykhaylo Tyomkyn

Call a graph sequence 3-random-like if it contains asymptotically the
same number of triangles and empty 3-sets as the random graph Gn,1/2. This
property is a natural relaxation of graph quasirandomness.

I will demonstrate that 3-random like graphs are 4-universal, meaning
that each of them contains many induced copies of every 4-vertex graph. On
the other hand, it is no longer true that 3-random like graphs are 5-universal.
In fact, higher order universality can be disproved in a very strong sense.

Joint work with Dan Hefetz.



On the paintability number of Kn,n

Máté Vizer, MTA Rényi Institute of Mathematics

(joint work with Dániel Gerbner)

The notion of on-line choice number of a graph, which is called the paint number
was introduced independently by Zhu and Schauz in 2009. It is natural to ask
whether the difference between the choice and the paint number of a graph can
be arbitrarily large. We do not answer this problem, however we show a new
lower bound on the paint number of Kn,n, which is a good candidate to solve the
question.
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Searching d-defective sets with queries of size k

D. K. Vu∗

Consider a set X of n elements. We wish to identify a particular subset
Y containing at most d unknown elements. To this end, we perform a series
of experiments with the following property: when testing a subset A ⊆ X,
we receive a positive result if and only if A contains at least one of these
d unknown elements. In practice, we often have the additional constraint
that |A| ≤ k, and we desire to minimize the total number of queries while
yet determining Y exactly. This can be done adaptively, meaning that the
answer of to a query influences which queries are made in the course of the
search, or non-adaptively, where all questions are determined in advance. In
the non-adaptive case, a successful family of such queries is often referred to
as a (d-)separating family.

This question was first posed by A. Rényi in 1961. For the case of d = 1
G. O. H. Katona solved the adaptive case and provided upper and lower
estimates for the non-adaptive case in 1966. In 2013, É. Hosszu, J. Tapolcai
and G. Wiener simplified the proof remarkably. Using some of their ideas, we
obtain similar results for general d. While the adaptive case is very similar, we
also provide new (and to our knowledge the first non-trivial) upper and lower
bounds in the non-adaptive case. We do so by examining the relationship
between the girth of hypergraphs and separability.

In this talk the focus will be on the cases of d = 2, 3 for illustrative
purposes.

This is joint work with F. S. Benevides, M. Delcourt, D. Gerbner, C. Palmer
and B. Sinaimeri.

∗Department of Mathematical Sciences, University of Memphis, Memphis, TN-38152,
USA, dominik.vu@memphis.edu



Decomposition of multiple packings with
subquadratic union complexity

Bartosz Walczak, EPFL

(joint work with János Pach)

Let k be a positive integer and X be a k-fold packing of simply connected compact
sets in the plane, that is, a family such that every point belongs to at most k
sets. Suppose that there is a function f(n) = o(n2) with the property that any n
members of X surround at most f(n) holes, which means that the complement of
their union has at most f(n) bounded connected components. We use tools from
extremal graph theory and the topological Helly theorem to prove that X can be
decomposed into at most p packings, where p is a constant depending only on k
and f .
Let k be a positive integer and let X be a k-fold packing of simply connected
compact sets in the plane, that is, a family such that every point belongs to at
most k sets. Suppose that there is a function f(n) = o(n2) with the property
that any n members of X surround at most f(n) holes, which means that the
complement of their union has at most f(n) bounded connected components.
We use tools from extremal graph theory and the topological Helly theorem to
prove that X can be decomposed into at most p packings, where p is a constant
depending only on k and f .
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Middle-Level Graphs

Paul M. Weichsel, University of Illinois Urbana-Champaign

In this note we examine the class of Middle-Level Graphs, ML(k), also known as
the Revolving Door Graphs. ML(k) is defined as the subgraph of the (2k + 1)-
dimensional cube, Q(2k+1), induced by the vertices with either exactly k+1 ones
or exactly k ones. These graphs have been studied extensively in an attempt to
settle the conjecture that they are Hamiltonian. They are known to be distance-
transitive and therefore distance-regular. We will prove some results about their
embedding in the cube and examine the middle level of the middle level. In
particular we show that the middle level of ML(k) consists of disconnected copies
of middle level graphs of lower dimension. Thus we show that the middle level
of ML(k) is the join of

(
k

k/2

)
copies of ML(k/2) when k is even and the join of(

k+1
(k+1)/2

)
copies of ML((k − 1)/2) when k is odd.
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The Counting of Crossing-Free Geometric

Graphs — Algorithms and Combinatorics

Emo Welzl, ETH Zürich

Abstract

We are interested in the understanding of crossing-free geometric
graphs–these are graphs with an embedding on a given planar point set
where the edges are drawn as straight line segments without crossings.
Often we are restricted to certain types of graphs, most prominently
triangulations, but also spanning cycles, spanning trees, or (perfect)
matchings (and crossing-free partitions), among others. A primary
goal is to enumerate, to count, or to sample graphs of a certain type
for a given point set–so these are algorithmic questions–, or to give
estimates for the maximum and minimum number of such graphs on
any set of n points–these are problems in extremal combinatorial ge-
ometry.

Among others, I will show some of the new ideas for providing
extremal estimates, e.g. for the number of crossing-free spanning cy-
cles: the support-refined estimate for cycles versus triangulations, the
use of pseudo-simultaneously flippable edges in triangulations, and
the employment of Kasteleyn’s beautiful linear algebra method for
counting perfect matchings in planar graphs–here, interestingly, in a
weighted version. Moreover, Alvarez and Seidel’s recent 2n-algorithm
for counting triangulations is discussed, with Wettstein’s extensions
to other types of graphs (e.g. crossing-free perfect matchings). This
allows the first efficient enumeration algorithm (i.e. with polynomial
delay) for crossing-free perfect matchings.

Keywords: computational geometry, geometric graphs, counting,
sampling, enumeration
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Zero-one k-laws for small k

M.E. Zhukovskii

MIPT, MSU, Yandex

We study asymptotical behavior of the probabilities of first-order properties for Erdős–
Rényi random graphs G(n, p(n)) with p(n) = n−α, α ∈ (0, 1). The following zero-one law
was proved in 1988 by S. Shelah and J.H. Spencer [1]: if α is irrational then for any first-order
property L either the random graph satisfies the property L asymptotically almost surely
or it doesn’t satisfy (in such cases the random graph is said to obey zero-one law). When
α ∈ (0, 1) is rational the zero-one law for these graphs doesn’t hold.

Let k be a positive integer. Denote by Lk the class of the first-order properties of
graphs defined by formulae with quantifier depth bounded by the number k (the sentences
are of a finite length). Let us say that the random graph obeys zero-one k-law, if for
any first-order property L ∈ Lk either the random graph satisfies the property L almost
surely or it doesn’t satisfy. Since 2010 we prove several zero-one laws for rational α from
Ik = (0, 1

k−2
] ∪ [1− 1

2k−1 , 1). For some points from Ik we disprove the law. In particular, for

α ∈ (0, 1
k−2

) ∪ (1 − 1
2k−2

, 1) zero-one k-law holds. If α ∈ { 1
k−2

, 1 − 1
2k−2
}, then zero-one law

does not hold (in such cases we call the number α k-critical).
From our results it follows that zero-one 3-law holds for any α ∈ (0, 1). Therefore,

there are no 3-critical points in (0, 1). Zero-one 4-law holds when α ∈ (0, 1/2) ∪ (13/14, 1).
Numbers 1/2 and 13/14 are 4-critical. Moreover, we know some rational 4-critical and not
4-critical numbers in [7/8, 13/14). Recently we obtain new results concerning zero-one 4-laws
for α ∈ (1/2, 7/8) and, thereby, narrow the gap.
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