Three Open Questions related to the Tick Data
Decomposition Problem

KRiIszTIAN Buza, GABOR I. NaGY* ALEXANDROS NANOPOULOS
Budapest University of Technology and University of Eichstétt-Ingolstadt,
Economics, Hungary Germany
buza@cs.bme.hu, nagy.gabor.i@gmail.com alexandros.nanopoulos@ku.de

Keywords: combinatorial optimization, tick data, data storage

The tick data decomposition problem is a combinatorial optimization problem motivated by real-world
applications, in particular, by the need for efficient storage structures for discrete-valued multivariate
time-series, such as the data describing financial transactions, or bag of words vectors of dynamically
changing texts such as blogs or Wikipedia pages. Here, we will describe the tick data decomposition
problem and we will point out three open questions related to the tick data decomposition problem.

In many applications, various attributes of an object are measured continuously over time. A tick data
matriz M is a matrix where columns correspond attributes or features while rows correspond observations
of the same features at different time points. Rows of the matrix are ordered according to the order of
observations, i.e., the values of the i-th row were observed before the values of the j-th row if and only
if i < j. While the observations are made, a new row is added whenever the value of one or more
attribute(s) change(s). However, as long as none of the attribute-values changes no new row is added to
the matrix, therefore two rows of a tick data matrix differ in the value of at least one attribute. There is
an additional column that is used to index the rows of a tick data matrix. This additional index column
may contain, for example, ascending integer numbers (like the number of the corresponding row) or a
time-stamp (see the Time column in the example shown in Figure 1). We use the term regular column
for all the columns other than the index column.

With decomposition of a tick data matrix M we mean the partitioning of the regular columns of M into
k disjoint partitions P;, 1 <17 < k, i.e., for each regular column c¢; of M: c; € P,Ve¢; € PoV...V¢; € Py;
and for all ¢, j with ¢ # j P, N P; = (). Note that this partitioning refers to the regular columns only, i.e.,
in this formulation, the index column does not belong to any cluster. Then, for each cluster P;, a matrix
M; is derived from M by selecting the index column and those columns of M that belong to cluster
P;. Subsequent rows of a derived matrix M; may contain the same values in all the regular columns.
In such cases we only keep the first row. For example, in Figure 1, P; = {Humidity, Pressure}, P, =
{Temperature, Wind (velocity), Wind (direction), Radiation, Outlook} and the corresponding matrices
My and M are shown in the bottom left and bottom right of the Figure 1.

We can easily see that the original matrix can be reconstructed from the decomposition described
above, and therefore, instead of the original matrix M, one can use this decomposition to calculate
the results of search and analytic queries. Furthermore, as we have shown in our previous works, this
decomposition allows to process queries efficiently, i.e., without the explicit need for decompressing the
data, and simultaneously it leads to substantial improvements in terms of storage space [1, 2].

Consequently, we can state the tick data decomposition problem as follows.

Problem 1 For a given number of clusters k, we aim at finding a decomposition so that the total number
of the cells in all the matrices M; is minimized.

The above problem statement directly gives two variants of the tick data decomposition problem: while
counting the number of cells in the matrices M;, we can either count the cells in the index column or not.

*We thank DAAD and Magyar Oszt('jndl'j Bizottsag (MOB) for supporting the researcher exchange program between
the University of Eichstéatt-Ingolstadt and the Budapest Univ. of Techn. and Economics (project No. 39859). Research
partially performed within the framework of the grant of the Hungarian Scientic Research Fund (grant No. OTKA 108947).

a) Time | Temp. Hum. Press. Radiation
R
15 20 100 200 SwW low b
16 20 SW low

10:21 B
10:22 100200 5 |
10:38 16 30 100100 5 SW low
10:40 17 30 100100 5 sw medium
10:43 18 30 100 100 10 SW medium
10:44 18 30 100100 15 w medium
10:51 18 20 100200 15 w medium
b)
Time | Hum. Press. Time | Temp. Radiation
R .
10:21 20 100 200 10:21 |15 5 SW low ;.:--,,J
10:38 30 100 100 10:22 16 5 sSw low /J
10:51 20 100 200 10:40 17 & SW medium
10:43 18 10 SwW medium
10:44 18 15 w medium

Figure 1: An illustrative example for tick data. Features describing the weather are monitored contin-
uously. Whenever the value of one of the features changes, a new row is inserted into the recordings
(section a). Decomposition of such tables by features (columns) that change their values simultaneously
may substantially reduce the required storage space (section b).

Furthermore, the above problem statement implicitly assumes uniform storage costs for all the cells, as
it simply targets to minimize the number of cells in the decomposition. Other variants of the tick data
decomposition problem may not assume uniform storage cost for each cells.

We note that k is usually relatively small: for example, for the storage of tick data of financial
transactions, the user is most interested in the decomposition into k& = 2 or k = 3 clusters. This is
because, in case of real data, according to our observations, the decomposition into two or three partitions
already leads to substantial gain in terms of storage space, and the decomposition into more partitions
do leads to only minor further improvements, whereas the average computational costs of a query may
grow with increasing k, see also [1].

In our previous work, we proposed an iterative, greedy algorithm for the tick data decomposition
problem [2]. In the first iteration, this algorithm considers each column as a separate partition, then,
in each iteration, it merges those two partitions that lead to optimal storage size. In [1], we gave a
computationally cheap lower bound for the storage size in order to speed up the algorithm.

Despite its relevance from the point of view of applications, the theoretical foundations of the tick
data decomposition problem are largely unclear and the authors are not aware of other combinatorial
optimization problems that are equivalent to this problem. Therefore, in order to motivate discussions,
we pose the following open questions related to the tick data decomposition problem:

1. Under which assumptions is it possible to find a good decomposition of a tick data table, i.e., a
decomposition that leads to substantial improvements in terms of storage size?

2. What is the complexity of the tick problem? Depending on the assumptions about the data, are
there cases in which the optimal decomposition is “simple” (or “difficult”) to find?

3. In which cases do simple greedy algorithms find the optimal, or close to optimal decompositions?

Similar questions were successfully studied in context of various optimization problems resulting in cel-
ebrated results such as the theorems related to bin packing or Kruskal’s algorithm for searching for the
minimal spanning tree in graphs. We hope that the study of the above questions may contribute to
establish the theoretical framework of the tick data decomposition problem.

References

[1] Krisztian Buza, Gédbor 1. Nagy, Alexandros Nanopoulos: Storage-optimizing clustering algorithms
for high-dimensional tick data, Expert Systems with Applications, Volume 41, Issue 9, 2014, pp.
4148-4157

[2] Gébor Nagy, Krisztian Buza: SOHAC: Efficient storage of tick data that supports search and anal-
ysis, Advances in Data Mining, Applications and Theoretical Aspects, Springer, Berlin Heidelberg,
2012, pp. 38-51

[3] Gébor Nagy, Krisztian Buza: Partitional clustering of tick data to reduce storage space, 16th Inter-
national Conference on Intelligent Engineering Systems (INES), IEEE, 2012

