Gandy's Thesis and Relativistic Computation; in honour of István Németi's 70'th Birthday

P.D. Welch, September 10, 2012.

Gandy's Thesis and Relativistic Computation

- I Introduction
- II Gandy's Principles for Mechanisms
- III The Nemeti/Malament-Hogarth Context

I Introduction

• We seek to lift Gandy's analysis of machines or mechanisms to the relativistic computational context.

Gandy's motivation was to provide an argument, even a theorem, that what was mechanistically calculable was Turing machine computable.

I Introduction

• We seek to lift Gandy's analysis of machines or mechanisms to the relativistic computational context.

Gandy's motivation was to provide an argument, even a theorem, that what was mechanistically calculable was Turing machine computable.

• We have seen various models from the 1980's (Etesi-Nemeti) and the 1990's (Pitowski, Hogarth) that allow for causal pasts of an observer r_1 to contain world lines of infinite proper time length of another observer, r_0 , or computing device, in its past.

I Introduction

• We seek to lift Gandy's analysis of machines or mechanisms to the relativistic computational context.

Gandy's motivation was to provide an argument, even a theorem, that what was mechanistically calculable was Turing machine computable.

• We have seen various models from the 1980's (Etesi-Nemeti) and the 1990's (Pitowski, Hogarth) that allow for causal pasts of an observer r_1 to contain world lines of infinite proper time length of another observer, r_0 , or computing device, in its past.

• This allows, via appropriate signalling, results of what would normally take an infinite amount of time to decide, such as a universally quantified $\forall kP(k)$ with P(k) a recursive predicate, to be decided, by searching through $P(0), P(1), \ldots$ for a counterexample. If and when one is found, for r_0 may signal 'ahead' to r_1 that such had been found. The infinite proper time of r_0 's world line might correspond to lunch-time for r_1 , and after lunch r_1 may have received no signal, and thus know that there is no counterexample to $\forall kP(k)$.

• Hogarth ¹ argued that one might stack up Turing machines $\langle T_k | k < n \rangle$ in a particular Riemannian manifold where each machine T_k was headed off to a singularity along a path of infinite proper time length in an open region O_k , but which path was completely contained in the causal past of an observer p_k - also in O_k . This was called an "SAD-region"). Just as on the last slide, this allows p_k toknow after some finite measure of its time, whether a search that took an infinite amount of T_k 's time was or was not successful. Then p_k might signal forwards to the next observer controlling T_{k+1} to initiate a subsequent computation.

¹ "Does General Relativity allow an observer to view an eternity in a finite time?", Foundations of Physics Letters ", 1992, vol. 5.

• Hogarth ¹ argued that one might stack up Turing machines $\langle T_k | k < n \rangle$ in a particular Riemannian manifold where each machine T_k was headed off to a singularity along a path of infinite proper time length in an open region O_k , but which path was completely contained in the causal past of an observer p_k - also in O_k . This was called an "SAD-region"). Just as on the last slide, this allows p_k toknow after some finite measure of its time, whether a search that took an infinite amount of T_k 's time was or was not successful. Then p_k might signal forwards to the next observer controlling T_{k+1} to initiate a subsequent computation.

• As Hogarth observed this allows for the calculation or decision of any Σ_n statement of arithmetic, or put otherwise, whether Q(l) may hold for any $l < \omega$ and Q a Σ_n -predicate.

¹ "Does General Relativity allow an observer to view an eternity in a finite time?", Foundations of Physics Letters ", 1992, vol. 5.

• Hogarth ¹ argued that one might stack up Turing machines $\langle T_k | k < n \rangle$ in a particular Riemannian manifold where each machine T_k was headed off to a singularity along a path of infinite proper time length in an open region O_k , but which path was completely contained in the causal past of an observer p_k - also in O_k . This was called an "*SAD*-region"). Just as on the last slide, this allows p_k toknow after some finite measure of its time, whether a search that took an infinite amount of T_k 's time was or was not successful. Then p_k might signal forwards to the next observer controlling T_{k+1} to initiate a subsequent computation.

• As Hogarth observed this allows for the calculation or decision of any Σ_n statement of arithmetic, or put otherwise, whether Q(l) may hold for any $l < \omega$ and Q a Σ_n -predicate.

• He further suggested stacking infinitely many such regions to calculate any arithmetic question ("*AD*-regions").

¹ "Does General Relativity allow an observer to view an eternity in a finite time?", Foundations of Physics Letters ", 1992, vol. 5.

• We argued that this can be carried further². We make two assumptions:

Assumption 1 The open regions O_j are disjoint; **Assumption 2** ("No swamping") No observer or part of the machinery of the system has to send or receive infinitely many signals.

²P.D. Welch, "*Turing Unbound: the extent of computation in Malament-Hogarth spacetimes*", British Journal for the Philosophy of Science ", 2008, vol. 59

• We argued that this can be carried further². We make two assumptions:

Assumption 1 The open regions O_j are disjoint; **Assumption 2** ("No swamping") No observer or part of the machinery of the system has to send or receive infinitely many signals.

• We may then generalise these arguments to regions that contain *SAD*-components arranged in a pattern of a (*recursive*) *finite path trees*.

²P.D. Welch, "*Turing Unbound: the extent of computation in Malament-Hogarth spacetimes*", British Journal for the Philosophy of Science ", 2008, vol. 59

• We argued that this can be carried further². We make two assumptions:

Assumption 1 The open regions O_j are disjoint; **Assumption 2** ("No swamping") No observer or part of the machinery of the system has to send or receive infinitely many signals.

• We may then generalise these arguments to regions that contain *SAD*-components arranged in a pattern of a (*recursive*) *finite path trees*.

In the recursive case, this would allow one for any *hyperarithmetic* predicate Q(n) to devise an MH-spacetime where it could be decided. (Such predicates can be thought of as Σ^0_{α} predicates for recursive ordinals α .)

²P.D. Welch, "*Turing Unbound: the extent of computation in Malament-Hogarth spacetimes*", British Journal for the Philosophy of Science ", 2008, vol. 59

A universal constant $w(\mathcal{M})$ for such calculations

Definition

Let $\mathcal{M} = (M, g_{ab})$ be a spacetime. We define $w(\mathcal{M})$ to be the least ordinal η so that \mathcal{M} contains no SAD region whose underlying tree structure has ordinal rank η .

• Note that $0 \le w(\mathcal{M}) \le \omega_1$

 $(0 = w(\mathcal{M})$ implies that \mathcal{M} contains no SAD regions whatsoever, that is, is not MH);

• The upper bound is for the trivial reason that every finite path tree is a countable object and so cannot have uncountable ordinal rank.

A universal constant $w(\mathcal{M})$ for such calculations

Definition

Let $\mathcal{M} = (M, g_{ab})$ be a spacetime. We define $w(\mathcal{M})$ to be the least ordinal η so that \mathcal{M} contains no SAD region whose underlying tree structure has ordinal rank η .

• Note that $0 \le w(\mathcal{M}) \le \omega_1$

 $(0 = w(\mathcal{M})$ implies that \mathcal{M} contains no SAD regions whatsoever, that is, is not MH);

• The upper bound is for the trivial reason that every finite path tree is a countable object and so cannot have uncountable ordinal rank.

Proposition

For any spacetime $\mathcal{M}, w(\mathcal{M}) < \omega_1$.

A universal constant $w(\mathcal{M})$ for such calculations

Definition

Let $\mathcal{M} = (M, g_{ab})$ be a spacetime. We define $w(\mathcal{M})$ to be the least ordinal η so that \mathcal{M} contains no SAD region whose underlying tree structure has ordinal rank η .

• Note that $0 \le w(\mathcal{M}) \le \omega_1$ ($0 = w(\mathcal{M})$ implies that \mathcal{M} contains no SAD regions whatsoever, that is, is not MH);

• The upper bound is for the trivial reason that every finite path tree is a countable object and so cannot have uncountable ordinal rank.

Proposition

For any spacetime $\mathcal{M}, w(\mathcal{M}) < \omega_1$.

• Our universe \mathcal{M}_0 then may or may not have $0 < w(\mathcal{M}_0)$.

Question: Can we argue that any means of computing in such a spacetime can only answer questions at the $\sum_{w(\mathcal{M})}^{0}$ -level?

Question: Can we argue that any *means of computing in such a spacetime can only answer questions at the* $\Sigma^0_{w(\mathcal{M})}$ *-level?*

Question: In particular can we argue that any means of computing in such a hyperarithmetically deciding spacetime can only answer hyperarithmetic questions?

(In the latter spacetimes $w(\mathcal{M}) = \omega_1^{ck}$ - the first non-recursive ordinal.)

II Gandy's Thesis P_0

We model an answer on an argument of Gandy's. He there suggested a mechanistic thesis:

Thesis M_0 : *What can be calculated by a machine is computable.*

This is too general stated, hence some assumptions are needed:

We model an answer on an argument of Gandy's. He there suggested a mechanistic thesis:

Thesis M_0 : *What can be calculated by a machine is computable.*

This is too general stated, hence some assumptions are needed:

(1) essentially analogue machines are excluded;

(2) the progress of calculation by a mechanical device is assumed to be discrete;

(3) the device is deterministic.

He articulates then four *Principles for Mechanisms* (I) - (IV), and then:

Thesis P₀: A discrete deterministic device satisfies (I)-(IV).

and will argue for:

Theorem (Gandy)

What can be calculated by a device satisfying (I)-(IV) is Turing computable.

III The Németi\MH-context

If we fix an \mathcal{M} with $w(\mathcal{M}) = \eta$ we may likewise formulate Principles $(1)_{\eta}$ - $(4)_{\eta}$ by analogy to his (I)-(IV), and state:

Thesis P_{η} : A discrete deterministic device operating in an manifold \mathcal{M} with $w(\mathcal{M}) = \eta$, satisfies $(1)_{\eta}$ - $(4)_{\eta}$.

III The Németi\MH-context

If we fix an \mathcal{M} with $w(\mathcal{M}) = \eta$ we may likewise formulate Principles $(1)_{\eta}$ - $(4)_{\eta}$ by analogy to his (I)-(IV), and state:

Thesis P_{η} : A discrete deterministic device operating in an manifold \mathcal{M} with $w(\mathcal{M}) = \eta$, satisfies $(1)_{\eta}$ - $(4)_{\eta}$.

And then argue for

Theorem

What can be calculated by a device satisfying $(1)_{\eta}$ - $(4)_{\eta}$ is computable by Turing machines in a generalised SAD_{η} region of \mathcal{M} where $\eta < w(\mathcal{M})$.

• Fix an \mathcal{M} with $w(\mathcal{M}) = \eta = \omega_1^{ck}$ - the first non-recursive ordinal - as a starting example. (The account below works for α any countable *admissible ordinal*.)

• Fix an \mathcal{M} with $w(\mathcal{M}) = \eta = \omega_1^{ck}$ - the first non-recursive ordinal - as a starting example. (The account below works for α any countable *admissible ordinal*.)

• The predicates decidable in \mathcal{M} are then the *hyperarithmetic* sets of integers.

• Fix an \mathcal{M} with $w(\mathcal{M}) = \eta = \omega_1^{ck}$ - the first non-recursive ordinal - as a starting example. (The account below works for α any countable *admissible ordinal*.)

 \bullet The predicates decidable in $\mathcal M$ are then the *hyperarithmetic* sets of integers.

• Gandy assumes (and we shall too) that the action of a machine is described by describing the sequence $S_0, S_1, \ldots, S_k, \ldots$ of its states for $k < \omega$.

• Fix an \mathcal{M} with $w(\mathcal{M}) = \eta = \omega_1^{ck}$ - the first non-recursive ordinal - as a starting example. (The account below works for α any countable *admissible ordinal*.)

 \bullet The predicates decidable in $\mathcal M$ are then the *hyperarithmetic* sets of integers.

• Gandy assumes (and we shall too) that the action of a machine is described by describing the sequence $S_0, S_1, \ldots, S_k, \ldots$ of its states for $k < \omega$.

• For Gandy a state as a finite description reflects the 'actual, concrete structure of the device in a given state'.

• Fix an \mathcal{M} with $w(\mathcal{M}) = \eta = \omega_1^{ck}$ - the first non-recursive ordinal - as a starting example. (The account below works for α any countable *admissible ordinal*.)

 \bullet The predicates decidable in $\mathcal M$ are then the *hyperarithmetic* sets of integers.

• Gandy assumes (and we shall too) that the action of a machine is described by describing the sequence $S_0, S_1, \ldots, S_k, \ldots$ of its states for $k < \omega$.

• For Gandy a state as a finite description reflects the 'actual, concrete structure of the device in a given state'.

• G. gave a schematic description of states of the machine in terms of *labels* that might label cogs, beads, electrodes, cells of a Turing tape or whatever the device consisted of. Labels, from a potentially infinite set *L*, might be built up into hereditary finite sets to form *structures*.

Structures

Definition

 $HF_{0} =_{df} \emptyset; HF_{n+1} =_{df} \mathcal{P}_{fin}(HF_{n} \cup L); HF = \bigcup \{HF_{n} \mid n \in \mathbb{N}\} \cup \{\emptyset\}.$ Here $\mathcal{P}_{fin}(X)$ is the set of finite subsets of *X*. A set *s* in some HF_n is thought of as a *structure*, and variables *r*, *s*, *t*, *u*, ... vary over HF or subsets of HF. Variables *a*, *b*, *c*, *l*, ... refer to labels. We shall be taking *metafinite descriptions* and structures, and be assuming a label space as follows:

Definition

We let $L = \{l_{\alpha} \mid \alpha < \omega_1\}$ be a set of *indexed labels* with $l_{\alpha} =_{df} \langle 0, \alpha \rangle$. (ii) A *metafinite set of labels* is a set $K \in \mathcal{P}(L) \cap L_{\omega_1}$. (iii) A *metafinite set* is a set $K \in L_{\omega_1}$. We shall be taking *metafinite descriptions* and structures, and be assuming a label space as follows:

Definition

We let $L = \{l_{\alpha} \mid \alpha < \omega_1\}$ be a set of *indexed labels* with $l_{\alpha} =_{df} \langle 0, \alpha \rangle$. (ii) A *metafinite set of labels* is a set $K \in \mathcal{P}(L) \cap L_{\omega_1}$. (iii) A *metafinite set* is a set $K \in L_{\omega_1}$.

Definition

For any metafinite *x*, we define $\operatorname{supp}(x) =_{df} \{l \mid l \in x \lor \exists y \in x (l \in \operatorname{supp}(y))\}$. This is a definition by transfinite recursion; $\operatorname{supp}(x)$ is then also metafinite and we define the *rank* of *x*, $\operatorname{rk}(x) =_{df} \operatorname{rk}(\operatorname{supp}(x))$. We shall be taking *metafinite descriptions* and structures, and be assuming a label space as follows:

Definition

We let $L = \{l_{\alpha} \mid \alpha < \omega_1\}$ be a set of *indexed labels* with $l_{\alpha} =_{df} \langle 0, \alpha \rangle$. (ii) A *metafinite set of labels* is a set $K \in \mathcal{P}(L) \cap L_{\omega_1}$. (iii) A *metafinite set* is a set $K \in L_{\omega_1}$.

Definition

For any metafinite *x*, we define $\operatorname{supp}(x) =_{df} \{l \mid l \in x \lor \exists y \in x (l \in \operatorname{supp}(y))\}$. This is a definition by transfinite recursion; $\operatorname{supp}(x)$ is then also metafinite and we define the *rank* of *x*, $\operatorname{rk}(x) =_{df} \operatorname{rk}(\operatorname{supp}(x))$.

Definition

If $A \subseteq L$ then $x \upharpoonright A =_{df} (x \cap A) \cup \{y \upharpoonright A \mid y \in x \land supp(y) \cap A \neq \emptyset\}$.

• The *next state* of a machine is determined by a *transition function* F which determines the description F(x) from the previous state x. Such transition functions may require the use of new labels (for example when a TM requires a new cell on the tape, or a cellular automaton builds a clutch of new cells). *However no physical significance is attributed to the new labels*. We require that objects in the state x, if they persist into the next state F(x), will retain the same labels.

(1) We let $\pi : L \longrightarrow L$ be any permutation (any meta-recursive permutation) of *L*. The effect of π on a structure *a* is defined by $a^{\pi} =_{df} \pi(a)$ for $a \in L$; for *x* a structure $x^{\pi} =_{df} \{y^{\pi} \mid y \in z\} \cup \{a^{\pi} \mid a \in x\}$.

(1) We let π : L → L be any permutation (any meta-recursive permutation) of L. The effect of π on a structure a is defined by a^π =_{df} π(a) for a ∈ L; for x a structure x^π =_{df} {y^π | y ∈ z} ∪ {a^π | a ∈ x}.
(2) Two structures are *isomorphic over a set A of labels, if*:

$$x \simeq_A y \iff_{\mathrm{df}} \exists \pi [\pi \upharpoonright A = \mathrm{id} \upharpoonright A \land x^{\pi} = y].$$

We write $x \simeq y$ for $x \simeq_{\varnothing} y$. Note that $x \simeq_A y \longrightarrow x \upharpoonright A = y \upharpoonright A$.

(1) We let π : L → L be any permutation (any meta-recursive permutation) of L. The effect of π on a structure a is defined by a^π =_{df} π(a) for a ∈ L; for x a structure x^π =_{df} {y^π | y ∈ z} ∪ {a^π | a ∈ x}.
(2) Two structures are *isomorphic over a set A of labels, if:*

$$x \simeq_A y \iff_{\mathrm{df}} \exists \pi [\pi \upharpoonright A = \mathrm{id} \upharpoonright A \land x^{\pi} = y].$$

We write $x \simeq y$ for $x \simeq_{\emptyset} y$. Note that $x \simeq_A y \longrightarrow x \upharpoonright A = y \upharpoonright A$. (3) A property P of structures is structural iff $\{x \mid P(x)\}$ is closed under isomorphism.

(1) We let π : L → L be any permutation (any meta-recursive permutation) of L. The effect of π on a structure a is defined by a^π =_{df} π(a) for a ∈ L; for x a structure x^π =_{df} {y^π | y ∈ z} ∪ {a^π | a ∈ x}.
(2) Two structures are *isomorphic over a set A of labels, if*:

$$x \simeq_A y \iff_{\mathrm{df}} \exists \pi [\pi \upharpoonright A = \mathrm{id} \upharpoonright A \land x^{\pi} = y].$$

We write $x \simeq y$ for $x \simeq_{\varnothing} y$. Note that $x \simeq_A y \longrightarrow x \upharpoonright A = y \upharpoonright A$. (3) A property P of structures is structural iff $\{x \mid P(x)\}$ is closed under isomorphism.

(4) For X a set of (meta)finite structures, is called a stereotype iff

$$\exists x [X = \{y \mid y \simeq x\}].$$

(1) We let π : L → L be any permutation (any meta-recursive permutation) of L. The effect of π on a structure a is defined by a^π =_{df} π(a) for a ∈ L; for x a structure x^π =_{df} {y^π | y ∈ z} ∪ {a^π | a ∈ x}.
(2) Two structures are *isomorphic over a set A of labels, if*:

$$x \simeq_A y \iff_{\mathrm{df}} \exists \pi [\pi \upharpoonright A = \mathrm{id} \upharpoonright A \land x^{\pi} = y].$$

We write $x \simeq y$ for $x \simeq_{\varnothing} y$. Note that $x \simeq_A y \longrightarrow x \upharpoonright A = y \upharpoonright A$. (3) A property P of structures is structural iff $\{x \mid P(x)\}$ is closed under isomorphism.

(4) For X a set of (meta)finite structures, is called a stereotype iff

$$\exists x [X = \{y \mid y \simeq x\}].$$

(5) A function $F : HF \longrightarrow HF$ ($F : MF \longrightarrow MF$) is structural iff for all π

$$(F(x))^{\pi} \simeq_{x^{\pi}} F(x^{\pi}).$$

Principle (1) (and $(1)_{\eta}$)

Principle (1) (and (1)) $_{\eta}$ Any machine M can be described by giving a structural set $S_M \subseteq$ HF (MF) of state descriptions together with a (meta-)recursive structural function $F : S_M \longrightarrow S_M$. If $x_0 \in S_M$ describes an initial state then $F(x_0), F(F(x_0)), F(F(F(x_0))), \ldots, F^{(k)}(x_0), \ldots$ describes the successive states for $k < \omega$.

Boundedness Conditions

Principle (2) (and $(2)_{\eta}$) The set $S = S_M$ of state descriptions is contained in HF_k for some $k < \omega$ (is metafinite).

Boundedness Conditions

Principle (2) (and (2)_{η}) The set $S = S_M$ of state descriptions is contained in HF_k for some $k < \omega$ (is metafinite).

• The Principle (3) (and $(3)_{\eta}$) will also be a boundedness condition and will have the effect that any device can be assembled from a (meta)finite set of parts of (meta)finite size, and that the parts can be labelled so that there is a unique way of putting them together. First we have to define *parts* of a device, and say what it means for a device to be *reassembled* from those parts.

Parts of a device

Definition Let $P \subseteq$ HF (MF) \cup L. (i) The set of parts of x from the list P, Part(x, P) is defined by: Part(x, P) = {{x}} if $x \in P$ $= \bigcup \{Part\{y, P\} \mid y \in x\} \cup (x \cap P \cap L) \text{ otherwise.}$ (ii) The restriction of x to the list of parts P, $x \upharpoonright P$, is defined as follows: $x \upharpoonright P = x \text{ if } x \in P$ $= \{y \upharpoonright P \mid y \in x \land Part(y, P) \neq \emptyset\} \cup (x \cap P \cap L) \text{ otherwise.}$ (iii) The list P covers x if $x \upharpoonright P = x$; if additionally $P \subseteq TC(\{x\})$ then P is a set of parts for x.

Principle (3) (and $(3)_{\eta}$)

Definition

Let $Q \subseteq \mathcal{P}(\mathrm{TC}(x))$. The structure *x* can be *uniquely reassembled* from the set *Q* of sub-assemblies iff *x* is the unique object *y* satisfying (i) $y \in \mathrm{HF}(\mathrm{MF})$; (ii) $\bigcup Q$ covers *y*; (iii) $\forall T \in Q(x \upharpoonright T = y \upharpoonright T)$.

Principle (3) (and $(3)_{\eta}$)

Definition

Let $Q \subseteq \mathcal{P}(\mathrm{TC}(x))$. The structure *x* can be *uniquely reassembled* from the set *Q* of sub-assemblies iff *x* is the unique object *y* satisfying (i) $y \in \mathrm{HF}(\mathrm{MF})$; (ii) $\bigcup Q$ covers *y*; (iii) $\forall T \in Q(x \upharpoonright T = y \upharpoonright T)$.

Principle (3) (and (3)_{η}) *There is a bound* $\chi < \omega(\omega_1)$ *and for each* $x \in S$ *a (meta)finite set* $Q \subseteq \mathcal{P}(\text{TC}(x))$ *from which* x *can be uniquely reassembled, and such that* $\text{rk}(T) < \chi$ *for each* $T \in Q$.

Principle of Local Causation

Principle (4) (and (4) $_{\eta}$) (Approximate Version) *The next state*, F(x), of a machine can be reassembled from its restrictions to overlapping "regions" s, and these restrictions are locally caused. That is for each "determined region" s of F(x) there is a "causal neighbourhood" $t \subseteq TC(x)$ of bounded size such that $F(x) \upharpoonright s$ depends only on $x \upharpoonright t$.

This splits into cases: Case 1: $supp(F(x)) \subseteq supp(x)$ Case 2: Otherwise.

Thus depending on whether the transition function requires new labels for its description or not.

• One needs to define "causal neighbourhoods" of x and "determined regions" of F(x), and in particular deal with overlapping determined regions of F(x).

The final conclusions

• A key Lemma shows that if the structural function fixing determined regions requires only boundedly many (metafinitely many) new labels, then the stereotypes of the determined region structures are unique.

The final conclusions

• A key Lemma shows that if the structural function fixing determined regions requires only boundedly many (metafinitely many) new labels, then the stereotypes of the determined region structures are unique.

• This allows Gandy to conclude that the calculation the device is performing amount to just bounded searches that Turing computable.

The final conclusions

• A key Lemma shows that if the structural function fixing determined regions requires only boundedly many (metafinitely many) new labels, then the stereotypes of the determined region structures are unique.

• This allows Gandy to conclude that the calculation the device is performing amount to just bounded searches that Turing computable.

• For the our case the searches are metafinitely bounded, hence are essentially hyperarithmetic questions, and thus we know can be decided in any spacetime with $\mathcal{M} = \omega_1$.