1 Nonnegative k-sums in a set of numbers. Alexey Pokrovskiy

Suppose that we have a set of numbers x_{1}, \ldots, x_{n} which have nonnegative sum. How many subsets of k numbers from $\left\{x_{1}, \ldots, x_{n}\right\}$ must have nonnegative sum?

By choosing $x_{1}=n-1$ and $x_{2}=\cdots=x_{n}=-1$ we see that the answer to this question can be at most $\binom{n-1}{k-1}$. Manickam, Miklós, and Singhi conjectured that for $n \geq 4 k$ this assignment gives the least possible number of nonnegative k-sums.

Conjecture 1 (Manickam, Miklós, Singhi, [2, 3]). Suppose that $n \geq 4 k$, and we have n real numbers x_{1}, \ldots, x_{n} such that $x_{1}+\cdots+x_{n} \geq 0$. Then, at least $\binom{n-1}{k-1}$ subsets $A \subset\left\{x_{1}, \ldots, x_{n}\right\}$ of order k satisfy $\sum_{a \in A} a \geq 0$

Despite the apparent simplicity of the statement of Conjecture 1, it has been open for over two decades.

There have been several results establishing the conjecture when n is large compared to k. Manickam and Miklós [2] showed that the conjecture holds when $n \geq(k-1)\left(k^{k}+k^{2}\right)+k$ holds. Tyomkyn improved this bound to $n \geq k(4 e \log k)^{k} \approx e^{c k \log \log k}$. Alon, Huang, and Sudakov [1] showed that the conjecture holds when $n \geq 33 k^{2}$. Subsequently Frankl gave an alternative proof of the conjecture in a range of the form $n \geq 3 k^{3} / 2$.

We will talk about a proof of the conjecture in a range which is linear in k.
Theorem 1. Suppose that $n \geq 10^{46} k$, and we have n real numbers x_{1}, \ldots, x_{n} such that $x_{1}+\cdots+$ $x_{n} \geq 0$. At least $\binom{n-1}{k-1}$ subsets $A \subset\left\{x_{1}, \ldots, x_{n}\right\}$ of order k satisfy $\sum_{a \in A} a \geq 0$

The method we use to prove Theorem 1 is inspired by an averaging argument which Katona used in his proof of the Erdős-Ko-Rado Theorem.

References

[1] N. Alon, H. Huang, and B. Sudakov., Nonnegative k-sums, fractional covers, and probability of small deviations. J. Combin Theory B, 102:784-796, (2012).
[2] N. Manickam and D. Miklós., On the number of non-negative partial sums of a nonnegative sum. Colloq. Math. Soc. János Bolyai, 52:385-392, (1987).
[3] N. Manickam and N. Singhi., First distribution invariants and EKR theorems. J. Combin. Theory A, 48:91-103, (1988).

