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Abstract. For any �xed graph F , we say that a graph G is F -free if it does not contain F
as a subgraph. We denote by ex(n, F ) the maximum number of edges in a n-vertex graph
which is F -free, known as the Turán number of F .

In 1974, Erd®s and Rothschild considered a related question where we count the number
of certain colorings. Given an integer r, by an r-coloring of a graph G we mean any r-edge-
coloring of G. In particular, it does not have to be proper and does not have to use all
r colors. Let cr,F (G) be the number of r-colorings of G such that every color class is F -

free. They considered the problem of �nding cr,F (n) = max{cr,F (G)} where the maximum
is over all n-vertex graphs G. Let us say that G is extremal for cn,F (n) if it realizes the
above maximum. Clearly, cr,F (n) ≥ rex(n,F ), as we take G to be the Turán graph and color
it arbitrarily. The problem of determining cr,F (n) was investigates by several authors, for
various classes of graphs such as: complete graphs [1, 8, 9], odd cycles [1], matchings [4],
paths and stars [5]. And for hypergraphs [3, 6, 7]. One common concern is to determine
when the Turán Graph is extremal for cr,F (n) (with r �xed and n large).

Here we consider a natural generalization of the above. Given an r-colored k-vertex graph
F̂ , we consider the number of r-edge-colorings of a larger graph G that avoids the `color
pattern' of F̂ . More formally, cr,F̂ (G) denote the number or r-colorings of G such there are

no k vertices of G that induce a colored graph isomorphic to F̂ . For example, the above
problem consists of the case where F̂ is a colouring of F that uses only one of the r colors.
We de�ne cr,F̂ (n) and extremal graphs as before.

We note that Balogh [2] had also considered a related but not analogous �colored version�
of the problem. He considered the number Cr,F̂ (G) of colorings of G which do not have a

set of k-vertices colored exactly as in F̂ . In this case, for example, if F̂ has only one color,
Cr,H(G) is the number of coloring of G which does not contains F̂ in this particular color
class.So cr,F̂ (G) ≤ Cr,F̂ (G). Balogh proved that in the case where r = 2 and F̂ is a 2-coloring

of a clique that uses both colors then C2,F̂ (n) = 2ex(n,F̂ ) for n large enough.

Here, we focus on the case where r = 3. Let F̂3 be a 3-colored K3. We proved that if the
three colors are used in F̂3 then the complete graph on n vertices is the extremal graph for
c3,F̂3

(n). And if only two colors are used in F3 then the Turán Graph is extremal for c3,F̂3
(n)

(whereas this is trivially not true for C3,F̂3
(n)). Much more generally we prove the following:

with r = 3, let F̂k be a coloring of Kk that uses only two colors one of which induces a graph
H whose Ramsey Number is smaller than k, then the Turán Graph is extremal for c3,F̂k

(n).
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