On the union of arithmetic progressions

Rom Pinchasi, Technion

(joint work with Shoni Gilboa)
We show that for every $\epsilon>0$ there is an absolute constant $c(\epsilon)>0$ such that the following is true: The union of any n arithmetic progressions, each of length n, with pairwise distinct differences must consist of at least $c(\epsilon) n^{2-\epsilon}$ elements. We show also that this type of bound is essentially best possible, as we can find n arithmetic progressions, each of length n, with pairwise distinct differences such that the cardinality of their union is $o\left(n^{2}\right)$.
We develop some number theoretical tools that are of independent interest. In particular we give almost tight bounds on the following question: Given n distinct integers a_{1}, \ldots, a_{n} at most how many pairs satisfy $a_{j} / a_{i} \in[n]$? More tight bounds on natural related problems will be presented.

