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I Introduction

•We seek to lift Gandy’s analysis of machines or mechanisms to the
relativistic computational context.
Gandy’s motivation was to provide an argument, even a theorem, that what
was mechanistically calculable was Turing machine computable.

•We have seen various models from the 1980’s (Etesi-Nemeti) and the
1990’s (Pitowski, Hogarth) that allow for causal pasts of an observer r1 to
contain world lines of infinite proper time length of another observer, r0, or
computing device, in its past.

• This allows, via appropriate signalling, results of what would normally
take an infinite amount of time to decide, such as a universally quantified
∀kP(k) with P(k) a recursive predicate, to be decided, by searching through
P(0),P(1), . . . for a counterexample. If and when one is found, for r0 may
signal ‘ahead’ to r1 that such had been found. The infinite proper time of r0’s
world line might correspond to lunch-time for r1, and after lunch r1 may
have received no signal, and thus know that there is no counterexample to
∀kP(k).
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• Hogarth 1 argued that one might stack up Turing machines 〈Tk | k < n〉 in
a particular Riemannian manifold where each machine Tk was headed off to
a singularity along a path of infinite proper time length in an open region Ok,
but which path was completely contained in the causal past of an observer pk

- also in Ok. This was called an “SAD-region”) . Just as on the last slide, this
allows pk toknow after some finite measure of its time, whether a search that
took an infinite amount of Tk’s time was or was not successful. Then pk

might signal forwards to the next observer controlling Tk+1 to initiate a
subsequent computation.

• As Hogarth observed this allows for the calculation or decision of any Σn

statement of arithmetic, or put otherwise, whether Q(l) may hold for any
l < ω and Q a Σn-predicate.

• He further suggested stacking infinitely many such regions to calculate any
arithmetic question (“AD-regions”).

1“Does General Relativity allow an observer to view an eternity in a finite time?”,
Foundations of Physics Letters ”, 1992, vol. 5.
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•We argued that this can be carried further2. We make two assumptions:

Assumption 1 The open regions Oj are disjoint;
Assumption 2 (“No swamping”) No observer or part of the machinery of
the system has to send or receive infinitely many signals.

•We may then generalise these arguments to regions that contain SAD-
components arranged in a pattern of a (recursive) finite path trees.

In the recursive case, this would allow one for any hyperarithmetic predicate
Q(n) to devise an MH-spacetime where it could be decided. (Such
predicates can be thought of as Σ0

α predicates for recursive ordinals α.)

2P.D. Welch, “Turing Unbound: the extent of computation in Malament-Hogarth
spacetimes”, British Journal for the Philosophy of Science ”, 2008 , vol. 59
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A universal constant w(M) for such calculations

Definition
LetM = (M, gab) be a spacetime. We define w(M) to be the least ordinal η
so thatM contains no SAD region whose underlying tree structure has
ordinal rank η.

• Note that 0 ≤ w(M) ≤ ω1
(0 = w(M) implies thatM contains no SAD regions whatsoever, that is, is
not MH);
• The upper bound is for the trivial reason that every finite path tree is a
countable object and so cannot have uncountable ordinal rank.

Proposition
For any spacetimeM, w(M) < ω1.

• Our universeM0 then may or may not have 0 < w(M0).
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Question: Can we argue that any means of computing in such a spacetime
can only answer questions at the Σ0

w(M)-level?

Question: In particular can we argue that any means of computing in such a
hyperarithmetically deciding spacetime can only answer hyperarithmetic
questions?

(In the latter spacetimes w(M) = ωck
1 - the first non-recursive ordinal.)
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II Gandy’s Thesis P0

We model an answer on an argument of Gandy’s. He there suggested a
mechanistic thesis:

Thesis M0: What can be calculated by a machine is computable.

This is too general stated, hence some assumptions are needed:

(1) essentially analogue machines are excluded;
(2) the progress of calculation by a mechanical device is assumed to be
discrete;
(3) the device is deterministic.
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He articulates then four Principles for Mechanisms (I)− (IV), and then:

Thesis P0: A discrete deterministic device satisfies (I)-(IV).

and will argue for:

Theorem (Gandy)
What can be calculated by a device satisfying (I)-(IV) is Turing computable.



III The Németi\MH-context

If we fix anM with w(M) = η we may likewise formulate Principles
(1)η-(4)η by analogy to his (I)-(IV), and state:

Thesis Pη: A discrete deterministic device operating in an manifoldM with
w(M) = η, satisfies (1)η-(4)η ..

And then argue for

Theorem
What can be calculated by a device satisfying (1)η-(4)η is computable by
Turing machines in a generalised SADη region ofM where η < w(M).
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State Descriptions

• Fix anM with w(M) = η = ωck
1 - the first non-recursive ordinal - as a

starting example. (The account below works for α any countable admissible
ordinal.)

• The predicates decidable inM are then the hyperarithmetic sets of
integers.
• Gandy assumes (and we shall too) that the action of a machine is described
by describing the sequence S0, S1, . . . , Sk, . . . of its states for k < ω.
• For Gandy a state as a finite description reflects the ‘actual, concrete
structure of the device in a given state’.
• G. gave a schematic description of states of the machine in terms of labels
that might label cogs, beads, electrodes, cells of a Turing tape or whatever
the device consisted of. Labels, from a potentially infinite set L, might be
built up into hereditary finite sets to form structures.
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Structures

Definition
HF0 =df ∅; HFn+1 =df Pfin( HFn ∪L); HF =

⋃
{HFn | n ∈ N} ∪ {∅}.

Here Pfin(X) is the set of finite subsets of X. A set s in some HFn is thought
of as a structure, and variables r, s, t, u, . . . vary over HF or subsets of HF.
Variables a, b, c, l, . . . refer to labels.



We shall be taking metafinite descriptions and structures, and be assuming a
label space as follows:

Definition
We let L = {lα | α < ω1} be a set of indexed labels with lα =df 〈0, α〉.
(ii) A metafinite set of labels is a set K ∈ P(L) ∩ Lω1 .
(iii) A metafinite set is a set K ∈ Lω1 .

Definition
For any metafinite x, we define supp(x) =df {l | l ∈ x ∨ ∃y ∈ x(l ∈ supp(y)}.
This is a definition by transfinite recursion; supp(x) is then also metafinite
and we define the rank of x, rk(x) =df rk(supp(x)).

Definition
If A ⊆ L then x � A =df (x ∩ A) ∪ {y � A | y ∈ x ∧ supp(y) ∩ A 6= ∅}.
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• The next state of a machine is determined by a transition function F which
determines the description F(x) from the previous state x. Such transition
functions may require the use of new labels (for example when a TM
requires a new cell on the tape, or a cellular automaton builds a clutch of
new cells). However no physical significance is attributed to the new labels.
We require that objects in the state x, if they persist into the next state F(x),
will retain the same labels.



Structures and Stereotypes

(1) We let π : L −→ L be any permutation (any meta-recursive permutation)
of L. The effect of π on a structure a is defined by aπ =df π(a) for a ∈ L;
for x a structure xπ =df {yπ | y ∈ z} ∪ {aπ | a ∈ x}.

(2) Two structures are isomorphic over a set A of labels, if:

x 'A y⇐⇒df ∃π[π � A = id � A ∧ xπ = y].

We write x ' y for x '∅ y. Note that x 'A y −→ x � A = y � A.
(3) A property P of structures is structural iff {x | P(x)} is closed under
isomorphism.
(4) For X a set of (meta)finite structures, is called a stereotype iff

∃x[X = {y | y ' x}].

(5) A function F : HF −→ HF (F : MF −→ MF) is structural iff for all π

(F(x))π 'xπ F(xπ).
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Principle (1) (and (1)η)

Principle (1) (and (1)) η Any machine M can be described by giving a
structural set SM ⊆ HF (MF) of state descriptions together with a
(meta-)recursive structural function F : SM −→ SM . If x0 ∈ SM describes an
initial state then F(x0),F(F(x0)),F(F(F(x0))), . . . ,F(k)(x0), . . . describes
the successive states for k < ω.



Boundedness Conditions

Principle (2) (and (2)η) The set S = SM of state descriptions is contained in
HFk for some k < ω ( is metafinite).

• The Principle (3) (and (3)η) will also be a boundedness condition and will
have the effect that any device can be assembled from a (meta)finite set of
parts of (meta)finite size, and that the parts can be labelled so that there is a
unique way of putting them together. First we have to define parts of a
device, and say what it means for a device to be reassembled from those
parts.
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Parts of a device

Definition
Let P ⊆ HF (MF) ∪ L.
(i) The set of parts of x from the list P, Part(x,P) is defined by:
Part(x,P) = {{x}}if x ∈ P

=
⋃
{Part{y,P} | y ∈ x} ∪ (x ∩ P ∩ L) otherwise.

(ii) The restriction of x to the list of parts P, x � P , is defined as follows:
x � P = x if x ∈ P

= {y � P | y ∈ x ∧ Part(y,P) 6= ∅} ∪ (x ∩ P ∩ L) otherwise.
(iii) The list P covers x if x � P = x; if additionally P ⊆ TC({x}) then P is a
set of parts for x.



Principle (3) (and (3)η)

Definition
Let Q ⊆ P(TC(x)). The structure x can be uniquely reassembled from the
set Q of sub-assemblies iff x is the unique object y satisfying
(i) y ∈ HF (MF) ; (ii)

⋃
Q covers y; (iii) ∀T ∈ Q(x � T = y � T).

Principle (3) (and (3)η) There is a bound χ < ω (ω1) and for each x ∈ S a
(meta)finite set Q ⊆ P(TC(x)) from which x can be uniquely reassembled,
and such that rk(T) < χ for each T ∈ Q.
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Principle of Local Causation

Principle (4) (and (4)η) (Approximate Version) The next state, F(x), of a
machine can be reassembled from its restrictions to overlapping “regions” s,
and these restrictions are locally caused. That is for each “determined
region” s of F(x) there is a “causal neighbourhood” t ⊆ TC(x) of bounded
size such that F(x) � s depends only on x � t.



This splits into cases:
Case 1: supp(F(x)) ⊆ supp(x)
Case 2: Otherwise.
Thus depending on whether the transition function requires new labels for its
description or not.

• One needs to define “causal neighbourhoods” of x and “determined
regions” of F(x), and in particular deal with overlapping determined
regions of F(x).



The final conclusions

• A key Lemma shows that if the structural function fixing determined
regions requires only boundedly many (metafinitely many) new labels, then
the stereotypes of the determined region structures are unique.

• This allows Gandy to conclude that the calculation the device is
performing amount to just bounded searches that Turing computable.

• For the our case the searches are metafinitely bounded, hence are
essentially hyperarithmetic questions, and thus we know can be decided in
any spacetime withM = ω1.
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