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Abstract. Spatio-temporal logic is a variant of branching temporal logic where one

of the so-called causal relations on spacetime plays the role of a time flow. Allowing

only rational numbers as space and time co-ordinates, we prove that a first-order spatio-

temporal theory over this flow is recursively enumerable if and only if the dimension of

spacetime does not exceed 2. The situation is somewhat different compared to the case

of real co-ordinates, because we establish that even dimension 2 does not permit recursive

enumerability in this case. The proof of the result on rational spacetime involves a more

deeper portion of spacetime geometry than the corresponding, more evident result for the

real co-ordinates.
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1. Introduction

1.1. Spatio-temporal logic

Both linear and branching temporal logic is widely used to model time-
dependent and non-deterministic phenomena, such as future tenses of natu-
ral language or random choice among parallel threads of computationV. Its
propositional version is exploited successfully in designing reliable finite-state
computing devices (see e.g. [11], [13], [30]). Its full first-order version can
express properties of arbitrary computing paradigms ([23], [8]). Automatic
decision and/ or proof-searching algorithms support automatic specification
and verification of such systems (see [4], [1], [24]).

What can temporal logic offer to designers of mobile distributed computing
systems? Apart from having dynamics in time, these systems have dynam-
ics in space, too. To cover this area, an analogue of temporal logic has
been developed, which is usually called spatio-temporal logic. The need for
appropriate knowledge representation systems has generated a big boom of
investigations into this direction in the past ten years. One way to follow
this is intercrossing a spatial language with a temporal language in such a
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way that in the hybrid language there are separate modalities for time and
space ([34], [9], [45], [6], [16]). This idea originated in research on multi-
dimensional modal logics ([39], [41], [25], [37]). In this formalization, there
are separate modalities for space directions and time. We mention in ad-
vance that our recent non-axiomatizability result (Theorem 2.12) is not a
consequence of non-axiomatizability of multimodal logics over (R, <).

1.2. Logic and relativity

There is another tradition to deal with time and space, namely to speak
jointly about spacetime and use its geometrical relations and objects to ex-
press various properties of the dynamics of processes in spacetime. Assuming
that these processes have no synchronised time one comes to consider hy-
perbolic geometry of Minkowski spacetime, as in the works of F. Mattern
([26], [12]). He proposed investigating so-called causal connectability rela-
tions of spacetime from the viewpoint of specification and verification of
distributed computing. In the present introduction we will distinguish five
relations related to causality: (x J y) for pure material causal connectabil-
ity, while (x / y) for optical connectability, (x� y) for the disjuntion of the
previous two, (x =� y) for (x � y ∨ x = y) and finally (x =J y) stands
for x J y ∨ x = y. Exact definitions for J and / will be given when our
theorems and proofs will be developed.

A theory of the causal relation � of spacetime was axiomatized as early as
in 1914 by A. Robb [38] and later on similar results were obtained among
others by B. Mundy and J. P. Ax ([28], [29], [5]). R. Goldblatt elaborated the
first-order theory of some spacetime relations – including causal relations – in
[18] and [19]. V. Pambuccian reinterpreted the Alexandrov–Zeeman theorem
concerning causality-preserving mappings from the definitional viewpoint of
these relations ([31]).

A relevant new approach of logic to causality and relativity is to axioma-
tize the whole of the physical theory, including facts about observers, co-
ordinates or even co-ordinate transformations, and not only the geometrical
core. This approach may be called the analytic version of formalized relativ-
ity theory ([3]). Moreover, since this formalization does not utilize second-
order or set-theoretical notions, for instance the set of real numbers, only
their first-order approximations, we can call it the non-standard analytic
version of formalized relativity theory in the sense of non-standard analysis.
Our recent results will give a support for this approach in the sense that they
imply that no complete and sound axiomatization can be given if we only



On first-order spatio-temporal theories 3

allow spacetime structures built on a concrete co-ordinatizing field such as
R or Q . This approach is extremely useful when we formalize real physical
statements and experiments, as in [2], or would like to execute conceptual
analysis, as in [22].

1.3. Modal logic and relativity

Each causal connectability relation of spacetime can be considered to be a
generalization of time flows in temporal logic when it serves as the alter-
nativity relation of a Kripke frame for propositional modal logic as it was
done first by V. Shehtman and R. Goldblatt, independently. In [42] and
[17], modal logics of both (Rn,=�) and (Rn,=J) were proved to be de-
cidable. The more then twenty years long open problem of decidability of
modal logics of the frames (Rn,J) and (Rn,�) were propounded in Gold-
blatt’s paper and solved by Shapirovsky and Shehtman ([40]). Modal logics
of other spacetime relations on Rn and more abstract structures concern-
ing spacetime geometry were analysed in [7] and [36]. Modal and temporal
logics of frames (Zn,�) and (Zn,=�) were investigated in [32], [33].

J. van Benthem drew attention to the spacetime flow (Qn,J) (n > 1) in [10].
At least for n = 2, in this book he proved that its first-order theory is ω-
categorical (countably categorical), finitely axiomatizable and consequently,
complete and decidable. Further, that (Q2,J) is an elementary substruc-
ture of (R2,J) so their first-order theories coincide. Anyway, the first-order
theory of (Rn,J) (n > 1) is decidable through semantic interpretation into
the first-order theory of (R,+, ∗, <), which is known to be decidable by a
well-known result of A. Tarski. To the best of our knowledge, for n > 2, the
decidability of the first-order theory of (Qn,J) has neither been proved nor
disproved. The previous method does not work, since for n > 2, (Qn,J) is
not an elementary substructure of (Rn,J).

1.4. Contributions to first-order spatio-temporal logic

It is a rare and remarkable thing, that a first-order spatio-temporal logic is
axiomatizable (we understand this notion simply as recursive enumerability).
Over the reals, there is only a little hope to find one. Even the linear first-
order temporal theory over (R, <) is not axiomatizable ([15]). The published
proofs for non-axiomatizability of first-order temporal theories use a ternary
base first-order signature or not valid for (R, <). Only the so-called monOdic
fragment remains decidable ([20]). In our Theorem 2.14 we establish non-
axiomatizability of the first-order temporal theory over (Rn,J) (n > 2) with
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a monadic signature, what is more, for a signature consisting of a sole unary
predicate symbol without the equality symbol. With some modifications,
our proof idea can also work for (R, <) to establish non-axiomatizability
with the same simple signature.

We have more chance to find axiomatizable theories over the rational space-
time (Qn) (n > 1). In [35], M. Reynolds axiomatized the first-order temporal
theory over (Q, <). We observed that a possible reason for the axiomatiz-
ability of the first-order temporal theories of a structure is the ω-categoricity
and recursive enumerability of the pure first-order theory of this structure
itself ([43]). The first-order theory of (Q2,J) has these properties (see in
J. van Benthem’s book [10]), this allows us to establish axiomatizability of
arbitrary first-order spatio-temporal theory over this spatio-temporal flow
(arbitrary base first-order signature, arbitrary temporal operators), see in
[43], also cited in Theorem 2.13. This axiomatizability allows to describe
interesting spatio-temporal properties of distributed mobile systems, where
distributedness is considered on a 1-dimensional space line ([43]).

What is the situation when we step to higher dimensions in rational space-
time? The main result of this paper is that a first-order spatio-temporal
theory over (Qn,J) (Qn,J) (n > 2) is not axiomatizable (Theorem 2.12).
(This implies also, that (Qn,J) (n > 2) has no such nice metamathematical
properties as its 2-dimensional sibling. Either not ω-categorical and/or not
recursively enumerable. One may hardly imagine that it is ω-categorical but
not recursively enumerable.)

In the next section the results of this paper are presented together with the
definitions of the notions needed. In the first subsection of the third section
the ideas and difficulties of the proofs are detailed, in the rest of the third
section the proofs are given, while in the final section we will discuss what
further possibilities we have to turn the situation (non-axiomatizability) to
be positive.

2. Definitions and results

We assume the reader to be familiar with the basic semantic and syntactic
notions of first-order logic. The style of the definitions concerning first-order
temporal logic follows [15].

Definition 2.1. A temporal operator is a triple (�, k, τ) where � is a sym-
bol, k is a positive integer and τ is a first-order formula in the signature Sn
having a denumerably infinite set {t0, t1, . . .} of variables, a binary predicate
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symbol ≺, a finite set {P1, P2, . . . Pn} of unary predicate symbols and noth-
ing else. Further requirement on τ is to contain exactly the only parameter
t0.

� is the visual form of the operator, k is its arity while the role of τ is to
describe the intended semantics of the operator. We will name the oper-
ators just by their first component, to avoid unneccessary complication of
notations. Two examples of temporal operators are presented here:

(�→, 1, ∀t1(t0 ≺ t1 → P1(t1)) and

(Until, 2,∃t1{t0 ≺ t1 ∧ P2(t1) ∧ ∀t2[t0 ≺ t2 ∧ t2 ≺ t1 → P1(t2)]} ).

The intuitive reading of the first is P1 holds always in the future, while of
the second is from now on, P1 holds until a timepoint where P2 will come
true.

Definition 2.2. A temporal language TLOpL , based on a first-order signature
L and a finite set Op of temporal operators, is the smallest set of formulae
(on the appropriate alphabet) satisfying the following requirements:

• any atomic formula of L is an atomic temporal formula of TLOpL ,

• (A∧B) and ¬A are formulæ of TLOpL , if A and B belong to that set,

• ∀xA is formula of TLOpL if A is a formula of TLOpL and x is a variable
of L,

• �(A1, . . . Ak) is a formula of TLOpL if (�, k, τ) ∈ Op for some table τ

and A1, . . . Ak are formulæ of TLOpL .

The set of terms of TLOpL coincides with the set of terms of pure L.

We assume the usual syntactic notions – as subformula, free and quantified
variable, term substitution etc., modified in the adequate way – to be un-
derstood. We accept the usual abbreviations of first-order logic, as (A∨B),
(A → B), ∃xA etc., and use their well-known semantic properties without
any extra remark. We provide here an example formula in TLOpL , where
Op = {�→, Until} and signature L contains a unary predicate symbol p and
a binary q: �→ ∀x(p(x)→ ∀y Until(q(y, x), p(y))).

Definition 2.3. A time flow is a non-empty partially ordered set (T,�).

(T,�) is the intended notion of time.
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The essence of semantics of temporal logic is to have time-dynamical inter-
pretations. There are many variations on what part of signature is inter-
preted dynamically – all of them may find an own application area. The
most simple case is if the interpretation of all the terms including the in-
terpreting domain and variable valuations are time-independent, only the
predicate interpretations vary on time. While we investigate only axiom-
atizability questions of theories of temporal logic, the chosen variation of
temporal interpretation is indifferent– our following results proving or re-
futing axiomatizability are insensitive to this variations. So we employ the
following simple formalization of first-order temporal semantics.

Definition 2.4. Let L be a first-order signature and let Op be a finite set
of temporal operators. A temporal interpretation I for TLOpL on the time
flow (T,�) consists of a triple (DI , If , Ip) where DI is a non-empty set (the
time-independent domain of I), If is a usual first-order interpretation for the
terms of L while Ip is a function mapping a usual first-order interpretation
Ipt of the predicate symbols of L to each t ∈ T , where the domain of each
Ipt is DI .

Definition 2.5. The definition for a valuation Θ of the variables of TLOpL
in interpretation I is a finite partial fuction mapping from the variables
of L to DI . We denote the valuation {(x1, v1), . . . , (xm, vm)}, as usual, by(
x1...xm
v1...vm

)
. This implies, that () denotes the empty valuation. Further, Θ@

(
x
d

)
stands for a valuation Π whose domain is dom Θ ∪ {x}, Π and Θ agree on
dom Θ \ {x} but Π(x) = d.

We remind that the interpreting domain and the interpretation of the terms
is constant in time.

Definition 2.6. The value |tΘ|I of the term t in the interpretation I after
the variable valuation Θ can be defined just as in first-order case.

The temporal satisfaction relates more objects than its classical counterpart.
It involves, besides an interpretation, a variable valuation and a formula, also
a time flow and an evaluation time point.

Definition 2.7. Let L be a first-order signature and let Op be a finite set
of temporal operators. For any time flow (T,�), any temporal interpre-
tation I for TLOpL , any variable valuation Θ on I, any time point t(∈ T )
and any temporal formula A of the temporal language just mentioned, the
satisfaction relation (T,�), I,Θ, t 
 A is defined as follows:
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• if A is an atomic formula then (T,�), I,Θ, t 
 A iff Ipt |= AΘ,
where |= denotes the classical first-order satisfaction relation,

• if A = (B ∧ C) then (T,�), I,Θ, t 
 A iff
(T,�), I,Θ, t 
 B and (T,�), I,Θ, t 
 C,

• if A = ¬B then (T,�), I,Θ, t 
 A iff
(T,�), I,Θ, t 
 B does not hold,

• if A = ∀xB then (T,�), I,Θ, t 
 A iff
for all d ∈ DI , (T,�), I,Θ@

(
x
d

)
, t 
 B,

• if A = �(B1, . . . Bn) for a temporal operator (�, n, τ) ∈ Op then
(T,�), I,Θ, t 
 A iff B |= τ

(
t0
t

)
where B is an interpretation for signature Sn (c.f. Def. 2.1) whose
domain is T , further, ≺B=� and the interpretation of Pi in B can be
given as the subset of T consisting of time points where Bi holds, that
is, (Pi)

B = {s ∈ T : (T,�), I,Θ, s 
 Bi} for any integer i between 1
and n.

Consequently, in the sense of the last definition, if A = Until(B,C) then
(T,�), I,Θ, t 
 A iff there exists an s ∈ T such that t� s, (T,�), I,Θ, s 

B and for all r ∈ T such that t � r � s, (T,�), I,Θ, r 
 C. Further, if
A = �→ B then (T,�), I,Θ, t 
 A iff for all s ∈ T such that t � s,
(T,�), I,Θ, s 
 B.

Definition 2.8. The Op-temporal theory Th
Op
L (T,�) of time flow (T,�) on

signature L is the set of such closed TLOpL -formulæ A, that for any temporal
interpretation I, any t ∈ T and any variable valuation Θ, (T,�), I,Θ, t 
 A
holds.

Definition 2.9. To be concise, we say a set S of formulæ axiomatizable iff
it is recursively enumerable.

Definition 2.10. GN := {�→,�◦ }, where �→ is given after Definition 2.1
and the second operator is (�◦ , 1, ∀t1(¬∀t2(t2 � t0 ↔ t2 � t1)→ P1(t1))).

�◦ will have a special intuitive reading in our spacetime flow which is to
be specified later. Let n > 1. We recall the definition for the function
Minkowskian distance µ : Rn → R. It is defined by
µ((x1, . . . , xn), (y1, . . . , yn)) = (x1 − y1)2 − (x2 − y2)2 − . . . − (xn − yn)2.
Further, for x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ Rn, we write (x J y) for
µ(x, y) > 0 ∧ x1 < y1.
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In special relativity theory, this relation is also known as directed material
or timelike causal connectability because it holds iff there is a possibility an
event occuring in y to take a material (below-lightspeed) effect from an event
in x. In this case we say also that y is inside of the upper lightcone of x.

The time has come to fix which first-order signature we prove our theorem
for.

Definition 2.11. Signature L0 includes no equality symbol just one unary
predicate symbol, namely, r. We postulate also that the set of variables of
L0 includes {α, γ, δ, ε} and {x, y, z, u, v, w}.

Our main result is the following.

Theorem 2.12. Let n > 2. ThGNL0
(Qn,J) is not axiomatizable.

This is in interesting contrast with the following.

Theorem 2.13. [43] For any first-order signature L and arbitrary finite set
of temporal operators Op, ThOpL (Q2,J) is axiomatizable.

Theorem 2.14. Let n > 2. ThGNL0
(Rn,J) is not axiomatizable.

Theorem 2.15. [43] ThGNL0
(R2,J) is not axiomatizable.

3. Proofs

3.1. Ideas of the proofs

Theorem 2.14 (on spatio-temporal logic over (Rn,J) (n > 2) ) can be proven
according to the non-axiomatizability proofs in first-order temporal logics,
except for the absence of binary or ternary relations. Our chosen first-order
signature is limited to only one unary predicate symbol without equality.
A representation of predicates of more than one argument can be employed
to work out this problem. This solution will throw the proof to a more
technical level, but this is the strongest result we can prove. The method of
the existing proofs of non-axiomatizability of monadic first-order temporal
logic (see [21] – it proves only non-decidability of some first-order modal
logic –, [20] and [27]) are not followed directly but it is unneccessary to deny
their motivation to our work.

Although the last mentioned theorem is not a trivial consequence of non-
axiomatizability results on first-order temporal theories over (R, <), espe-
cially for our monadic base first-order signature, it is a much more difficult
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task, to prove Theorem 2.12. The extra difficulty we faced is the follow-
ing. In the first-order theory of (Rn,J) one can express an equidistance
formula, as R. Goldblatt pointed it out in the Appendix of [18]. A crucial
point in this process is to express the relation of spacelike betweenness by a
first-order formula. This way does not apply to (Qn,J) (n > 2). We have
constructed a new definition for spacelike betweenness which is also valid
for (Qn,J), but we cannot continue this work to give definition for equidis-
tance in (Qn,J). Instead of this, we proceed with describing a situation in
(Q,J), by means of the just defined spacelike betweenness, which also makes
possible the representation of the first-order theory of (N,+, ∗,=).

3.2. Representation of the time flow structure in the temporal
interpretation

We begin with proof of Theorem 2.12. We give some definitions in the
first-order theory of (Qn,J).

Definition 3.1.

• (i) (x = y)
 ∀z(z J x↔ z J y),

• (ii) (x / y)
 ∀z(y J z → x J z) ∧ ¬x J y ∧ ¬x = y,

• (iii) σ(x, y)
 x 6J y ∧ x 6/y ∧ y 6J x ∧ y 6/x ∧ y 6= x,

• (iv) βσ(x, z, y)


σ(x, y) ∧ ∀u(x J u ∧ y J u→ z J u) ∧ ∀u(u J x ∧ u J y → u J z),

• (v) βσ(x, z, y)
 βσ(x, z, y) ∧ x 6= z ∧ z 6= y.

In what follows, for the sake of easier readability, we write – for example –
(Qn,J) |= p / q or simply p / q instead of (Qn,J) |= (x / y)

(
x,y
p,q

)
, if p, q ∈ Qn.

Similar notation applies to the other formulae.

Statement 3.2. The following items hold.

For each n ≥ 2 and for each p, q, r, s ∈ Qn:

• (i) (Qn,J) |= p = q if and only if p and q coincide,

• (ii) (Qn,J) |= p / q if and only if µ(p, q) = 0 and p1 < q1, that
is, q is on the boundary of the upper lightcone of p (directed optical
connectability).
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• (iii) (Qn,J) |= σ(p, q) if and only if the line joining p to q is spacelike,
that is, µ(p, q) < 0.

For each n > 2 and for each p, q, r, s ∈ Qn:

• (iv) (Qn,J) |= βσ(p, q, r) if and only if p, q, r lie on a common spacelike
straight line and q is between the other two points,

• (v) (Qn,J) |= βσ(p, q, r) if and only if p, q, r lie on a common spacelike
straight line and q is between the other two points and p,q and r are
pairwise distinct.

Only the definition for βσ [(iv)] differs from the way of defining the cor-
responding definitions in (Rn,J). If a definition is a Boolean combination
of expressions involving only already defined notions [(iii), (v)], then the
argumentation remains the same as for (Rn,J). Some definitions involve
quantifiers on spacetime points, namely (i),(ii), and (iv). In case (i) and (ii),
it is not too difficult to check the conditions, while case (iv) needs a rather
lengthy, but elementary calculation. For the details, consult [44].

The rest of this subsection is a rather standard part of non-axiomatizability
proofs in first-order modal and temporal logic. First we introduce some
defined temporal operators. If A is an arbitrary temporal formula then �A
stands for A∨�◦A and ♦A for ¬�¬A. Further we will write ♦◦ A instead of
¬�◦ ¬A, respectively. It turns to be clear, that �A expresses that A is true
at all the points of spacetime and ♦A is its existential counterpart, if we
realize that, in a spatio-temporal setting, �◦ A holds in a spacetime point q
if and only if A in all spacetime points maybe except for q itself. As usual,
♦→ denotes the existential counterpart of �→.

We fix now some formulæ of TLGNL0
, as follows. We remind the reader that

r is the only predicate symbol in L0.

Definition 3.3. Id := ♦(r(x)∧ �◦ ¬r(x)), ν1 := �∃x(r(x)∧ �◦ ¬r(x)).

Let us fix a temporal interpretation I for TLGNL0
on the flow (Qn,J) and a

rational point q ∈ Qn satisfying (Qn,J), I, (), q 
 ν1. It is clear that then
the same holds for all q′ ∈ Qn. We will see later that such an interpretation
exists, it follows from the stronger result of Theorem 3.24. Throughout this
and the next two subsections, these I and q remain fixed. (Till Statement
3.23.)
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Definition 3.4. We define the relation ϕ0 ⊆ DI × Qn by the condition
(d, q) ∈ ϕ0 ⇔ (Qn,J), I,

(
x
d

)
, q 
 r(x). The set {d ∈ DI : (Qn,J), I,

(
x
d

)
, q 


Id} will be denoted by ID1. Further, ϕ1 stands for the restriction of ϕ0 to
ID1 ×Qn.

Statement 3.5. With the notations of the previous definition, ϕ1 is a sur-
jective function taking ID1 onto Qn.

This follows obviously from the way we have fixed I and makes right when we
use a function denotation for the elements of ϕ1, that is, we write ϕ1(d) = q
instead of (d, q) ∈ ϕ1.

Definition 3.6. The binary relation ρ on ID1 is defined by the condition
(d1, d2) ∈ ρ⇔ ϕ1(d1) = ϕ1(d2).

Statement 3.7. By standard algebraic arguments, ρ is an equivalence on
ID1.

Definition 3.8. With the notations of the previous items, the set of the
equivalence classes of ρ is denoted by ID. The function on ID corresponding
to ϕ1 is denoted by ϕ, that is, if the ρ-equivalence class of d is denoted by
[d]ρ, then ϕ([d]ρ) is just ϕ1(d).

All the following statements of this subsection can be verified by standard
algebraic arguments.

Statement 3.9. ϕ is a bijection from ID onto Qn.

Definition 3.10. Let Ord denote the formula ♦(r(x)∧♦→ r(y))∧ Id∧ Idxy ,
where Axy is the result of substituting y into the free occurences of x in
formula A. If d1, d2 ∈ ID1 then we write (Qn,J), I,

(
x y
d1d2

)
, q 
 Ord also in

form Ord1(d1, d2) – in this way we define a binary relation Ord1 on ID1.

Statement 3.11. The relation Ord1 on ID1 is compatible with ρ. That is,
Ord1(d1, d2) ⇔ Ord1(d3, d4) whenever {(d1, d2), (d3, d4)} ⊆ ρ.

Definition 3.12. Let OrdI denote the inherited relation of ρ-equivalence
classes, that is, OrdI is a binary relation on ID and for any d1, d2 ∈ ID1,
Ord1(d1, d2) if and only if OrdI([d1]ρ, [d2]ρ).

Statement 3.13. ϕ is an isomorphism from (ID,Ord) onto (Qn,J).
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Definition 3.14. Writing Ord into the place of J in defining formulæ
(i)-(v) of Definition 3.1, we obtain temporal formulæ Eq(x, y), Opt(x, y),
Sim(x, y), Betw(x, y, z) and Betw(x, y, z) of TLGNL0

, respectively. For exam-
ple, Eq(x, y) is just ∀z(Ord(z, x)↔ Ord(z, y)), and Opt(x, y) is ∀z(Ord(y, z)
→ Ord(x, z) ∧ ¬Ord(x, y) ∧ ¬Eq(x, y)). The corresponding relations on ID
are denoted by EqI , OptI , SimI , BetwI and BetwI , respectively.

For example, for each d1, d2 ∈ ID1, (Qn,J), I,
(
x y
d1d2

)
, q 
 Opt(x, y) is also

denoted by OptI([d1]ρ, [d2]ρ). This is reasonable, because all these relations
are ρ-compatible on ID1, since they are defined from J.

Corollary 3.15. ϕ is an isomorphism from

(ID,OrdI , EqI , OptI , SimI , BetwI) onto (Qn,J,=, /, σ, βσ).

Now we have an isomorphism from a separable subset of DI onto the time
flow structure. Separable means here that we can write a temporal formula
whose extension is this subset.

3.3. Isomorphism to the ordering of N

Definition 3.16. Formulæ ♦(r(δ)∧ r(x)), Betw(α, x, y) (in TLGNL0
) will be

abbreviated as N(x) and O(x, y), respectively. Further, we write O(x, y) ∧
¬∃z(N(z) ∧O(x, z) ∧O(z, y)) also in form S(x, y).

Parameter δ in the first formula is used for separating a subset of ID with-
out adding a new predicate symbol into L. This is natural enough. Dealing
with predicates with more than one argument requires a more involved rep-
resentation, as the next subsection will show.

Definition 3.17. Let ν2 be defined as conjunction of ν1 and the following
formulæ :

(1) Sim(α, ε) ∧ Sim(α, γ) ∧ Idxα ∧ Idxε ∧ Idxγ ,

(2) ∀x(N(x)→ Id ∧ (Betw(α, ε, x) ∨ Eq(x, ε))),
(3) ∀x(N(x)→ ∃!y(N(y) ∧ S(x, y)),

where ∃! is to understand with respect to the defined Eq handled as
equality symbol (c.f. Def. 3.14),

(4) ∀xy(N(x) ∧N(y) ∧ S(x, y)→
∃z(N(z) ∧Betw(α, γ, z) ∧Opt(x, z) ∧Opt(y, z)),

(5) ∀xyzw(N(x) ∧N(y) ∧N(z) ∧N(w) ∧ S(x, y) ∧Opt(x, z) ∧Opt(y, z)∧
¬Opt(x,w)∧Opt(y, w)∧Betw(α, γ, z) ∧Betw(α, γ, w)→ Betw(α, z, w)).
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Definition 3.18. NI := {[d]ρ : (Qn,J), I,
(
x
d

)
, q 
 N(x)},

OI := {([d1]ρ, [d2]ρ) : (Qn,J), I,
(
x y
d1d2

)
, q 
 O(x, y)}, and SI can be defined

in an analogous way.

Let Θ denote a fixed valuation satisfying that dom Θ ⊇ {α, δ, ε, γ}, till the
end of the next subsection.

Lemma 3.19. (Main lemma) If (Qn,J), I,Θ, q 
 ν2 then (NI , OI , SI) is
isomorphic to (N, <, succr), where succr = {(n, n+ 1) : n ∈ N}.

Proof. The way of defining ν2 results in that (NI , OI , SI) is a discrete linear
ordering whose minimal element is Θ(ε) but without any maximal element.
We only have to take into account the properties of the betweenness and
that the existing isomorphism ϕ allows us to use the mentioned spacetime
geometrical notions also for the elements of ID. By the way, if admitting of
the above statement would be an overloading task, then we simply attach to
ν2 the extra condition that O is a linear ordering on the elements satisfying
N .

Thus, the only point is to show that (NI , OI , SI) is isomorphic to
(N, <, succr). For this, it is enough to prove that NI is exhausted by the
set {Θ(ε), sI(Θ(ε)), s2

I(Θ(ε)), . . .}, where sI is the function denotation of
relation SI which is actually a function by ν2(3) and by the fact that Eq
coincides with the real equality on ID. In this proof, we write simply s
instead of sI .

The fulfilment of the above exhaust can be verified by means of the statement
that for all non-negative integer m,
δ(sm+2Θ(ε), sm+1Θ(ε)) > δ(sm+1Θ(ε), smΘ(ε)) holds, where δ is the Eu-
clidean distance and s0 is, as usual, the identity function. (Please re-
mind that usage of spacetime geometrical notions on the elements of ID
is reasonable through the isomorphism ϕ. For example, for d1, d2 ∈ ID1,
δ([d1]ρ, [d1]ρ) is just the Euclidean distance between ϕ([d1]ρ) and ϕ([d1]ρ).)
This inequality can be shown by properties of spacelike betweenness, paral-
lelity of /-linear straight lines and similar triangles, as follows.

We interject a remark, namely, that this condition cannot be attached di-
rectly to ν2, as a first-order condition in terms of J, because we are not able
to define equidistance in the first-order theory of (Qn,J) – it is an important
difference to (Rn,J) which makes this proof more complicated.

Let us fix an integer m ≥ 0 and a0 := sm(Θ(ε)), a1 := sm+1(Θ(ε)), a2 :=
sm+2(Θ(ε)). Then BetwI(Θ(α), a0, a1) and BetwI(Θ(α), a1, a2) follow from
ν2(2) and from the definition for S. This implies δ(Θ(α), a0) < δ(Θ(α), a1) <
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δ(Θ(α), a2) because of the properties of betweenness. By ν2(4)–(5), there
exist b, c ∈ ID that the following properties hold:

OptI(a0, b), Opt
I(a1, b), Opt

I(a1, c), Opt
I(a2, c),¬OptI(a0, c), ¬OptI(a2, b),

BetwI(Θ(α),Θ(γ), b), BetwI(Θ(α),Θ(γ), c) and BetwI(Θ(α), b, c).

One can conclude from them on δ(Θ(α), b) < δ(Θ(α), c), furthermore, on
that the lightlike line a1b is parallel to the lightlike line a2b and the lightlike
line a0b is parallel to the lightlike line a1c.

Using the properties of similar triangles Θ(α)a0b and Θ(α)a1c, Θ(α)a1b
and Θ(α)a2c, respectively, and applying the inequality on the geometri-
cal and arithmetic mean, we can derive now the desired inequality in the
form δ(Θ(α), a2) − δ(Θ(α), a1) > δ(Θ(α), a1) − δ(Θ(α), a0) regarding that
the mentioned elements of this inequality are collinear.

Finally, the set {Θ(ε), s(Θ(ε)), s2(Θ(ε)), . . .} exhausts NI because any r ∈
NI \ {Θ(ε)} satisfies also BetwI(Θ(α),Θ(ε), r) by ν2(2), and
Θ(ε), s(Θ(ε)), s2(Θ(ε)), . . . form a growing distance ω-sequence on the half-
line {d ∈ ID : BetwI(Θ(α),Θ(ε), d)∨EqI(d,Θ(ε))}, without any accumula-
tion point. Since there is no element of NI between two consecutive points
of the sequence or outside of the half-line mentioned, the above exhaust and
consequently, Lemma 3.19 is proved.

3.4. Representation of predicates of more than one argument

We introduce the following abbreviations in TLGNL0
. They allow to represent

predicates with more than one argument.

Definition 3.20. A(x, y, z) :=
{Eq(x, ε) ∧ Eq(y, z)} ∨ {Eq(y, ε) ∧ Eq(x, z)}∨
{Eq(x, y) ∧ ¬Eq(x, ε)∧
∃uv [Idxu ∧Opt(u, x) ∧ Sim(u, z) ∧�(r(v)↔ r(x) ∨ r(z) ∨ r(u))]}∨

{¬Eq(x, y) ∧ ¬Eq(x, ε) ∧ ¬Eq(y, ε)∧
∃uv [Idxu ∧Opt(u, x) ∧Ord(u, y) ∧ Sim(u, z)∧

�(r(v)↔ r(x) ∨ r(y) ∨ r(z) ∨ r(u))]},

M(x, y, z) :=
{Eq(x, ε) ∧ Eq(z, ε)} ∨ {Eq(y, ε) ∧ Eq(z, ε)}∨
{S(ε, x) ∧ Eq(y, z)} ∨ {S(ε, y) ∧ Eq(x, z)}∨
{Eq(x, y) ∧ ¬Eq(x, ε) ∧ ¬S(ε, x)∧
∃uv [Idxu ∧Opt(x, u) ∧ Sim(z, u) ∧�(r(v)↔ r(x) ∨ r(z) ∨ r(u))]}∨

{¬Eq(x, y) ∧ ¬Eq(x, ε) ∧ ¬Eq(y, ε) ∧ ¬S(ε, x) ∧ ¬S(ε, y)∧
∃uv [Idxu ∧Opt(x, u) ∧Ord(y, u) ∧ Sim(z, u)∧
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�(r(v)↔ r(x) ∨ r(y) ∨ r(z) ∨ r(u))]}.

Once we have represented two predicates of three arguments by the means
of our sole unary predicate symbol r (it was the harder to provide than what
follows), we can endow these formulæ to represent addition and multiplica-
tion, in the expected way, by postulating the following ν3 on them.

Definition 3.21. Let ν3 is conjuntion of ν2 and the following conditions
(the usual primitive recursive definitions for addition and multiplication in
our representation):

(1) ∀xy(N(x)∧N(y)→ ∃!Eqz(N(z)∧A(x, y, z))∧∃!Eqw(N(w)∧M(x, y, w))),
where ∃!Eq is to understand regarding Eq as equality,

(2) ∀x(N(x)→ A(ε, x, x)),
(3) ∀xyzvw(N(x) ∧N(y) ∧N(z) ∧N(v) ∧N(w)∧

S(x, y) ∧A(x, z, v) ∧ S(v, w)→ A(y, z, w)),
(4) ∀x(N(x)→M(ε, x, ε)),
(5) ∀xyzvw(N(x) ∧N(y) ∧N(z) ∧N(v) ∧N(w)∧

S(x, y) ∧M(x, z, v) ∧A(v, z, w)→M(y, z, w)).

Definition 3.22. Let AI and MI express the meaning of A and M , resp.,
on ID.

For example, for d1, d2, d3 ∈ ID1, we write also AI([d1]ρ, [d2]ρ, [d3]ρ) for
(Qn,J), I,

(
x y z
d1d2d3

)
, q 
 A(x, y, z), and similar applies to MI .

Statement 3.23. If (Qn,J), I,Θ, q 
 ν3 then (NI , OI , SI , AI ,MI) is iso-
morphic to (N, <, succr,+r, ∗r), where succr = {(n, n+ 1) : n ∈ N},
+r = {(k, l,m) ⊆ N3 : k+ l = m}, and ∗r is {(k, l,m) ⊆ N3 : k · l = m}. The
isomorphism can be given by ψ : N→ ID, where ψ(k) = skI(Θ(ε)).

This follows from the following and similar facts. For any k, l,m ∈ N, the
conditions k + l = m and AI(skI(Θ(ε)), slI(Θ(ε)), smI (Θ(ε)) are equivalent.
The last fact can be verified by Lemma 3.19 and induction on k and l,
taking into account that on (N, <, succr) only the functions of addition and
multiplication satisfy their defining primitive recursive equations. We omit
the routine details.

3.5. Translation of true arithmetics into our theory

In this subsection, the proof is finished by the standard way of non-axioma-
tizability proofs of first-order temporal theories. The only difference is that
consistency is not straightforward because of the rather complex way of
representing the three-argument predicate symbols.
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Theorem 3.24. There exist a temporal interpretation for TLGNL on the
time flow (Qn,J), a rational point q ∈ Qn and a valuation Θ in I such that
(Qn,J), I,Θ, q 
 ν3.

Proof. We supply only the asked I, q and Θ and leave checking for satis-
faction of ν3 to the reader. q will be specified as (0, . . . , 0). Let DI be the
set

Qn ∪ {D}∪
{Ak,l,m : k + l = m, k 6= 0, l 6= 0, k 6= l} ∪ {A=

k,m : k + k = m, k 6= 0}∪
{Mk,l,m : k · l = m, k > 1, l > 1, k 6= l} ∪ {M=

k,m : k · k = m, k > 1},

where D and the other objects are just formal symbols.

The interpretation Ipt is defined via its value on predicate symbol r (no
other symbol in L). We write shortly rt for Ipt (r). rt can be defined via the
definition for the truth values rt(d), for arbitrary d ∈ DI .

if d = q ∈ Qn then rt(q) = (t = q),

if d = D then rt(D) = (∃m ≥ 1) t = (0, . . . , 0, 2m),

if d = Ak,l,m for k, l,m ∈ N satisfying k + l = m, k 6= 0, l 6= 0, k 6= l then

rt(Ak,l,m) = t ∈ {(0, . . . , 0, k), (0, . . . , 0, l), (0, . . . , 0,m),(
−
∣∣k

2 −
l
2

∣∣ + 1
4 , 0, . . . , 0,

k
2 + l

2 + 1
4

)
},

if d = A=
k,m for k,m ∈ N satisfying k + k = m, k 6= 0, then

rt(A
=
k,m) = t ∈ {(0, . . . , 0, k), (0, . . . , 0,m),

(
−1

4 , 0, . . . , 0, k + 1
4

)
},

if d = Mk,l,m for k, l,m ∈ N satisfying k · l = m, k ≥ 2, l ≥ 2, k 6= l then

rt(Mk,l,m) = t ∈ {(0, . . . , 0, k), (0, . . . , 0, l), (0, . . . , 0,m),(∣∣ l
2 −

k
2

∣∣ + 1
4 , 0, . . . , 0,

l
2 + k

2 + 1
4

)
},

if d = M=
k,m for k,m ∈ N satisfying k · k = m, k 6= 0, then

rt(M
=
k,m) = t ∈ {(0, . . . , 0, k), (0, . . . , 0,m),

(
1
4 , 0, . . . , 0, k + 1

4

)
}.

The valuation Θ can be determined by setting Θ(α), Θ(ε), Θ(γ), Θ(δ) to
(0, . . . , 0), (0, . . . , 0, 1), (1

2 , 0, . . . , 0,
3
2) and Θ(δ) = D, respectively.

Definition 3.25. For any first-order formula A in the signature of

(N, <, succr,+r, ∗r) (somewhat loosely, we does not differ the predicate sym-
bol from the corresponding interpreting relation), we give a translation At

into TLGNL0
, by structural induction, as follows. We assume that the variables

of the arithmetical language are that of L excluding {α, γ, δ, ε}.
(x < y)t = O(x, y) (= Betw(α, x, y)),

(succr(x, y))t = S(x, y), where S is defined in 3.16,

(+r(x, y, z))t = A(x, y, z), where A is defined in 3.20,

(∗r(x, y, z))t = M(x, y, z), where M is defined in 3.20,
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(A ∧B)t = (At ∧Bt), (¬A)t = ¬At and

(∀xA)t = ∀x(N(x)→ At).

Definition 3.26. Assume that I is a temporal interpretation for TLGNL on
the time flow (Qn,J) which also satisfies ν3, and Θ is a valuation in I. We
associate a valuation Σ⊕Θ of the variables of that temporal language in I,
to every valuation Σ of the variables of the arithmetical language into N.

Values for α, γ, ε, δ come from Θ, that is, for example, (Σ⊕Θ)(α) = Θ(α),

while the other variables gets value (Σ ⊕ Θ)(x) = s
Σ(x)
I (Θ(ε)), where sI is

described in the proof of 3.19.

Lemma 3.27. Let us assume that I is a temporal interpretation for TLGNL
on the time flow (Qn,J), q ∈ Qn, Θ is a valuation in I such that

(Qn,J), I,Θ, q 
 ν3, further, that A is a first-order formula in the language
of (N, <, succr,+r, ∗r) and Σ is a valuation of the variables of this language
into N. Then we have

(N, <, succr,+r, ∗r) |= AΣ if and only if (Qn,J), I,Σ⊕Θ, q 
 At.

Proof. By induction on the complexity of the arithmetical formula A. For
atomic formulæ , this follows from Statement 3.23. For ∧-formulae and ¬-
formulae this is a trivial consequence of the induction hypotheses, while, for
∀xB, it is enough to consider that ID is exhausted by {skI(Θ(ε)) : k ≥ 0}
(Statement 3.19).

Lemma 3.28. If A is a closed first-order formula in the language of

(N, <, succr,+r, ∗r) then we have A ∈ Th (N, <, succr,+r, ∗r) if and only if
∀αδγε(ν3 → At) ∈ ThGNL0

(Qn,J), where Th K denotes the first-order theory
of structure K.

Proof. We can prove this by specializing the previous lemma to Σ = (),
remembering that there exist I, Θ, q ∈ Qn such that (Qn,J), I,Θ, q 
 ν3,
and observing that the left side of equivalence in the previous lemma is
independent of I, Θ and q.

Finishing the proof of Theorem 2.12. If ThGNL0
(Qn,J) would be recursively

enumerable then

ThGNL0
(Qn,J) ∩ {∀αδγε (ν3 → At)|A is an arithmetical formula} would be

recursively enumerable, too. This is impossible by the previous lemma.

Proof of Theorem 2.14. The proof of Theorem 2.12 goes through also
for (Rn,J), even with the following simplification. In [18] an equidistance
formula was presented in the first-order theory of (Rn,J). In our main
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lemma 3.19, we could simply require that for all three neighbour elements
a, b, c ofNI satisfies that the distance between a and b is equal to the distance
of b and c. All the other parts of that proof can be taken directly.

The proof of Theorem 2.13 in [43] depends on the observation that over
a time flow whose first-order theory is ω-categorical and recursively enumer-
able, arbitrary first-order temporal theory is axiomatizable. The proof of
Theorem 2.13 in the same report is a modification of our proof of Theorem
2.12 without a possible definition for equidistance or even betweenness in
(R2,J) but employ another method (which also applies for higher dimen-
sional cases of Rn but not for Qn.

4. Final suggestions

We have proved non-axiomatizability of a first-order spatio-temporal theory
over (Qn,J) (n > 2). What is the situation, if we restrict our temporal
operator set to a more simple one, for example, to a single future operator
or allowing its past counterpart, too.

Over (R, <), no non-axiomatizability proof for monadic signature first-order
temporal logic is present in the literature. One could produce a similar
representation over the reals, to prove non-axiomatizability of ThFPL0

(R, <),
for our signature L0 having only one unary predicate symbol.

Further, the first-order theory of (Qn,J) is probably not ω-categorical. Is it
yet decidable? Concerning the first-order theory of (Rn,J), we know that it
is decidable, through translating into real arithmetics. Can we do it faster?
For example, is the first-order theory of (Rn,J) quantifier eliminable?
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[4] Andréka, H., Németi, I., Sain, I., On the strength of temporal proofs, Theo. Comp.

Sci. 80(1991):125–15.1

[5] Ax, J., P., The elementary foundations of spacetime, Found. Phys. 8/7-8(1978):507–

546.



On first-order spatio-temporal theories 19

[6] Balbiani, P., Condotta, J.-F., Computational complexity of propositional linear

temporal logics based on qualitative spatial or temporal reasoning, in: A. Armando(ed):

Proc. of Frontiers of Combining Systems (ProCoS 2002) vol. 2309 of LNCS.

[7] Balbiani, P., Goranko, V., Modal logics of parallelism, orthogonality and affine

geometries, J. of Applied Non-Classical Logics 12/3-4(2002):365–398.

[8] Bacchus, F., Kabanza, F., Using temporal logic to express search and control knowl-

edge for planning, Artif. Intelligence 116/1-2(2000):123–191.

[9] Bennett, B., Cohn, A., Multi-dimensional modal logic as a framework for spatio-

temporal reasoning, Proc. of the Hot Topics in Spatio-Temporal Reasoning Workshop,

IJCAI’99, Stockholm, 1999.

[10] van Benthem, J., The logic of time,, Reidel, Synthese Library 156, 1983.

[11] Clarke, E., Browne, M., Emerson, E., Sistla, A., Using temporal logic for formal

verification of finite state systems, in: Logics and models of concurrent systems, 1985,

NATO ASI series, vol. F13.

[12] Charron-Bost, B., Mattern, F., Synchronous, asynchronous and causally ordered

communication, Distributed Computing 9(1996):173–191.

[13] Clarke, E., Emerson, E., Sistla, A., Automatic verification of finite-state concur-

rent systems using temporal logic specifications, ACM Toplas 8(1986):244–263.

[14] Dragalin, A. G., Lecture Notes on Logic and Automata, Debrecen, 1997.

[15] gabbay, D., Hodkinson, I., Reynolds, M., Temporal logic, Clarendon Press, 1994.

[16] Gerevini, A., Nevel, B., Qualitative spatio-temporal reasoning with rcc-8 and Allen’s

interval calculus: computational complexity, Proc. of the 15th European Conf. on

Artif. Int. (ECAI’02) pp. 312–316, IOS Press, 2002.

[17] Goldblatt, R., Diodorean modality in Minkowski space, Studia Logica,

39(1980):219–236.

[18] Goldblatt, R., Orthogonality and spacetime geometry, Springer, 1987.

[19] Goldblatt, R., First-order spacetime geometry, in: Logic, methodology and phi-

losophy of science, VIII (Moscow, 1987) pp.303–316, Stud. Logic Found. Math. 126,

North-Holland, 1989.

[20] Hodkinson, I., Wolter, F. and Zakaryashev, M. On decidable fragments of first-

order temporal logics, Annals of Pure and Applied Logic 106:85-134(2000)

[21] Hughes,G., E. and Creswell, M., An Introduction to Modal Logic, London,

Methuen, 1968.

[22] Madarász, J. X., Németi, I., Székely, G.,
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