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The Hausdorff property, a rather abstract topological separation prop-
erty, has been a hotly debated topic in some foundational quarters in general
relativity as well as in the agency theory (a field of modal logic), there hav-
ing been virtually no connection between the two disciplines. The property
says that for any two distinct points in a topological space there is a pair
of non-overlapping open neighborhoods of these points. Nowadays a GR
spacetime is typically identified with a Hausdorff manifold, yet, in the 1970’s
discoveries of various causal anomalies of GR spacetimes prompted some
physicists to investigate non-Hausdorff spacetimes—see e.g. Hajicek (1971).
As it turned out subsequently, non-Hausdorff GR spacetimes have some non-
desirable properties (for an overview, see Earman (2008)), which helped to
coin the current standard “GR space-time = Hausdorff manifold”. The dy-
namics in the agency theory has gone in a different direction, partly because
this enterprise aims at modeling actions in non-deterministic contexts. After
Belnap (1992) extended the theory to capture spatial and special-relativistic
aspects, a question emerged what an object’s life-line look like if a chancy
event (say, a coin toss) occurs at a remote location: is there (1) the last
moment before a result of tossing, or (2) the first moment after each result?
Belnap’s (1992) axioms imply answer (2), which in turn entails a failure of
the Hausdorff property in an associated topology.

The aim of this paper is to develop a theory of generalized manifolds,
which is, on the one hand, friendly towards indeterminism and, on the other,
sensitive to the topological constraints of GR. For a similar approach, see
Muller (2011).

In contrast to the standard construction of differential manifolds, our
point of departure is not a “naked” set, but a set, call it W , equipped with
a pri-order 2 (to allow for “loops”) and satisfying some further constraints,
which imply two important features: (1) each e ∈ W is in at least one
“patch” O ⊆ W , in which the ordering 2|O is partial, and (2) if a chain
C in some patch O is upper bounded in O by some e ∈ O, then there is a
unique minimum m = min{z ∈ O | C 2|O z ∧ z 2|O e} of C’s upper bounds
below e. This ultimately leads to the notion of a “splitting pair”, i.e., two
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distinct minima of two (different) sets of upper bounds of some chain in some
patch; the idea is to capture an intuitive concept of a bifurcating path. We
use splitting pairs to define global consistency: e, e′ ∈ W are said to be g-
consistent iff there is no splitting pair {x, x′} such that x 2 e and x′ 2 e′.
Finally, histories are defined as maximal pairwise g-consistent subsets of W .
Note that any two histories branch.

With the notion of history at hand, we proceed to construct a (gener-
alized) smooth differential manifold on W , modifying the Geroch-Malament
approach (see Malament (2012)) to a context with many histories (space-
times). The modification concerns charts: as expected, a chart is a pair
〈O, ϕ〉, where O is a patch and ϕ : O → Rn but the usual requirement
that ϕ is injective and that ϕ[O] is an open subset of Rn is restricted to
nonempty intersections O ∩ H (for each history H). That is, ϕ|O∩H should
be injective and ϕ[O ∩ H] should be an open subset of Rn. The notion of
consistency of charts is similarly modified. A generalized manifold is then
identified with set W paired with a maximal set of consistent charts (= at-
las). We follow Malament in the definition of a manifold topology T (W ):
S ∈ T (W ) iff ∀p∈S ∃〈O, ϕ〉∈C (p ∈ O ∧ O ⊆ S), where C is the atlas of
charts.

This machinery allows one to prove the following:
(1) T (W ) is generically non-Hausdorff;
(2) each history H ⊆ W is downward closed (wrt 2) and Hausdorff, and
maximally so;
(3) each subset A ⊆ W that is maximal wrt the Hausdorff property and
being downward closed is identical to some history H ⊆ W .

These results permit the identification of our histories and GR spacetimes,
we believe. With this identification, our generalized manifold is a collection
of branching GR spacetimes, each spacetime representing a maximal possible
course of events.
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