Maximum density of exact copies of a graph in the n-cube and a Turán surprise.

John Goldwasser, West Virginia University

Let G be an induced subgraph of the d-cube Q_{d}. We define $f(d, G)$, the d-cube density of G, to be the limit as n goes to infinity of the maximum fraction, over all subsets J of the vertex set of the n-cube Q_{n}, of sub- d-cubes of Q_{n} whose intersection with J induces an exact copy of G (isomorphic to G, with the same embedding in $\left.Q_{d}\right)$. In general, it is difficult to determine $f(d, G)$. We show that if C is a perfect 8 -cycle (4 pairs of vertices at distance 4) then $f(4, C)=3 / 32$. Amazingly, to establish the upper bound we needed to determine the Turán density of $\{F, H\}$, where $F=\{1234,1235,1245\}$ and $G=\{1234,1235,1456\}$ and where the only 4 -graphs allowed are those where there is a bipartition of the vertex set such that each edge has two vertices in each part. We note that the link graphs of the vertex 1 in F and G are the two forbidden 3-graphs in Bollobas well-known theorem on the maximum number of edges in a 3 -graph where no edge contains the symmetric difference of two others.

