Zero-one law for random distance graphs with vertices in \mathbb{Z}^{n}

S.N.Popova ${ }^{1}$

Zero-one laws for random graphs have been considered for the first time by Glebskii Y. et al. in [1]. In this work the authors proved the zero-one law for Erdős-Rényi random graph $G(n, p)$. Later S. Shelah and J. Spencer expanded the class of functions $p(n)$, for which $G(n, p)$ follows the zero-one law (see [2]). M. Zhukovskii in [3] studied the zero-one law for random distance graphs with vertices being vectors from $\{0,1\}^{n}$ with equal numbers of zero and one coordinates. In [4] we considered a more general model - random distance graphs with vertices in $\{-1,0,1\}^{n}$, depending on a set of parameters.

Let us define the model of a random distance graph with vertices in \mathbb{Z}^{n}, generalizing the models from [3, 4]. Let \mathcal{G}_{n} be the graph $\left(V_{n}, E_{n}\right)$ with vertex set

$$
V_{n}=\left\{\mathbf{v}=\left(v^{1}, \ldots, v^{n}\right):\left|\left\{i \in\{1, \ldots, n\}: v^{i}=m\right\}\right|=a_{m}(n)\right\}
$$

and edge set

$$
E_{n}=\left\{\{\mathbf{u}, \mathbf{v}\} \in V_{n} \times V_{n}:(\mathbf{u}, \mathbf{v})=c\right\},
$$

where functions $a_{m}(n)$ satisfy the condition $\sum_{m} a_{m}(n)=n$ and (\mathbf{u}, \mathbf{v}) is the Euclidean scalar product. The random distance graph with vertices in \mathbb{Z}^{n} is the probabilistic space $G\left(\mathcal{G}_{n}, p\right)=\left(\Omega_{\mathcal{G}_{n}}, \mathcal{F}_{\mathcal{G}_{n}}, \mathrm{P}_{\mathcal{G}_{n}, p}\right)$, where

$$
\begin{gathered}
\Omega_{\mathcal{G}_{n}}=\left\{G=(V, E): V=V_{n}, E \subseteq E_{n}\right\}, \\
\mathcal{F}_{\mathcal{G}_{n}}=2^{\Omega \mathcal{G}_{n}}, \quad \mathrm{P}_{\mathcal{G}_{n}, p}(G)=p^{|E|}(1-p)^{\left|E_{n}\right|-|E|} .
\end{gathered}
$$

We prove the following results about the zero-one law for $G\left(\mathcal{G}_{n}, p\right)$.
Theorem 1. Let $\sum_{m} m a_{m}=k n, c(n)=k^{2} n$, where $k \in \mathbb{Z}$ and $a_{k}(n) \rightarrow \infty$, $n \rightarrow \infty$. Then the random distance graph $\mathcal{G}\left(G_{n}, p\right)$ follows the zero-one law.

Theorem 2. Let $\sum_{m} m a_{m}=\alpha n, c(n)=\alpha^{2} n$, where $\alpha \in \mathbb{Q}$. Then there exists a subsequence $\mathcal{G}\left(G_{n_{i}}, p\right)$, following the zero-one law.

[^0]
References

[1] Y.V. Glebskii, D.I. Kogan, M.I. Liagonkii, V.A. Talanov, Range and degree of realizability of formulas the restricted predicate calculus, Cybernetics 5: 142-154, 1969. (Russian original: Kibernetica 5, 17-27)
[2] S. Shelah, J.H. Spencer, Zero-one laws for sparse random graphs, J. Amer. Math. Soc. 1: 97-115, 1988.
[3] M.E. Zhukovskii, On a sequence of random distance graphs subject to the zeroone law, Problems of Information Transmission 47(3): 251-268, 2011. (Russian original: Problemy Peredachi Informatsii, 47(3): 39-58, 2011).
[4] S.N. Popova, Zero-one law for random distance graphs with vertices in $\{-1,0,1\}^{n}$, Problems of Information Transmission 50(1), 2014. (Russian original: Problemy Peredachi Informatsii, 50(1): 79-101, 2014).

[^0]: ${ }^{1}$ Moscow State University, Mechanics and Mathematics Faculty, Department of Mathematical Statistics and Random Processes

