Improved bounds for Pach's selection theorem

Jan Kynčl, Pavel Paták, Zuzana Safernová, Martin Tancer

March 15, 2014

Abstract

We improve the estimates on the selection constant in the following geometric selection theorem by Pach: For every positive integer d there is a constant $c_{d}>0$ such that whenever X_{1}, \ldots, X_{d+1} are n-element subsets of \mathbb{R}^{d}, then we can find a point $\mathbf{p} \in \mathbb{R}^{d}$ and subsets $Y_{i} \subseteq X_{i}$ for every $i \in[d+1]$, each of size at least $c_{d} n$, such that \mathbf{p} belongs to all rainbow d-simplices determined by Y_{1}, \ldots, Y_{d+1}, that is, simplices with one vertex in each Y_{i}.

We provide a lower bound $c_{d}>2^{-2^{d^{2}+o(d)}}$, which is doubly exponentially decreasing in d (up to a polynomial in the exponent). For comparison, Pach's original approach yields a triply exponentially decreasing lower bound. We also show an exponentially decreasing upper bound $c_{d} \leq \kappa^{d}$ for a suitable constant $\kappa<1$.

For the lower bound, we improve the 'separation' part of the argument by showing that in one of the key steps only $d+1$ separations are necessary, compared to 2^{d} separations in the original proof. In our construction for the upper bound, we use the fact that the minimum solid angle of every d-simplex is exponentially small. This fact was previously unknown and might be of independent interest.

