Universal lower bounds on energy for spherical codes, test functions and LP optimality

Peter Dragnev
Indiana University-Purdue University Fort Wayne

Joint work with: P. Boyvalenkov (BAS); D. Hardin, E. Saff (Vanderbilt); and M. Stoyanova (Sofia) (BDHSS)
Outline

- Why minimize energy?
- Delsarte-Yudin LP approach
- DGS bounds for spherical τ-designs
- Levenshtein bounds for codes
- $1/N$ quadrature and Levenshtein nodes
- Universal lower bound for energy (ULB)
- Improvements of ULB and LP universality
- Examples
- ULB for \mathbb{RP}^{n-1}, \mathbb{CP}^{n-1}, \mathbb{HP}^{n-1}
- Conclusions and summary of future work
Why Minimize Potential Energy? Electrostatics:

Thomson Problem (1904) - (“plum pudding” model of an atom)

Find the (most) stable (ground state) energy configuration (code) of \(N \) classical electrons (Coulomb law) constrained to move on the sphere \(S^2 \).

Generalized Thomson Problem (\(1/r^s \) potentials and \(\log(1/r) \))

A code \(C := \{x_1, \ldots, x_N\} \subset S^{n-1} \) that minimizes **Riesz s-energy**

\[
E_s(C) := \sum_{j \neq k} \frac{1}{|x_j - x_k|^s}, \quad s > 0, \quad E_{\log}(\omega_N) := \sum_{j \neq k} \log \frac{1}{|x_j - x_k|}
\]

is called an **optimal s-energy code**.
Why Minimize Potential Energy? Coding:

Tammes Problem (1930)
A Dutch botanist that studied modeling of the distribution of the orifices in pollen grain asked the following.

Tammes Problem (Best-Packing, \(s = \infty \))
Place \(N \) points on the unit sphere so as to maximize the minimum distance between any pair of points.

Definition
Codes that maximize the minimum distance are called **optimal (maximal) codes**. Hence our choice of terms.
Why Minimize Potential Energy? Nanotechnology:

Fullerenes (1985) - (Buckyballs)

Vaporizing graphite, Curl, Kroto, Smalley, Heath, and O’Brian discovered \(C_{60} \)
(Chemistry 1996 Nobel prize)

Duality structure: 32 electrons and \(C_{60} \).
Optimal s-energy codes on S^2

Known optimal s-energy codes on S^2

- $s = \log$, Smale’s problem, logarithmic points (known for $N = 2 - 6, 12$);
- $s = 1$, Thomson Problem (known for $N = 2 - 6, 12$)
- $s = -1$, Fejes-Toth Problem (known for $N = 2 - 6, 12$)
- $s \to \infty$, Tammes Problem (known for $N = 1 - 12, 13, 14, 24$)

Limiting case - Best packing

For fixed N, any limit as $s \to \infty$ of optimal s-energy codes is an optimal (maximal) code.

Universally optimal codes

The codes with cardinality $N = 2, 3, 4, 6, 12$ are special (sharp codes) and minimize large class of potential energies. First "non-sharp" is $N = 5$ and very little is rigorously proven.
Optimal five point log and Riesz s-energy code on \mathbb{S}^2

Figure: ‘Optimal’ 5-point codes on \mathbb{S}^2: (a) bipyramid BP, (b) optimal square-base pyramid SBP ($s = 1$), (c) ‘optimal’ SBP ($s = 16$).

Optimal five point log and Riesz s-energy code on \mathbb{S}^2

Figure: ‘Optimal’ 5-point code on \mathbb{S}^2: (a) bipyramid BP, (b) optimal square-base pyramid SBP ($s = 1$), (c) ‘optimal’ SBP ($s = 16$).

Melnik et.al. 1977 $s^* \approx 15.048 \ldots$?

Figure: 5 points energy ratio
Optimal five point log and Riesz s-energy code on S^2

(a) Bipyramid
(b) Square Pyramid

Theorem (Bondarenko-Hardin-Saff)

Any limit as $s \to \infty$ of optimal s-energy codes of 5 points is a square pyramid with the square base in the Equator.

Henry Cohn and the five-point energy problem
Minimal h-energy - preliminaries

- Spherical Code: A finite set $C \subset S^{n-1}$ with cardinality $|C|$;
- Let the interaction potential $h : [-1, 1] \rightarrow \mathbb{R} \cup \{+\infty\}$ be an absolutely monotone\(^1\) function;
- The h-energy of a spherical code C:

$$E(n, C; h) := \sum_{x, y \in C, y \neq x} h(\langle x, y \rangle), \quad |x - y|^2 = 2 - 2\langle x, y \rangle = 2(1 - t),$$

where $t = \langle x, y \rangle$ denotes Euclidean inner product of x and y.

Problem

Determine

$$\mathcal{E}(n, N; h) := \min\{E(n, C; h) : |C| = N, C \subset S^{n-1}\}$$

and find (prove) optimal h-energy codes.

\(^1\)A function f is absolutely monotone on I if $f^{(k)}(t) \geq 0$ for $t \in I$ and $k = 0, 1, 2, \ldots$
Absolutely monotone potentials - examples

• Newton potential: \(h(t) = (2 - 2t)^{-(n-2)/2} = |x - y|^{-(n-2)}; \)

• Riesz s-potential: \(h(t) = (2 - 2t)^{-s/2} = |x - y|^{-s}; \)

• Log potential: \(h(t) = -\log(2 - 2t) = -\log |x - y|; \)

• Gaussian potential: \(h(t) = \exp(2t - 2) = \exp(-|x - y|^2); \)

• Korevaar potential: \(h(t) = (1 + r^2 - 2rt)^{-(n-2)/2}, \quad 0 < r < 1. \)

Other potentials (low. semicont.);

‘Kissing’ potential: \(h(t) = \begin{cases} 0, & -1 \leq t \leq 1/2 \\ \infty, & 1/2 \leq t \leq 1 \end{cases} \)

Remark

Even if one ‘knows’ an optimal code, it is usually difficult to prove optimality–need lower bounds on \(\mathcal{E}(n, N; h). \)

Delsarte-Yudin linear programming bounds: Find a potential \(f \) such that \(h \geq f \) for which we can obtain lower bounds for the minimal \(f \)-energy \(\mathcal{E}(n, N; f). \)
Spherical Harmonics and Gegenbauer polynomials

- **$\text{Harm}(k)$**: homogeneous harmonic polynomials in n variables of degree k restricted to S^{n-1} with

 $$r_k := \dim \text{Harm}(k) = \binom{k + n - 3}{n - 2} \binom{2k + n - 2}{k}.$$

- **Spherical harmonics** (degree k): \{ $Y_{kj}(x) : j = 1, 2, \ldots, r_k$ \} orthonormal basis of $\text{Harm}(k)$ with respect to integration using $(n - 1)$-dimensional surface area measure on S^{n-1}.

- For fixed dimension n, the **Gegenbauer polynomials** are defined by

 $$P_0^{(n)} = 1, \quad P_1^{(n)} = t$$

 and the three-term recurrence relation (for $k \geq 1$)

 $$(k + n - 2)P_{k+1}^{(n)}(t) = (2k + n - 2)tP_k^{(n)}(t) - kP_{k-1}^{(n)}(t).$$

- Gegenbauer polynomials are orthogonal with respect to the weight $(1 - t^2)^{(n-3)/2}$ on $[-1, 1]$ (observe that $P_k^{(n)}(1) = 1$).
The Gegenbauer polynomials and spherical harmonics are related through the well-known *Addition Formula*:

\[
\frac{1}{r_k} \sum_{j=1}^{r_k} Y_{kj}(x) Y_{kj}(y) = P_k^{(n)}(t), \quad t = \langle x, y \rangle, \ x, y \in \mathbb{S}^{n-1}.
\]

Consequence: If \(C \) is a spherical code of \(N \) points on \(\mathbb{S}^{n-1} \),

\[
\sum_{x, y \in C} P_k^{(n)}(\langle x, y \rangle) = \frac{1}{r_k} \sum_{j=1}^{r_k} \sum_{x \in C} \sum_{y \in C} Y_{kj}(x) Y_{kj}(y)
\]

\[
= \frac{1}{r_k} \sum_{j=1}^{r_k} \left(\sum_{x \in C} Y_{kj}(x) \right)^2 \geq 0.
\]
Delsarte-Yudin approach:

Find a potential \(f \) such that \(h \geq f \) for which we can obtain lower bounds for the minimal \(f \)-energy \(E(n, N; f) \).

Suppose \(f : [-1, 1] \to \mathbb{R} \) is of the form

\[
f(t) = \sum_{k=0}^{\infty} f_k P_k^{(n)}(t), \quad f_k \geq 0 \text{ for all } k \geq 1. \tag{1}
\]

\(f(1) = \sum_{k=0}^{\infty} f_k < \infty \implies \) convergence is absolute and uniform.

Then:

\[
E(n, C; f) = \sum_{x, y \in C} f(\langle x, y \rangle) - f(1)N
\]

\[
= \sum_{k=0}^{\infty} f_k \sum_{x, y \in C} P_k^{(n)}(\langle x, y \rangle) - f(1)N
\]

\[
\geq f_0 N^2 - f(1)N = N^2 \left(f_0 - \frac{f(1)}{N} \right).
\]
Thm (Delsarte-Yudin LP Bound)

Let $A_{n,h} = \{ f : f(t) \leq h(t), t \in [-1, 1], f_k \geq 0, k = 1, 2, \ldots \}$. Then

$$\mathcal{E}(n, N; h) \geq N^2 (f_0 - f(1)/N), \quad f \in A_{n,h}. \tag{2}$$

An N-point spherical code C satisfies $E(n, C; h) = N^2 (f_0 - f(1)/N)$ if and only if both of the following hold:

- (a) $f(t) = h(t)$ for all $t \in \{ \langle x, y \rangle : x \neq y, x, y \in C \}$.
- (b) for all $k \geq 1$, either $f_k = 0$ or $\sum_{x,y \in C} P_k^{(n)}(\langle x, y \rangle) = 0$.
Let $A_{n,h} = \{ f : f(t) \leq h(t), t \in [-1, 1], f_k \geq 0, k = 1, 2, \ldots \}$. Then

$$\mathcal{E}(n, N; h) \geq N^2(f_0 - f(1)/N), \quad f \in A_{n,h}. \quad (2)$$

An N-point spherical code C satisfies $E(n, C; h) = N^2(f_0 - f(1)/N)$ if and only if both of the following hold:

(a) $f(t) = h(t)$ for all $t \in \{ \langle x, y \rangle : x \neq y, x, y \in C \}$.

(b) for all $k \geq 1$, either $f_k = 0$ or $\sum_{x,y \in C} P_k^{(n)}(\langle x, y \rangle) = 0$.

Maximizing the lower bound (2) can be written as maximizing the objective function

$$F(f_0, f_1, \ldots) := N \left(f_0(N - 1) - \sum_{k=1}^{\infty} f_k \right),$$

subject to $f \in A_{n,h}$.

Thm (Delsarte-Yudin LP Bound)
Thm (Delsarte-Yudin LP Bound)

Let $A_{n,h} = \{ f : f(t) \leq h(t), t \in [-1, 1], f_k \geq 0, k = 1, 2, \ldots \}$. Then

$$\mathcal{E}(n, N; h) \geq N^2(f_0 - f(1)/N), \quad f \in A_{n,h}. \quad (2)$$

An N-point spherical code C satisfies $E(n, C; h) = N^2(f_0 - f(1)/N)$ if and only if both of the following hold:

(a) $f(t) = h(t)$ for all $t \in \{\langle x, y \rangle : x \neq y, \ x, y \in C\}$.

(b) for all $k \geq 1$, either $f_k = 0$ or $\sum_{x,y \in C} P_k^{(n)}(\langle x, y \rangle) = 0$.

Infinite linear programming is too ambitious, truncate the program

\[(LP) \quad \text{Maximize } F_m(f_0, f_1, \ldots, f_m) := N\left(f_0(N - 1) - \sum_{k=1}^{m} f_k\right),\]

subject to $f \in \mathcal{P}_m \cap A_{n,h}$.

Given n and N we shall solve the program for all $m \leq \tau(n, N)$.
Spherical designs and DGS Bound (Boyvalenkov)

Definition

A spherical τ-design $C \subset S^{n-1}$ is a finite nonempty subset of S^{n-1} such that

$$\frac{1}{\mu(S^{n-1})} \int_{S^{n-1}} f(x) d\mu(x) = \frac{1}{|C|} \sum_{x \in C} f(x)$$

($\mu(x)$ is the Lebesgue measure) holds for all polynomials $f(x) = f(x_1, x_2, \ldots, x_n)$ of degree at most τ.

The strength of C is the maximal number $\tau = \tau(C)$ such that C is a spherical τ-design.
Spherical designs and DGS Bound (Boyvalenkov)

Theorem (DGS - 1977)

For fixed strength τ and dimension n denote by

$$B(n, \tau) = \min \{|C| : \exists \text{ τ-design } C \subset \mathbb{S}^{n-1}\}$$

the minimum possible cardinality of spherical τ-designs $C \subset \mathbb{S}^{n-1}$.

$$B(n, \tau) \geq D(n, \tau) = \begin{cases} 2 \binom{n+k-2}{n-1}, & \text{if } \tau = 2k - 1, \\ \binom{n+k-1}{n-1} + \binom{n+k-2}{n-1}, & \text{if } \tau = 2k. \end{cases}$$
Levenshtein bounds for spherical codes (Boyvalenkov)

- For every positive integer m we consider the intervals

$$
\mathcal{I}_m = \begin{cases}
\left[t_{k-1}^{1,1}, t_k^{1,0} \right], & \text{if } m = 2k - 1, \\
\left[t_k^{1,0}, t_k^{1,1} \right], & \text{if } m = 2k.
\end{cases}
$$

- Here $t_0^{1,1} = -1$, $t_i^{a,b}$, $a, b \in \{0, 1\}$, $i \geq 1$, is the greatest zero of the Jacobi polynomial $P_i^{(a+\frac{n-3}{2}, b+\frac{n-3}{2})}(t)$.

- The intervals \mathcal{I}_m define partition of $\mathcal{I} = [-1, 1)$ to countably many nonoverlapping closed subintervals.
Theorem (Levenshtein - 1979)

For every $s \in I_m$, Levenshtein used $f_m^{(n,s)}(t) = \sum_{j=0}^{m} f_j P_j^{(n)}(t)$:

(i) $f_m^{(n,s)}(t) \leq 0$ on $[-1, s]$ and (ii) $f_j \geq 0$ for $1 \leq j \leq m$

to derive the bound

$$A(n, s) \leq \begin{cases}
L_{2k-1}(n, s) = \binom{k+n-3}{k-1} \left[\frac{2k+n-3}{n-1} - \frac{P_{k-1}^{(n)}(s) - P_k^{(n)}(s)}{(1-s)P_k^{(n)}(s)} \right] & \text{for } s \in I_{2k-1}, \\
L_{2k}(n, s) = \binom{k+n-2}{k} \left[\frac{2k+n-1}{n-1} - \frac{(1+s)(P_k^{(n)}(s) - P_{k+1}^{(n)}(s))}{(1-s)(P_k^{(n)}(s) + P_{k+1}^{(n)}(s))} \right] & \text{for } s \in I_{2k},
\end{cases}$$

where $A(n, s) = \max\{|C| : \langle x, y \rangle \leq s \text{ for all } x \neq y \in C, \}$
Interplay between DGS- and L-bounds (Boyvalenko)

- The connection between the Delsarte-Goethals-Seidel bound and the Levenshtein bounds are given by the equalities

\[
L_{2k-2}(n, t^1_{k-1}) = L_{2k-1}(n, t^1_{k-1}) = D(n, 2k - 1),
\]

\[
L_{2k-1}(n, t^1_0) = L_{2k}(n, t^1_0) = D(n, 2k)
\]

at the ends of the intervals \(I_m \).

- For every fixed dimension \(n \) each bound \(L_m(n, s) \) is smooth and strictly increasing with respect to \(s \). The function

\[
L(n, s) = \begin{cases}
L_{2k-1}(n, s), & \text{if } s \in I_{2k-1}, \\
L_{2k}(n, s), & \text{if } s \in I_{2k},
\end{cases}
\]

is continuous and piece-wise smooth in \(s \).
Levenshtein Function - $n = 4$

Figure: The Levenshtein function $L(4, s)$.
• Recall that $A_{n,h}$ is the set of functions f having positive Gegenbauer coefficients and $f \leq h$ on $[-1, 1]$.

• For a subspace Λ of $C([-1, 1])$ of real-valued functions continuous on $[-1, 1]$, let

$$\mathcal{W}(n, N, \Lambda; h) := \sup_{f \in \Lambda \cap A_{n,h}} N^2(f - f(1)/N).$$

(3)

• For a subspace $\Lambda \subset C([-1, 1])$ and $N > 1$, we say $\{ (\alpha_i, \rho_i) \}_{i=1}^k$ is a $1/N$-quadrature rule exact for Λ if $-1 \leq \alpha_i < 1$ and $\rho_i > 0$ for $i = 1, 2, \ldots, k$ if

$$f_0 = \gamma_n \int_{-1}^{1} f(t)(1 - t^2)^{(n-3)/2} dt = \frac{f(1)}{N} + \sum_{i=1}^{k} \rho_i f(\alpha_i), \quad (f \in \Lambda).$$
Proposition

Let \(\{ (\alpha_i, \rho_i) \}_{i=1}^{k} \) be a \(1/N \)-quadrature rule that is exact for a subspace \(\Lambda \subset C([-1, 1]) \).

(a) If \(f \in \Lambda \cap A_{n,h} \),

\[
\mathcal{E}(n, N; h) \geq N^2 \left(f_0 - \frac{f(1)}{N} \right) = N^2 \sum_{i=1}^{k} \rho_i f(\alpha_i). \tag{4}
\]

(b) We have

\[
\mathcal{W}(n, N, \Lambda; h) \leq N^2 \sum_{i=1}^{k} \rho_i h(\alpha_i). \tag{5}
\]

If there is some \(f \in \Lambda \cap A_{n,h} \) such that \(f(\alpha_i) = h(\alpha_i) \) for \(i = 1, \ldots, k \), then equality holds in (5).
1/N-Quadrature Rules

Quadrature Rules from Spherical Designs

If $C \subset S^{n-1}$ is a spherical τ design, then choosing
$\{\alpha_1, \ldots, \alpha_k, 1\} = \{\langle x, y \rangle : x, y \in C\}$ and $\rho_i =$ fraction of times α_i
occurs in $\{\langle x, y \rangle : x, y \in C\}$ gives a $1/N$ quadrature rule exact for
$\Lambda = P_\tau$.

Levenshtein Quadrature Rules

Of particular interest is when the number of nodes k satisfies
$m = 2k - 1$ or $m = 2k$. Levenshtein gives bounds on N and m for the
existence of such quadrature rules.
Sharp Codes

Definition

A spherical code $C \subset S^{n-1}$ is a *sharp configuration* if there are exactly m inner products between distinct points in it and it is a spherical $(2m - 1)$-design.

Theorem (Cohn and Kumar, 2007)

*If $C \subset S^{n-1}$ is a sharp code, then C is universally optimal; i.e., C is h-energy optimal for any h that is absolutely monotone on $[-1, 1]$.***

Theorem (Cohn and Kumar, 2007)

Let C be the 600-cell (120 in \mathbb{R}^n). Then there is $f \in \Lambda \cap A_{n,h}$, s.t. $f(\langle x, y \rangle) = h(\langle x, y \rangle)$ for all $x \neq y \in C$, where $\Lambda = \mathcal{P}_{17} \cap \{f_{11} = f_{12} = f_{13} = 0\}$. Hence it is a universal code.
Table 1. The known sharp configurations, together with the 600-cell.

<table>
<thead>
<tr>
<th>n</th>
<th>N</th>
<th>M</th>
<th>Inner products</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>N</td>
<td>$N - 1$</td>
<td>$\cos(2\pi j/N)$ $(1 \leq j \leq N/2)$</td>
<td>N-gon</td>
</tr>
<tr>
<td>n</td>
<td>$N \leq n$</td>
<td>1</td>
<td>$-1/(N - 1)$</td>
<td>simplex</td>
</tr>
<tr>
<td>n</td>
<td>$n + 1$</td>
<td>2</td>
<td>$-1/n$</td>
<td>simplex</td>
</tr>
<tr>
<td>n</td>
<td>2n</td>
<td>3</td>
<td>$-1, 0$</td>
<td>cross polytope</td>
</tr>
<tr>
<td>3</td>
<td>12</td>
<td>5</td>
<td>$-1, \pm 1/\sqrt{5}$</td>
<td>icosahedron</td>
</tr>
<tr>
<td>4</td>
<td>120</td>
<td>11</td>
<td>$-1, \pm 1/2, 0, (\pm 1 \pm \sqrt{5})/4$</td>
<td>600-cell</td>
</tr>
<tr>
<td>8</td>
<td>240</td>
<td>7</td>
<td>$-1, \pm 1/2, 0$</td>
<td>E_8 roots</td>
</tr>
<tr>
<td>7</td>
<td>56</td>
<td>5</td>
<td>$-1, \pm 1/3$</td>
<td>kissing</td>
</tr>
<tr>
<td>6</td>
<td>27</td>
<td>4</td>
<td>$-1/2, 1/4$</td>
<td>kissing/Schlafli</td>
</tr>
<tr>
<td>5</td>
<td>16</td>
<td>3</td>
<td>$-3/5, 1/5$</td>
<td>kissing</td>
</tr>
<tr>
<td>24</td>
<td>196560</td>
<td>11</td>
<td>$-1, \pm 1/2, \pm 1/4, 0$</td>
<td>Leech lattice</td>
</tr>
<tr>
<td>23</td>
<td>4600</td>
<td>7</td>
<td>$-1, \pm 1/3, 0$</td>
<td>kissing</td>
</tr>
<tr>
<td>22</td>
<td>891</td>
<td>5</td>
<td>$-1/2, -1/8, 1/4$</td>
<td>kissing</td>
</tr>
<tr>
<td>23</td>
<td>552</td>
<td>5</td>
<td>$-1, \pm 1/5$</td>
<td>equiangular lines</td>
</tr>
<tr>
<td>22</td>
<td>275</td>
<td>4</td>
<td>$-1/4, 1/6$</td>
<td>kissing</td>
</tr>
<tr>
<td>21</td>
<td>162</td>
<td>3</td>
<td>$-2/7, 1/7$</td>
<td>kissing</td>
</tr>
<tr>
<td>22</td>
<td>100</td>
<td>3</td>
<td>$-4/11, 1/11$</td>
<td>Higman-Sims</td>
</tr>
</tbody>
</table>

\[q^{q^3 + 1} \over q + 1 \] \((q + 1)(q^3 + 1) \) \(3 \) \(4 \text{ if } q = 2 \) \(-1/q, 1/q^2 \) \((q \text{ a prime power}) \)

Figure: H. Cohn, A. Kumar, JAMS 2007.
Levenshtein 1/N-Quadrature Rule - odd interval case

- For every fixed (cardinality) $N > D(n, 2k - 1)$ there exist uniquely determined real numbers $-1 \leq \alpha_1 < \alpha_2 < \cdots < \alpha_k < 1$ and $\rho_1, \rho_2, \ldots, \rho_k$, $\rho_i > 0$ for $i = 1, 2, \ldots, k$, such that the equality

$$f_0 = \frac{f(1)}{N} + \sum_{i=1}^{k} \rho_i f(\alpha_i)$$

holds for every real polynomial $f(t)$ of degree at most $2k - 1$.
- The numbers α_i, $i = 1, 2, \ldots, k$, are the roots of the equation

$$P_k(t)P_{k-1}(s) - P_k(s)P_{k-1}(t) = 0,$$

where $s = \alpha_k$, $P_i(t) = P_i^{(n-1)/2,(n-3)/2}(t)$ is a Jacobi polynomial.
- In fact, α_i, $i = 1, 2, \ldots, k$, are the roots of the Levenshtein’s polynomial $f^{(n,\alpha_k)}_{2k-1}(t)$.
Similarly, for every fixed (cardinality) \(N > D(n, 2k) \) there exist uniquely determined real numbers \(-1 = \beta_0 < \beta_1 < \cdots < \beta_k < 1\) and \(\gamma_0, \gamma_1, \ldots, \gamma_k, \gamma_i > 0 \) for \(i = 0, 1, \ldots, k \), such that the equality

\[
f_0 = \frac{f(1)}{N} + \sum_{i=0}^{k} \gamma_i f(\beta_i)
\]

is true for every real polynomial \(f(t) \) of degree at most \(2k \).

- The numbers \(\beta_i, i = 0, 1, \ldots, k \), are the roots of the Levenshtein’s polynomial \(f_{2k}^{(n,\beta_k)}(t) \).
- Sidelnikov (1980) showed the optimality of the Levenshtein polynomials \(f_{2k-1}^{(n,\alpha_{k-1})}(t) \) and \(f_{2k}^{(n,\beta_k)}(t) \).
Let h be a fixed absolutely monotone potential, n and N be fixed, and $\tau = \tau(n, N)$ be such that $N \in [D(n, \tau), D(n, \tau + 1))$. Then the Levenshtein nodes $\{\alpha_i\}$, respectively $\{\beta_i\}$, provide the bounds

$$\mathcal{E}(n, N, h) \geq N^2 \sum_{i=1}^{k} \rho_i h(\alpha_i),$$

respectively,

$$\mathcal{E}(n, N, h) \geq N^2 \sum_{i=0}^{k} \gamma_i h(\beta_i).$$

The Hermite interpolants at these nodes are the optimal polynomials which solve the finite LP in the class $\mathcal{P}_\tau \cap \mathcal{A}_{n,h}$.

Main Theorem - (BDHSS - 2014)
Gaussian, Korevaar, and Newtonian potentials
Newtonian energy comparison (BBCGKS 2006) - $N = 5 - 64, n = 4$.

<table>
<thead>
<tr>
<th>N</th>
<th>Harmonic Energy</th>
<th>ULB Bound</th>
<th>%</th>
<th>N</th>
<th>Harmonic Energy</th>
<th>ULB Bound</th>
<th>%</th>
<th>N</th>
<th>Harmonic Energy</th>
<th>ULB Bound</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>4.00</td>
<td>4.00</td>
<td>0.00</td>
<td>25</td>
<td>182.99</td>
<td>182.38</td>
<td>0.34</td>
<td>45</td>
<td>664.48</td>
<td>663.00</td>
<td>0.22</td>
</tr>
<tr>
<td>6</td>
<td>6.50</td>
<td>6.42</td>
<td>1.28</td>
<td>26</td>
<td>199.69</td>
<td>199.00</td>
<td>0.35</td>
<td>46</td>
<td>697.26</td>
<td>695.40</td>
<td>0.27</td>
</tr>
<tr>
<td>7</td>
<td>9.50</td>
<td>9.42</td>
<td>0.88</td>
<td>27</td>
<td>217.15</td>
<td>216.38</td>
<td>0.36</td>
<td>47</td>
<td>730.75</td>
<td>728.60</td>
<td>0.29</td>
</tr>
<tr>
<td>8</td>
<td>13.00</td>
<td>13.00</td>
<td>0.00</td>
<td>28</td>
<td>235.40</td>
<td>234.50</td>
<td>0.38</td>
<td>48</td>
<td>764.59</td>
<td>762.60</td>
<td>0.26</td>
</tr>
<tr>
<td>9</td>
<td>17.50</td>
<td>17.33</td>
<td>0.95</td>
<td>29</td>
<td>254.38</td>
<td>253.38</td>
<td>0.39</td>
<td>49</td>
<td>799.70</td>
<td>797.40</td>
<td>0.29</td>
</tr>
<tr>
<td>10</td>
<td>22.50</td>
<td>22.33</td>
<td>0.74</td>
<td>30</td>
<td>274.19</td>
<td>273.00</td>
<td>0.43</td>
<td>50</td>
<td>835.12</td>
<td>833.00</td>
<td>0.25</td>
</tr>
<tr>
<td>11</td>
<td>28.21</td>
<td>28.00</td>
<td>0.74</td>
<td>31</td>
<td>294.79</td>
<td>293.51</td>
<td>0.43</td>
<td>51</td>
<td>871.98</td>
<td>869.40</td>
<td>0.30</td>
</tr>
<tr>
<td>12</td>
<td>34.42</td>
<td>34.33</td>
<td>0.26</td>
<td>32</td>
<td>315.99</td>
<td>314.80</td>
<td>0.38</td>
<td>52</td>
<td>909.19</td>
<td>906.60</td>
<td>0.28</td>
</tr>
<tr>
<td>13</td>
<td>41.60</td>
<td>41.33</td>
<td>0.64</td>
<td>33</td>
<td>337.79</td>
<td>336.86</td>
<td>0.28</td>
<td>53</td>
<td>947.15</td>
<td>944.60</td>
<td>0.27</td>
</tr>
<tr>
<td>14</td>
<td>49.26</td>
<td>49.00</td>
<td>0.53</td>
<td>34</td>
<td>360.52</td>
<td>359.70</td>
<td>0.23</td>
<td>54</td>
<td>985.88</td>
<td>983.40</td>
<td>0.25</td>
</tr>
<tr>
<td>15</td>
<td>57.62</td>
<td>57.48</td>
<td>0.24</td>
<td>35</td>
<td>384.54</td>
<td>383.31</td>
<td>0.32</td>
<td>55</td>
<td>1025.76</td>
<td>1023.00</td>
<td>0.27</td>
</tr>
<tr>
<td>16</td>
<td>66.95</td>
<td>66.67</td>
<td>0.42</td>
<td>36</td>
<td>409.07</td>
<td>407.70</td>
<td>0.33</td>
<td>56</td>
<td>1066.62</td>
<td>1063.53</td>
<td>0.29</td>
</tr>
<tr>
<td>17</td>
<td>76.98</td>
<td>76.56</td>
<td>0.54</td>
<td>37</td>
<td>434.19</td>
<td>432.86</td>
<td>0.31</td>
<td>57</td>
<td>1108.17</td>
<td>1104.88</td>
<td>0.30</td>
</tr>
<tr>
<td>18</td>
<td>87.62</td>
<td>87.17</td>
<td>0.51</td>
<td>38</td>
<td>460.28</td>
<td>458.80</td>
<td>0.32</td>
<td>58</td>
<td>1150.43</td>
<td>1147.05</td>
<td>0.29</td>
</tr>
<tr>
<td>19</td>
<td>98.95</td>
<td>98.48</td>
<td>0.48</td>
<td>39</td>
<td>487.25</td>
<td>485.51</td>
<td>0.36</td>
<td>59</td>
<td>1193.38</td>
<td>1190.03</td>
<td>0.28</td>
</tr>
<tr>
<td>20</td>
<td>110.80</td>
<td>110.50</td>
<td>0.27</td>
<td>40</td>
<td>514.90</td>
<td>513.00</td>
<td>0.37</td>
<td>60</td>
<td>1236.91</td>
<td>1233.83</td>
<td>0.25</td>
</tr>
<tr>
<td>21</td>
<td>123.74</td>
<td>123.37</td>
<td>0.30</td>
<td>41</td>
<td>543.16</td>
<td>541.40</td>
<td>0.32</td>
<td>61</td>
<td>1281.38</td>
<td>1278.45</td>
<td>0.23</td>
</tr>
<tr>
<td>22</td>
<td>137.52</td>
<td>137.00</td>
<td>0.38</td>
<td>42</td>
<td>572.16</td>
<td>570.60</td>
<td>0.27</td>
<td>62</td>
<td>1326.59</td>
<td>1323.88</td>
<td>0.20</td>
</tr>
<tr>
<td>23</td>
<td>152.04</td>
<td>151.38</td>
<td>0.44</td>
<td>43</td>
<td>601.93</td>
<td>600.60</td>
<td>0.22</td>
<td>63</td>
<td>1373.09</td>
<td>1370.13</td>
<td>0.22</td>
</tr>
<tr>
<td>24</td>
<td>167.00</td>
<td>166.50</td>
<td>0.30</td>
<td>44</td>
<td>632.73</td>
<td>631.40</td>
<td>0.21</td>
<td>64</td>
<td>1420.59</td>
<td>1417.20</td>
<td>0.24</td>
</tr>
</tbody>
</table>
Gaussian energy comparison (BBCGKS 2006) - $N = 5 \rightarrow 64$, $n = 4$.

<table>
<thead>
<tr>
<th>N</th>
<th>Gaussian Energy</th>
<th>ULB Bound</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>0.82085</td>
<td>0.82085</td>
<td>0.0000</td>
</tr>
<tr>
<td>6</td>
<td>1.51674</td>
<td>1.469024</td>
<td>3.1460</td>
</tr>
<tr>
<td>7</td>
<td>2.351357</td>
<td>2.303011</td>
<td>2.0561</td>
</tr>
<tr>
<td>8</td>
<td>3.321309</td>
<td>3.321309</td>
<td>0.0000</td>
</tr>
<tr>
<td>9</td>
<td>4.6742772</td>
<td>4.614371</td>
<td>1.2816</td>
</tr>
<tr>
<td>10</td>
<td>6.1625802</td>
<td>6.123668</td>
<td>0.6314</td>
</tr>
<tr>
<td>11</td>
<td>7.9137359</td>
<td>7.85</td>
<td>0.8517</td>
</tr>
<tr>
<td>12</td>
<td>9.8040902</td>
<td>9.780806</td>
<td>0.2375</td>
</tr>
<tr>
<td>13</td>
<td>11.975434</td>
<td>11.92615</td>
<td>0.4116</td>
</tr>
<tr>
<td>14</td>
<td>14.353614</td>
<td>14.28178</td>
<td>0.5005</td>
</tr>
<tr>
<td>15</td>
<td>16.90265</td>
<td>16.88487</td>
<td>0.1049</td>
</tr>
<tr>
<td>16</td>
<td>19.742184</td>
<td>19.70346</td>
<td>0.1962</td>
</tr>
<tr>
<td>17</td>
<td>22.795437</td>
<td>22.73073</td>
<td>0.2562</td>
</tr>
<tr>
<td>18</td>
<td>26.046099</td>
<td>25.98526</td>
<td>0.2336</td>
</tr>
<tr>
<td>19</td>
<td>29.510614</td>
<td>29.44794</td>
<td>0.2124</td>
</tr>
<tr>
<td>20</td>
<td>33.161212</td>
<td>33.12489</td>
<td>0.1096</td>
</tr>
<tr>
<td>21</td>
<td>37.051623</td>
<td>37.03121</td>
<td>0.0551</td>
</tr>
<tr>
<td>22</td>
<td>137.52</td>
<td>137.00</td>
<td>0.3753</td>
</tr>
<tr>
<td>23</td>
<td>41.177514</td>
<td>41.15351</td>
<td>0.0583</td>
</tr>
<tr>
<td>24</td>
<td>45.537431</td>
<td>45.49154</td>
<td>0.1008</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>N</th>
<th>Gaussian Energy</th>
<th>ULB Bound</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>54.83402</td>
<td>54.81419</td>
<td>0.0362</td>
</tr>
<tr>
<td>26</td>
<td>59.8395</td>
<td>59.7986</td>
<td>0.0684</td>
</tr>
<tr>
<td>27</td>
<td>65.02733</td>
<td>64.99832</td>
<td>0.0446</td>
</tr>
<tr>
<td>28</td>
<td>70.43742</td>
<td>70.41329</td>
<td>0.0343</td>
</tr>
<tr>
<td>29</td>
<td>76.06871</td>
<td>76.0435</td>
<td>0.0332</td>
</tr>
<tr>
<td>30</td>
<td>81.9183</td>
<td>81.88889</td>
<td>0.0359</td>
</tr>
<tr>
<td>31</td>
<td>87.99142</td>
<td>87.95307</td>
<td>0.0436</td>
</tr>
<tr>
<td>32</td>
<td>94.26767</td>
<td>94.2326</td>
<td>0.0372</td>
</tr>
<tr>
<td>33</td>
<td>100.75</td>
<td>100.7275</td>
<td>0.0223</td>
</tr>
<tr>
<td>34</td>
<td>107.4465</td>
<td>107.4377</td>
<td>0.0082</td>
</tr>
<tr>
<td>35</td>
<td>114.3862</td>
<td>114.3632</td>
<td>0.0202</td>
</tr>
<tr>
<td>36</td>
<td>121.5266</td>
<td>121.504</td>
<td>0.0186</td>
</tr>
<tr>
<td>37</td>
<td>128.874</td>
<td>128.86</td>
<td>0.0109</td>
</tr>
<tr>
<td>38</td>
<td>136.4529</td>
<td>136.4314</td>
<td>0.0158</td>
</tr>
<tr>
<td>39</td>
<td>144.244</td>
<td>144.218</td>
<td>0.0180</td>
</tr>
<tr>
<td>40</td>
<td>152.2451</td>
<td>152.2199</td>
<td>0.0165</td>
</tr>
<tr>
<td>41</td>
<td>160.4628</td>
<td>160.4379</td>
<td>0.0155</td>
</tr>
<tr>
<td>42</td>
<td>168.8894</td>
<td>168.8713</td>
<td>0.0107</td>
</tr>
<tr>
<td>43</td>
<td>177.5346</td>
<td>177.5199</td>
<td>0.0083</td>
</tr>
<tr>
<td>44</td>
<td>186.3928</td>
<td>186.3839</td>
<td>0.0048</td>
</tr>
<tr>
<td>45</td>
<td>195.4712</td>
<td>195.46</td>
<td>0.0042</td>
</tr>
<tr>
<td>46</td>
<td>204.7676</td>
<td>204.76</td>
<td>0.0049</td>
</tr>
<tr>
<td>47</td>
<td>214.2834</td>
<td>214.27</td>
<td>0.0075</td>
</tr>
<tr>
<td>48</td>
<td>223.994</td>
<td>223.99</td>
<td>0.0007</td>
</tr>
<tr>
<td>49</td>
<td>233.9421</td>
<td>233.93</td>
<td>0.0040</td>
</tr>
<tr>
<td>50</td>
<td>244.0939</td>
<td>244.09</td>
<td>0.0022</td>
</tr>
<tr>
<td>51</td>
<td>254.4665</td>
<td>254.46</td>
<td>0.0028</td>
</tr>
<tr>
<td>52</td>
<td>265.0585</td>
<td>265.05</td>
<td>0.0049</td>
</tr>
<tr>
<td>53</td>
<td>275.8551</td>
<td>275.85</td>
<td>0.0030</td>
</tr>
<tr>
<td>54</td>
<td>286.8694</td>
<td>286.86</td>
<td>0.0020</td>
</tr>
<tr>
<td>55</td>
<td>298.1012</td>
<td>298.1</td>
<td>0.0019</td>
</tr>
<tr>
<td>56</td>
<td>309.5522</td>
<td>309.54</td>
<td>0.0030</td>
</tr>
<tr>
<td>57</td>
<td>321.2188</td>
<td>321.21</td>
<td>0.0041</td>
</tr>
<tr>
<td>58</td>
<td>333.0979</td>
<td>333.08</td>
<td>0.0043</td>
</tr>
<tr>
<td>59</td>
<td>345.1882</td>
<td>345.18</td>
<td>0.0033</td>
</tr>
<tr>
<td>60</td>
<td>357.497</td>
<td>357.49</td>
<td>0.0033</td>
</tr>
<tr>
<td>61</td>
<td>370.0202</td>
<td>370.01</td>
<td>0.0030</td>
</tr>
<tr>
<td>62</td>
<td>382.7551</td>
<td>382.75</td>
<td>0.0019</td>
</tr>
<tr>
<td>63</td>
<td>395.7039</td>
<td>395.7</td>
<td>0.0004</td>
</tr>
<tr>
<td>64</td>
<td>408.8804</td>
<td>408.87</td>
<td>0.0021</td>
</tr>
</tbody>
</table>
Sketch of the proof - $\{\alpha_i\}$ case

- Let $f(t)$ be the **Hermite’s interpolant** of degree $m = 2k - 1$ s.t.

 \[f(\alpha_i) = h(\alpha_i), \quad f'(\alpha_i) = h'(\alpha_i), \quad i = 1, 2, \ldots, k; \]

- The absolute monotonicity implies $f(t) \leq h(t)$ on $[-1, 1]$;
- The nodes $\{\alpha_i\}$ are zeros of $P_k(t) + cP_{k-1}(t)$ with $c > 0$;
- Since $\{P_k(t)\}$ are orthogonal (Jacobi) polynomials, the Hermite interpolant at these zeros has positive Gegenbauer coefficients (shown in Cohn-Kumar, 2007). So, $f(t) \in \mathcal{P}_\tau \cap A_{n,h}$;
- If $g(t) \in \mathcal{P}_\tau \cap A_{n,h}$, then by the quadrature formula

 \[g_0 - \frac{g(1)}{N} = \sum_{i=1}^{k} \rho_i g(\alpha_i) \leq \sum_{i=1}^{k} \rho_i h(\alpha_i) = \sum_{i=1}^{k} \rho_i f(\alpha_i) = f_0 - \frac{f(1)}{N} \]

 \square
Suboptimal LP solutions for $m \leq m(N, n)$

Theorem - (BDHSS - 2014)

The linear program (LP) can be solved for any $m \leq \tau(n, N)$ and the suboptimal solution in the class $P_m \cap A_{n,h}$ is given by the Hermite interpolants at the Levenshtein nodes determined by $N = L_m(n, s)$.
Suboptimal LP solutions for $N = 24$, $n = 4$, $m = 1 - 5$

\[
\begin{align*}
 f_1(t) &= .499P_0(t) + .229P_1(t) \\
 f_2(t) &= .581P_0(t) + .305P_1(t) + 0.093P_2(t) \\
 f_3(t) &= .658P_0(t) + .395P_1(t) + .183P_2(t) + 0.069P_3(t) \\
 f_4(t) &= .69P_0(t) + .43P_1(t) + .23P_2(t) + .10P_3(t) + 0.027P_4(t) \\
 f_5(t) &= .71P_0(t) + .46P_1(t) + .26P_2(t) + .13P_3(t) + 0.05P_4(t) + 0.01P_5(t).
\end{align*}
\]
Some Remarks

- The bounds do not depend (in certain sense) from the potential function h.

- The bounds are attained by all configurations called universally optimal in the Cohn-Kumar’s paper apart from the 600-cell (a 120-point 11-design in four dimensions).

- Necessary and sufficient conditions for ULB global optimality and LP-universally optimal codes.

- Analogous theorems hold for other polynomial metric spaces (H_q^n, J_w^n, RP^n, CP^n, HP^n).
Improvement of ULB (details in Stoyanova’s talk)

- Let \(n \) and \(N \) be fixed, \(N \in [D(n, 2k - 1), D(n, 2k)) \), \(L_m(n, s) = N \) and \(j \) be positive integer.
- [BDB] introduce the following **test functions** in \(n \) and \(s \in \mathcal{I}_{2k - 1} \)

\[
Q_j(n, s) = \frac{1}{N} + \sum_{i=1}^{k} \rho_i P_j^{(n)}(\alpha_i) \tag{7}
\]

(note that \(P_j^{(n)}(1) = 1 \)).

- Observe that \(Q_j(n, s) = 0 \) for every \(1 \leq j \leq 2k - 1 \).
- We shall use the functions \(Q_j(n, s) \) to give necessary and sufficient conditions for existence of improving polynomials of higher degrees.
Theorem (Optimality characterization (BDHSS-2014))

The ULB bound

\[\mathcal{E}(n, N, h) \geq N^2 \sum_{i=1}^{k} \rho_i h(\alpha_i) \]

can be improved by a polynomial from \(A_{n,h} \) of degree at least \(2k \) if and only if \(Q_j(n, s) < 0 \) for some \(j \geq 2k \).

Moreover, if \(Q_j(n, s) < 0 \) for some \(j \geq 2k \) and \(h \) is strictly absolutely monotone, then that bound can be improved by a polynomial from \(A_{n,h} \) of degree exactly \(j \).

Furthermore, there is \(j_0(n, N) \) such that \(Q_j(n, \alpha_k) \geq 0, j \geq j_0(n, N) \).

Corollary

If \(Q_j(n, s) \geq 0 \) for all \(j > \tau(n, N) \), then \(f_{\tau(n,N)}^h(t) \) solves the \((LP)\).
Sketch of the proof - \(\{\alpha_i\} \) case

"\(\implies\)" Suppose \(Q_j(n, s) \geq 0, j \geq 2e \). For any \(f \in \mathcal{P}_r \cap A_{n,h} \) we write

\[
f(t) = g(t) + \sum_{2e}^{r} f_i P_i^{(n)}(t)
\]

with \(g \in \mathcal{P}_{2e-1} \cap A_{n,h} \). Manipulation yields

\[
Nf_0 - f(1) = N \sum_{i=0}^{e-1} \rho_i f(\alpha_i) - N \sum_{j=2e}^{r} f_j Q_j(n, s) \leq N \sum_{i=0}^{k} \rho_i h(\alpha_i).
\]

"\(\impliedby\)" Let now \(Q_j(n, s) < 0, j \geq 2e \). Select \(\epsilon > 0 \) s.t. \(h(t) - \epsilon P_j^{(n)}(t) \) is absolutely monotone. We improve using \(f(t) = \epsilon P_j^{(n)}(t) + g(t) \), where

\[
g(\alpha_i) = h(\alpha_i) - \epsilon P_j^{(n)}(\alpha_i), \quad g'(\alpha_i) = h'(\alpha_i) - \epsilon (P_j^{(n)})'(\alpha_i)
\]
Definition
A universal configuration is called **LP universal** if it solves the finite LP problem.

Remark
Ballinger, Blekherman, Cohn, Giansiracusa, Kelly, and Shűrmann, conjecture two universal codes \((40, 10)\) and \((64, 14)\).

Theorem
The spherical codes \((N, n) = (40, 10), (64, 14)\) and \((128, 15)\) are not LP-universally optimal.

Proof.
We prove \(j_0(10, 40) = 10, j_0(14, 64) = 8, j_0(15, 128) = 9\). \(\square\)
<table>
<thead>
<tr>
<th>j</th>
<th>(4, 24)</th>
<th>(10, 40)</th>
<th>(14, 64)</th>
<th>(15, 128)</th>
<th>(7, 182)</th>
<th>(4, 120)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>0.021943574</td>
<td>0.013744273</td>
<td>0.000659722</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>0.043584477</td>
<td>0.023867606</td>
<td>0.012122396</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>0.085714286</td>
<td>0.024962302</td>
<td>0.015879248</td>
<td>0.010927837</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>0.16</td>
<td>0.015883951</td>
<td>0.012369147</td>
<td>0.005957261</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>-0.024</td>
<td>0.026086948</td>
<td>0.015845575</td>
<td>0.006751842</td>
<td>0.022598277</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>-0.02048</td>
<td>0.02824122</td>
<td>0.016679926</td>
<td>0.008493915</td>
<td>0.011864096</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>0.064232727</td>
<td>0.024663991</td>
<td>0.015516168</td>
<td>0.00811866</td>
<td>-0.00835109</td>
<td>0</td>
</tr>
<tr>
<td>11</td>
<td>0.036864</td>
<td>0.024338487</td>
<td>0.015376208</td>
<td>0.007630277</td>
<td>0.003071311</td>
<td>0</td>
</tr>
<tr>
<td>12</td>
<td>0.059833108</td>
<td>0.024442076</td>
<td>0.01558101</td>
<td>0.007746238</td>
<td>0.009459538</td>
<td>0.053050398</td>
</tr>
<tr>
<td>13</td>
<td>0.06340608</td>
<td>0.024976926</td>
<td>0.015644873</td>
<td>0.007809405</td>
<td>0.0065461</td>
<td>0.066587396</td>
</tr>
<tr>
<td>14</td>
<td>0.054456422</td>
<td>0.025919671</td>
<td>0.015734138</td>
<td>0.007817465</td>
<td>0.005369545</td>
<td>-0.046646712</td>
</tr>
<tr>
<td>15</td>
<td>-0.003869491</td>
<td>0.02498472</td>
<td>0.015637274</td>
<td>0.007865499</td>
<td>0.006137772</td>
<td>-0.018428319</td>
</tr>
<tr>
<td>16</td>
<td>0.008598724</td>
<td>0.024214119</td>
<td>0.015521057</td>
<td>0.007815602</td>
<td>0.005268455</td>
<td>0.020868837</td>
</tr>
<tr>
<td>17</td>
<td>0.091970863</td>
<td>0.025123445</td>
<td>0.01562458</td>
<td>0.007761374</td>
<td>0.005134928</td>
<td>-0.000422871</td>
</tr>
<tr>
<td>18</td>
<td>0.049262707</td>
<td>0.025449746</td>
<td>0.015694798</td>
<td>0.007812225</td>
<td>0.004722806</td>
<td>0.012656294</td>
</tr>
<tr>
<td>19</td>
<td>0.035330484</td>
<td>0.024905002</td>
<td>0.015617497</td>
<td>0.00784714</td>
<td>0.003857119</td>
<td>0.006371173</td>
</tr>
<tr>
<td>20</td>
<td>0.048230925</td>
<td>0.024837415</td>
<td>0.015589583</td>
<td>0.00781076</td>
<td>0.007863772</td>
<td>0.011244953</td>
</tr>
</tbody>
</table>
Denote $T_{\ell}P^{n-1}$, $\ell = 1, 2, 4$ – projective spaces RP^{n-1}, CP^{n-1}, HP^{n-1}.

The Levenshtein intervals are

$$I_m = \begin{cases}
[t_{k-1, \ell}^{1, 1}, t_{k, \ell}^{1, 0}], & \text{if } m = 2k - 1, \\
[t_{k, \ell}^{1, 0}, t_{k, \ell}^{1, 1}], & \text{if } m = 2k,
\end{cases}$$

where $t_{i, \ell}^{a, b}$ is the greatest zero of $P_i^{a + \frac{\ell(n-1)}{2} - 1, b + \frac{\ell}{2} - 1}(t)$. The Levenshtein function is given as

$$L(n, s) = \begin{cases}
(k + \frac{\ell(n-1)}{2} - 1) \left(\frac{k + \frac{n}{k} - 2}{k - 1}\right) \left[1 - \frac{P_k^{(\frac{\ell(n-1)}{2}, \frac{\ell}{2})}(s)}{P_k^{(\frac{\ell(n-1)}{2} - 1, \frac{\ell}{2})}(s)}\right], & s \in I_{2k-1} \\
(k + \frac{\ell(n-1)}{2} - 1) \left(\frac{k + \frac{n}{k} - 1}{k - 1}\right) \left[1 - \frac{P_k^{(\frac{\ell(n-1)}{2}, \frac{\ell}{2})}(s)}{P_k^{(\frac{\ell(n-1)}{2} - 1, \frac{\ell}{2})}(s)}\right], & s \in I_{2k}.
\end{cases}$$
The Delasarte-Goethals-Seidel numbers are:

\[D_{\ell}(n, \tau) = \begin{cases}
\frac{(k+\frac{\ell(n-1)}{2} - 1)(k+\frac{\ell n}{2} - 1)}{(k+\frac{\ell}{2} - 1)}(k+\frac{\ell n}{2} - 1), & \text{if } \tau = 2k - 1, \\
\frac{(k+\frac{\ell(n-1)}{2} - 1)(k+\frac{\ell n}{2} - 1)}{(k+\frac{\ell}{2} - 1)}(k+\frac{\ell n}{2} - 1), & \text{if } \tau = 2k.
\end{cases} \]

The Levenshtein 1/N-quadrature nodes \(\{\alpha_i, \ell\}_{i=1}^k \) (respectively \(\{\beta_i, \ell\}_{i=1}^k \)), are the roots of the equation

\[P_k(t)P_{k-1}(s) - P_k(s)P_{k-1}(t) = 0, \]

where \(s = \alpha_k \) (respectively \(s = \beta_k \)) and \(P_i(t) = P_i^{\frac{\ell(n-3)}{2}, \frac{\ell}{2} - 1}(t) \) (respectively \(P_i(t) = P_i^{\frac{\ell(n-3)}{2}, \frac{\ell}{2}}(t) \)) are Jacobi polynomials.
ULB for \mathbb{RP}^{n-1}, \mathbb{CP}^{n-1}, \mathbb{HP}^{n-1} - (BDHSS - 2015)

Given the projective space $T_\ell \mathbb{P}^{n-1}$, $\ell = 1, 2, 4$, let h be a fixed absolutely monotone potential, n and N be fixed, and $\tau = \tau(n, N)$ be such that $N \in [D_\ell(n, \tau), D_\ell(n, \tau + 1)]$. Then the Levenshtein nodes $\{\alpha_{i,\ell}\}$, respectively $\{\beta_{i,\ell}\}$, provide the bounds

$$\mathcal{E}(n, N, h) \geq N^2 \sum_{i=1}^{k} \rho_i h(\alpha_{i,\ell}),$$

respectively,

$$\mathcal{E}(n, N, h) \geq N^2 \sum_{i=0}^{k} \gamma_i h(\beta_{i,\ell}).$$

The Hermite interpolants at these nodes are the optimal polynomials which solve the finite LP in the class $\mathcal{P}_\tau \cap A_{n,h}$.
Conclusions and future work

- ULB works for all absolutely monotone potentials
- Particularly good for analytic potentials
- Necessary and sufficient conditions for improvement of the bound

Future work:
- Johnson polynomial metric spaces
- Asymptotics of ULB for all polynomial metric spaces
- Relaxation of the inequality \(f(t) \leq h(t) \) on \([-1, 1]\)
- ULB and the analytic properties of the potential function
THANK YOU!