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AssTrRACT. For any fixed graph F', we say that a graph G is F-free if it does not contain F'
as a subgraph. We denote by ex(n, F') the maximum number of edges in a n-vertex graph
which is F'-free, known as the Turdn number of F'.

In 1974, Erd6s and Rothschild considered a related question where we count the number
of certain colorings. Given an integer r, by an r-coloring of a graph G we mean any r-edge-
coloring of G. In particular, it does not have to be proper and does not have to use all
r colors. Let ¢, r(G) be the number of r-colorings of G such that every color class is F'-
free. They considered the problem of finding ¢, r(n) = max{c. 7(G)} where the maximum
is over all n-vertex graphs G. Let us say that G is extremal for ¢, r(n) if it realizes the
above maximum. Clearly, ¢, r(n) > <) as we take G to be the Turan graph and color
it arbitrarily. The problem of determining ¢, r(n) was investigates by several authors, for
various classes of graphs such as: complete graphs [1, 8, 9], odd cycles [1]|, matchings [4],
paths and stars [5]. And for hypergraphs [3, 6, 7]. One common concern is to determine
when the Turan Graph is extremal for ¢, p(n) (with r fixed and n large).

Here we consider a natural generalization of the above. Given an r-colored k-vertex graph
F', we consider the number of r-edge-colorings of a larger graph G that avoids the ‘color
pattern’ of F'. More formally, ¢, 7(G) denote the number or r-colorings of G such there are
no k vertices of G that induce a colored graph isomorphic to F. For example, the above
problem consists of the case where F' is a colouring of F' that uses only one of the r colors.
We define c, z(n) and extremal graphs as before.

We note that Balogh [2] had also considered a related but not analogous “colored version”
of the problem. He considered the number C, ;(G) of colorings of G' which do not have a
set of k-vertices colored exactly as in F.. In this case, for example, if ' has only one color,
C,.z1(G) is the number of coloring of (¢ which does not contains F' in this particular color
class.So ¢, »(G) < C, (G). Balogh proved that in the case where r = 2 and F'is a 2-coloring

of a clique that uses both colors then C, z(n) = 9ex(n.F) for large enough.

Here, we focus on the case where r = 3. Let Fs be a 3-colored Ks. We proved that if the
three colors are used in Fj then the complete graph on n vertices is the extremal graph for
¢, (n). And if only two colors are used in F3 then the Turan Graph is extremal for ¢; £ (n)
(whereas this is trivially not true for C; 5, (n)). Much more generally we prove the following:

with r = 3, let F) be a coloring of K, that uses only two colors one of which induces a graph
H whose Ramsey Number is smaller than k, then the Turdn Graph is extremal for c; £ (n).
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