Maximum measures of spherical sets avoiding orthogonal pairs of points

Evan DeCorte, University of Delft
(joint work with Oleg Pikhurko.)

Let a_{n} be the supremum of the Lebesgue (surface) measure of I, where I ranges over all measurable sets of unit vectors in R^{n} such that no two vectors in I are orthogonal, and where the surface measure is normalized so that the whole sphere gets measure 1. The problem of determining a_{n} was first stated in a 1974 note by H. S. Witsenhausen, where he gave the upper bound of $1 / n$ using a simple averaging argument. In a 1981 paper by Frankl and Wilson, they prove their well-known theorem and use it to attack this problem; there it was shown that a_{n} decreases exponentially. In this talk, we focus on the case $n=3$, where we improve Witsenhausen's $1 / 3$ upper bound to 0.313 . The proof involves some basic harmonic analysis and infinite-dimensional linear programming.

