The clique, independence and chromatic numbers of random subgraphs of distance graphs

A.S. Gusev, M.M. Pyaderkin, A.M. Raigorodskii

Our talk is concerned with the classical Nelson-Hadwiger problem on finding the chromatic numbers of distance graphs in \mathbb{R}^{n}. We introduce a class of graphs $G(n, r, s)=(V(n, r), E(n, r, s))$ defined as follows:

$$
V(n, r)=\left\{x=\left(x_{1}, x_{2}, \ldots, x_{n}\right): x_{i} \in\{0,1\}, x_{1}+x_{2}+\ldots+x_{n}=r\right\}, \quad E(n, r, s)=\{\{x, y\}:(x, y)=s\},
$$

where (x, y) is the Euclidean scalar product.
We study the random graphs $\mathcal{G}(G(n, r, s), p)$ whose edges are chosen independently from the set $E(n, r, s)$ each with probability p. We obtain sharp asymptotic bounds for the clique, independence and chromatic numbers of such graphs depending on some relations between the parameters n, r, s.

