On cliques in diameter graphs.

Andrey Kupavskii, Alexandr Polyanskii ${ }^{\dagger}$

March 14, 2014

Our talk is devoted to the study of the properties of cliques in diameter graphs. Let us remind the definition of a diameter graph.

Definition. A graph $G=(V, E)$ is a diameter graph in \mathbb{R}^{d} (on S_{r}^{d}), if $V \subset \mathbb{R}^{d}\left(S_{r}^{d}\right)$ is a finite set of diameter 1 and edges of G are formed by vertices that are at unit distance apart.

Note that we assume of the sphere being embedded in \mathbb{R}^{d+1}, and the unit distance included from the ambient space.

Diameter graphs arise naturally in the context of Borsuk's problem. In 1933 Borsuk [3] asked whether any set of diameter 1 in \mathbb{R}^{d} can be partitioned into $(d+1)$ parts of strictly smaller diameter. The positive answer to this question is called Borsuk's conjecture. This was shown to be true in dimensions up to 3 . In 1993 Kahn and Kalai [6] constructed a finite set of points in dimensions 1325 that does not admit a partition into 1326 parts of smaller diameter. The minimal dimension in which the counterexample is known is 64 (see [2], [5]).

We focus on one conjecture, posed by Morić and Pach [12].
Conjecture 1. Any two d-cliques in a diameter graph in \mathbb{R}^{d} must share at least $(d-2)$ vertices.
This was proved for $d=2$ by Hopf and Pannwitz in [7] and for $d=3$ by V. Dol'nikov in [4]. As it is shown in [12], the following conjecture (Schur et al., [13]) reduces to Conjecture 1: in any diameter graph G in \mathbb{R}^{d} the number of d-cliques is not greater than the number of vertices.

In [9] we proved Conjecture 1, which is the main topic of our talk. In the papers [1], [8], [10] we studied similar properties of cliques in diameter graphs in the space \mathbb{R}^{d} and on the sphere S_{r}^{d} of radius $r>1 / \sqrt{2}$.

We note that some questions related to Conjecture 1 were studied in different terms by Maehara in [11]. In that paper he studies sphericity of complete bipartite graphs, where sphericity of a graph is the smallest dimension d such that the vertices of a graph can be represented by closed unit balls in \mathbb{R}^{d} with two balls intersecting exactly if two corresponding vertices are adjacent. The result he obtained almost gives the following weaker version of Conjecture 1: any two d-cliques in a diameter graph in \mathbb{R}^{d} must share at least one vertex.

Research supported in part by an the grant N MD-3138.2014.1 of President of RF, by the grant N MD-6277.2013.1 of President of RF and by the grant N 12-01-00683 of the Russian Foundation for Basic Research.

References

[1] V.V. Bulankina, A.B. Kupavskii, A.A. Polyanskii, Note on Schur's conjecture in \mathbb{R}^{4}, Doklady Akademii nauk, 454, N5 (2014), 507-511.
[2] A.V. Bondarenko, On Borsuk's conjecture for two-distance sets, arXiv:1305.2584
[3] K. Borsuk, Drei Sätze über die n-dimensionale euklidische Sphäre, Fund. Math. 20 (1933), 177-190.

[^0][4] V. L. Dol'nikov, Some properties of graphs of diameters, Discrete Comput. Geom. 24 (2000), 293-299.
[5] T. Jenrich, A 64-dimensional two-distance counterexample to Borsuk's conjecture, arXiv:1308.0206
[6] J. Kahn, G. Kalai, A counterexample to Borsuk's conjecture, Bulletin of the American Mathematical Society 29 (1993), 60-62.
[7] H. Hopf, E. Pannwitz, Aufgabe Nr. 167, Jahresbericht Deutsch. Math.-Verein. 43 (1934), p. 114.
[8] A. Kupavskii, Diameter graphs in \mathbb{R}^{4}, to appear in Discrete and Computational Geometry, arXiv:1306.3910
[9] A. Kupavskii, A. Polyanskii Proof of Schur's conjecture in \mathbb{R}^{n}, arXiv:1402.3694
[10] A. Kupavskii, A. Polyanskii On cliques in diameter graphs in \mathbb{R}^{4}, submitted to Math.Notes (in Russian)
[11] H. Maehara, Dispersed points and geometric embedding of complete bipartite graphs, Discrete and Computational Geometry 6, N1 (1991), 57-67.
[12] F. Morić and J. Pach, On Schur's conjecture, Thailand-Japan Joint Conference on Computational Geometry and Graphs (TJJCCGG12), Lecture Notes in Computer Science 8296, Springer-Verlag, Berlin, 120-131, 2013; Computational Geometry, to appear.
[13] Z. Schur, M. A. Perles, H. Martini, Y. S. Kupitz, On the number of maximal regular simplices determined by n points in \mathbb{R}^{d}, Discrete and Computational Geometry, The Goodman-Pollack Festschrift, Aronov etc. eds., Springer, 2003.

[^0]: *Moscow Institute of Physics and Technology, Ecole Polytechnique Fédérale de Lausanne. Email: kupavskii@yandex.ru.
 ${ }^{\dagger}$ Moscow Institute of Physics and Technology. Email: alexander.polyanskii@yandex.ru.

