Copies of fixed graphs in random distance graphs

Anton Burkin*

The problem of appearance of an arbitrary fixed graph in Erdős-Rényi random graph $G_{n, p}$ was studied thoroughly by a number of authors (see, e.g., [1]). For a certain model of random distance graphs this issue was investigated by M. Zhukovskii in [2]. We consider a class of distance graphs $G(n, r, s)=(V(n, r), E(n, r, s))$ defined as follows:

$$
V(n, r)=\left\{\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right): x_{i} \in\{0,1\}, x_{1}+\ldots+x_{n}=r\right\}, \quad E(n, r, s)=\{\{\mathbf{x}, \mathbf{y}\}:(\mathbf{x}, \mathbf{y})=s\},
$$

where (\mathbf{x}, \mathbf{y}) is the Euclidean scalar product.
We study the random distance graphs $\mathcal{G}(G(n, r, s), p)$ where each edge from the set $E(n, r, s)$ is included in the graph with probability p independent of other edges. We find the threshold probabilities for the property of containing a fixed graph and investigate the distribution of the number of subgraphs isomorphic to a given graph when the probability p is critical. We also find the theshold probabilities for planarity in these graphs.

References

[1] B. Bollobás, Random graphs, 2nd Edition, Cambridge Stud. Adv. Math., 73, Cambridge Univ. Press, Cambridge, 2001, section 4: Small Subgraphs.
[2] M. E. Zhukovskii, On the probability of the occurrence of a copy of a fixed graph in a random distance graph, Math. Notes, 2012, 92:6, 756-766 (Russian original: Mat. Zametki, 2012, 92:6, 844-855).

[^0]
[^0]: *Moscow State University, Mechanics and Mathematics Faculty, Department of Mathematical Statistics and Random Processes

