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Let an be the supremum of the Lebesgue (surface) measure of I, where I ranges
over all measurable sets of unit vectors in Rn such that no two vectors in I are
orthogonal, and where the surface measure is normalized so that the whole sphere
gets measure 1. The problem of determining an was first stated in a 1974 note
by H. S. Witsenhausen, where he gave the upper bound of 1/n using a simple
averaging argument. In a 1981 paper by Frankl and Wilson, they prove their
well-known theorem and use it to attack this problem; there it was shown that
an decreases exponentially. In this talk, we focus on the case n = 3, where we
improve Witsenhausen’s 1/3 upper bound to 0.313. The proof involves some basic
harmonic analysis and infinite-dimensional linear programming.
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