Generalized multiplicative Sidon-sequences
 Péter Pál Pach
 BME, Budapest

As a generalization of multiplicative Sidon-sequences we investigate the following question: What is the maximal number of elements which can be chosen from the set $\{1,2, \ldots, n\}$ in such a way that the equation $a_{1} a_{2} \ldots a_{k}=b_{1} b_{2} \ldots b_{k}$ does not have a solution of distinct elements? Let us denote this maximal number by $G_{k}(n)$. Erdős studied the case $k=2$: In 1938 he proved that $\pi(n)+c_{1} n^{3 / 4} /(\log n)^{3 / 2} \leq G_{2}(n) \leq$ $\pi(n)+c_{2} n^{3 / 4}$ and 31 years later improved the upper bound to $\pi(n)+$ $c_{2} n^{3 / 4} /(\log n)^{3 / 2}$. Hence, in the lower- and upper bounds for $G_{2}(n)$ not only the main terms are the same, but the error terms only differ by a constant factor. We study $G_{k}(n)$ for $k>2$, give asymptotically precise bounds for every k, and prove some estimates on the error terms.

To estimate $G_{k}(n)$ extremal graph theoretic results are used, namely results about the maximal number of edges of $C_{2 k}$-free graphs and of such $C_{2 k}$-free bipartite graphs, where the number of vertices in the two classes are fixed.

Note that our question is strongly connected to the following problem: Erdős, Sárközy, T. Sós and Győri investigated how many numbers can be chosen from $\{1,2, \ldots, n\}$ in such a way that the product of any $2 k$ of them is not a perfect square. The maximal size of such a subset is denoted by $F_{2 k}(n)$. The functions F and G clearly satisfy the inequality $F_{2 k}(n) \leq G_{k}(n)$.

