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Preliminaries
A parallelizable manifold is an n-dimensional C∞ manifoldM which
admits n linearly independent global vector fields

i
λ (i = 1, . . . , n)

on M . Such a space is also known in the literature as a teleparallel
or Absolute Parallelism (AP-) space. Let

i
λµ (µ = 1, . . . , n) be

the coordinate components of the i-th vector field
i
λ. The Einstein

summation convention is applied on both Latin (mesh) and Greek
(world) indices, where all Latin indices are written in a lower position.
The covariant components of

i
λµ are given via the relations

i
λµ

i
λν = δµν , i

λµ
j
λµ = δij. (1)



The canonical connection is defined by

Γαµν :=
i
λα

i
λµ,ν (2)

If “ | ” denotes covariant derivative with respect to the canonical
connection, then

λµ|ν = 0, λµ|ν = 0. (3)

The above relation is known in the literature as the AP-condition.



Let

Λαµν := Γαµν − Γανµ (4)

denote the torsion tensor field of Γαµν. It is of particular importance
to note that the AP-condition together with the commutation formula

λα|µν − λ
α
|νµ = λεRαενµ + λα|εΛενµ

forces the curvature tensor field Rαµνσ of the canonical connection
Γαµν to vanish identically.



There are other three natural (built-in) connections which are non-
flat. Namely, the dual connection

Γ̃αµν := Γανµ, (5)

the symmetric connection

Γ̂αµν :=
1

2
(Γαµν + Γανµ) = Γα(µν) (6)

and the Riemannian connection (Christoffel symbols)
◦
Γαµν :=

1

2
gαε(gεν,µ + gεµ,ν − gµν,ε) (7)

associated to the metric structure defined by

gµν :=
i
λµ

i
λν (8)



The contortion tensor field is defined by

γαµν := Γαµν −
◦
Γαµν =

i
λα

i
λµo| ν

. (9)

The basic vector field Cµ is defined by

Cµ := Λαµα = γαµα (10)

Λαµν = γαµν − γανµ, (11)

γµνσ =
1

2
(Λµνσ + Λσνµ + Λνσµ). (12)



The Generalized Field Theory (GFT) Starting with the Lagrangian

L := gµνLµν := gµν(ΛαεµΛεαν − CµCν), (13)

the authors of the theory, using a certain variational technique, ob-
tained the differential identity

Eµ
ν |̃µ = 0. (14)

Regarding the above identity as representing a certain conserva-
tion law, the field equations of the GFT are taken to be

Eµν = 0; (15)

where

Eµν : = gµνL− 2Lµν − 2(CµCν − Cν|µ) + 2gµν(CεCε − Cε|ε)
− 2(CεΛµεν + gεαΛµνα|ε).

(16)



Considering the symmetric part of (16) and after some intricate
calculations, the Einstein field equations are found to be

Rµν −
1

2
gµνR = Tµν, (17)

in which the energy-momentum tensor Tµν is expressed in terms
of the fundamental second order symmetric tensor fields of Table
1.2 in the form

Tµν :=
1

2
gµν(σ −$)− (σµν −$µν), (18)

where σ and$ are the trace of σµν and$µν respectively. Moreover,

according to (17), Tµν satisfies the conservation law

Tµν o
|µ

= 0. (19)



On the other hand, considering the skew-symmetric part of (16), it
is deduced that the electromagnetic field is expressed as the curl
of the basic vector field Cµ, namely,

Fµν = Cµ,ν − Cν,µ (20)

Moreover, it is given in terms of the fundamental second order
skew-symmetric tensor fields of Table 1.2 in the form

Fµν := γµν − ξµν + ηµν, (21)

In view of (20), Fµν satisfies the (generalized) second Maxwell’s
equation

Fµν o|σ
+ Fνσo|µ

+ Fσµo| ν
= Fµν,σ + Fνσ,µ + Fσµ,ν = 0. (22)



Finally, the tensor density Fµν = |λ|Fµν, |λ| := det|λβ|, is intro-
duced, from which the vector density

J µ := Fµν,ν (23)

is defined. It satisfies the conservation law

J µ,µ = J µ o
|µ

= 0. (24)

Jµ is interpreted as the current density.



The geometry of the tangent bundle:
Let M be a paracompact manifold of dimension n of class C∞. Let

π : TM → M be its tangent bundle. If (U, xµ) is a local chart
on M , then (π−1(U), (xµ, ya)) is the corresponding local chart on
TM . The coordinate transformation on TM is given by:

xµ
′
= xµ

′
(xν), ya

′
= pa

′
a y

a,

µ = 1, . . . , n; a = 1, . . . , n; pa
′
a = ∂ya

′

∂ya = ∂xa
′

∂xa and det(pa
′
a ) 6= 0.



The paracompactness of M ensures the existence of a nonlinear
connection N on TM with coefficients Na

α(x, y). The transforma-
tion formula for the coefficients Na

α is given by

Na′
α′ = pa

′
a p

α
α′N

a
α + pa

′
a p

a
c′α′y

c′, (25)



The nonlinear connection leads to the direct sum decom-

position

Tu(TM) = Hu(TM)⊕ Vu(TM), ∀u ∈ TM \ {0},

(26)

where Vu(TM) is the vertical space at u with local ba-

sis ∂̇a := ∂
∂ya and Hu(TM) is the horizontal space at

u, associated with N , supplementary to Vu(TM), with

local bases δµ := ∂µ −Na
µ ∂̇a.



Definition . The curvature of a nonlinear connection is

given by

Raµν := δνN
a
µ − δµNa

ν (27)

Definition . A nonlinear connection Na
µ is said to be in-

tegrable if Raµν = 0.



Definition . A d-connectionD on TM is a linear connection on TM
which preserves by parallelism the horizontal and vertical distribu-
tion: if Y is a horizontal (vertical) vector field, then DXY is a hori-
zontal (vertical) vector field, for all X ∈ X(TM).

The coefficients of a d-connection D = (Γαµν, Γabν, C
α
µc, C

a
bc) are

defined by

Dδνδµ =: Γαµνδα, Dδν∂̇b =: Γabν∂̇a;

D∂̇cδµ =:Cαµcδα, D∂̇c∂̇b =: Cabc∂̇a. (28)



Definition . An hv-metric on TM is a covariant d-tensor field G :=

hG+vG on TM , where hG := gαβ dx
α⊗dxβ, vG := gab δy

a⊗δyb

such that:

gαβ = gβα, det(gαβ) 6= 0; gab = gba, det(gab) 6= 0.

Definition . A d-connection D on TM is said to be metric or com-
patible with the metric G if

gαβ|µ = gαβ||c = gab|µ = gab||c = 0. (29)



Theorem . For a given hv-metric on TM , there exists a unique met-
ric d-connection

◦
D = (

◦
Γαµν,

◦
Γabν,

◦
Cαµc,

◦
Cabc) on TM with the prop-

erties that

(a)
◦
Γabν := ∂̇bN

a
ν + 1

2 g
ac(δνgbc−gdc ∂̇bNd

ν −gbd ∂̇cNd
ν ),

◦
Cαµc :=

1
2 g

αε∂̇cgµε.

(b)
◦
Γαµν := 1

2 g
αε(δµgεν + δνgεµ− δεgµν),

◦
Cabc := 1

2 g
ad(∂̇bgdc +

∂̇cgdb − ∂̇dgbc)

We call the connection
◦
D the natural metric d-connection.



EAP-space

We assume that
i
λ, i = 1, . . . , n, are n vector fields globally

defined on TM . In the adapted basis (δα, ∂̇a), we have
i
λ =

h
i
λ+ v

i
λ =

i
λαδα +

i
λa∂̇a. We further assume that the n horizontal

vector fields h
i
λ and the n vertical vector fields v

i
λ are separately

linearly independent so that

i
λα

i
λβ = δαβ , i

λα
j
λα = δij; i

λa
i
λb = δab , i

λa
j
λa = δij, (30)

where (
i
λα) and (

i
λa) denote the inverse matrices of (

i
λα) and (

i
λa)

respectively. We refer to the vector fields
i
λ as the fundamental

vector fields.



In this case, the metric is given by:

gαβ :=
i
λα

i
λβ, gab :=

i
λa

i
λb. (31)

The inverse of the matrices (gαβ) and (gab) are given

by (gαβ) and (gab) respectively, where

gαβ =
i
λα

i
λβ, gab =

i
λa

i
λb. (32)



Theorem . The d-connection D = (Γαµν, Γabν, C
α
µc, C

a
bc) defined

by

Γαµν =
i
λα(δν

i
λµ),Γabν =

i
λa(δν

i
λb);Cαµc =

i
λα(∂̇c

i
λµ), Cabc =

i
λa(∂̇c

i
λb)

(33)
satisfies the AP-condition

λα|µ = λα||c = λa|µ = λa||c = 0. (34)

Consequently, D is a metric d-connection.

This d-connection is referred to as the canonical d-connection.



Definition . The torsion tensor field T = (Λαµν, R
a
µν, C

α
µc, P

a
µc, T

a
bc)

of the canonical d-connection is referred to as the torsion of the
EAP-space.

Definition . In the adapted basis (δµ, ∂̇a), the contortion tensor C
is characterized by the d-tensor fields with local coefficients
(γαµν, γ

a
bν, γ

α
µc, γ

a
bc) defined by:

γαµν := Γαµν −
◦
Γαµν, γabµ := Γabµ −

◦
Γabµ;

γαµc :=Cαµc −
◦
Cαµc, γabc := Cabc −

◦
Cabc. (35)

Definition . The basic vector B = (Cµ, Ca) is given by

Cµ := Λαµα = γαµα, Cb := T aba = γaba (36)



Definition . Let D = (Γαµν, Γabµ, C
α
µc, C

a
bc) be the canonical d-

connection.

(a) The dual d-connection D̃ = (Γ̃αµν, Γ̃abµ, C̃
α
µc, C̃

a
bc) is defined

by

Γ̃αµν := Γανµ, Γ̃
a
bµ := Γabµ; C̃αµc := Cαµc, C̃

a
bc := Cacb. (37)

(b) The symmetric d-connection D̂ = (Γ̂αµν, Γ̂abµ, Ĉ
α
µc, Ĉ

a
bc) is de-

fined by

Γ̂αµν :=
1

2
(Γαµν + Γανµ), Γ̂abµ := Γabµ;

Ĉαµc :=Cαµc, Ĉabc :=
1

2
(Cabc + Cacb). (38)



The Cartan and Berwald-type cases

(1) The Cartan-type case

Assume that the canonical d-connectionD is of Cartan-type: ya|µ =

0, ya||c = δac . Consequently,

(a) The nonlinear connection Na
µ is expressed in the form Na

µ =

yb(
i
λa∂µ

i
λb).

(b) The nonlinear connection Na
µ is integrable: Raµν = 0. More-

over, T abc = γabc = 0.

(2) The Berwald-type case Assume that D is of Berwald-type:



∂̇bN
a
µ = Γabµ; Cαµc = 0. Consequently,

(a) λµ are functions of the positional argument x only. Conse-
quently, so are gµν.

(b) Λαµν, γαµν andCµ are functions of the positional argument x only.



Theorem . Assume that D is both of Cartan- and Berwald-type.
Then

(a) The hh-coefficients of the four defined d-connections are func-
tions of positional argument only and are identical to the co-
efficients of the corresponding connections in the conventional
AP-space.

(b) The torsion and the contortion tensor fields of the EAP-space
are functions of positional argument only and are given by

T = (Λαµν, 0, 0, 0, 0); C = (γαµν, 0, 0, 0)



Unified field equations

Unified horizontal field equations

Let

H = |λ|gµνHµν,

where

Hµν := ΛαεµΛεαν − CµCν. (39)

The Euler-Lagrange equations for this Lagrangian are given by

δH
δλβ

:=
∂H
∂λβ
−

∂

∂xγ

(
∂H
∂λβ,γ

)
−

∂

∂ya

(
∂H
∂λβ;a

)
= 0. (40)



The unified horizontal field equations in the context of the EAP-
geometry have the form

0 = gµνH − 2Hµν − 2CµCν − 2gµν(Cε|ε − C
εCε)− 2CεΛµεν + 2Cν|µ

− 2gεαΛµνα|ε − 2Na
ε;a(Λε νµ − Λµν

ε) + 2gµνC
εNa

ε;a − 2CµN
a
ν;a

+ 2 Sµ,ν,εC
ε
µaR

a
νε.

(41)



Unified vertical field equations

Let

V := ||λ||gabVab,

where

Vab := T deaT
e
db − CaCb. (42)

The Euler-Lagrange equations in this case reduce to

∂V
∂λb
−

∂

∂ye

(
∂V
∂λb; e

)
= 0. (43)



The unified vertical field equations in the context of the EAP-
geometry have the form

0 = gabV − 2Vab − 2gab(C
e
||e − C

eCe)− 2CaCb − 2CeTaeb

+ 2Cb||a − 2gdeTabe||d.
(44)



Physical consequences

Splitting of the horizontal field equations
Symmetric part: Considering the symmetric part of (41), we get

0 = (gµν
◦
R− 2

◦
R(µν)) + gµν(σ − h−Q)− 2(σµν − hµν −Q(µν))

+ Nβ(Λµνβ + Λνµβ) + 2gµνC
βNβ − (CµNν + CνNµ),

(45)
which represents the symmetric part of the horizontal unified

field equations.



Consequently,

◦
R(µν) −

1

2
gµν

◦
R = T(µν), (46)

T(µν) =
1

2
gµν(σ−h−Q+2Z)−(σµν−hµν−Q(µν))+(

1

2
NβΩβ

µν−Z(µν)).

(47)
According to (46), T(µν) may be interpreted as the geometric en-

ergy momentum tensor.



Skew-symmetric part: Considering the skew-symmetric part of
(41), we get

0 = 2{(γµν−εµν−ξµν+NβΛβµν)+(M[µν]−Z[µν])}+3Sµ,ν,εC
ε
νaR

a
εµ.

(48)
Consequently, if

Fµν : = (γµν − ξµν + ηµν) +Nβ(γµνβ + Λβµν)+

(
1

2
NβΛβµν − Z[µν]) +

3

2
Sµ,ν,εC

ε
νaR

a
εµ,

(49)



then

Fµν = δνCµ − δµCν, (50)

Sµ,ν,σ Fµν o|σ
= −Sµ,ν,σR

a
µν∂̇aCσ. (51)

Accordingly, if Fµν is interpreted as the horizontal geometric elec-
tromagnetic field, then (51) represents the horizontal general-
ized Maxwell’s equations and, in view of (50), Cµ is the horizontal
geometric electromagnetic potential.



Now, let

Jµ := Fµν o
| ν
. (52)

Then

Jµo
|µ

=
1

2
{F εµ(

◦
Rµε −

◦
Rεµ) +RaµνF

µν
o
||a
}. (53)

In the case where the nonlinear connection Nα
µ is integrable, (53)

can be viewed as a generalized conservation law and Jµ as the
geometric horizontal current density.



Splitting of the vertical field equations

Symmetric part: Considering the skew-symmetric part

of (44), we get

0 = E(ab) := (gab
◦
S−2

◦
Sab)+gab(σ̄−h̄)−2(σab−hab),

so that
◦
Sab −

1

2
hab

◦
S = Tab, (54)

Tab :=
1

2
gab(σ̄ − h̄)− (σab − hab). (55)

T a bo||a
= 0. (56)



Consequently, in view of (54) and (56), Tab could be in-

terpreted as the vertical geometric energy-momentum

tensor for both matter and electromagnetism.



Skew-symmetric part: Considering the skew-symmetric part of
(44), we conclude that if

Fab := γab − ξab + ηab, (57)

then Fab is the vertical geometric electromagnetic field and, in
view of the relation

Fab = ∂̇bCa − ∂̇aCb, (58)

Ca may be interpreted as the vertical geometric electromagnetic
potential. Moreover, we obtain the vertical generalized Maxwell’s
equations

Sa,b,c Fabo||c
= 0. (59)



Finally, if we set

Ja := F abo
| b

(60)

then, similar to (53), Ja satisfies the conservation law

Jao
|a

= 0. (61)

Hence, Ja represents the vertical geometric current density.



Important special cases

Integrability condition

The nonlinear connection is integrable: Raµν = 0. Then, we have
Energy momentum tensor:

Tµν := {
1

2
gµν(σ − h) + (hµν − σµν)}+ gµνZ +A(µν) (62)

Electromagnetic field:

Fµν := (γµν − ξµν + ηµν) +Nβ(γµνβ + Λβµν) +A[µν]. (63)

Conservation law: Tµ ν o|µ
= 0. (64)

Maxwell’s equations: Sµ,ν,σ Fµν o|σ
= 0 (65)

Conservation law: Jµo
|µ

= 0. (66)



The Cartan-type case

The Cartan-type case can be regarded as a special case of the inte-
grability case, obtained by setting Na

µ = yb(
i
λa∂µ

i
λb) and Raµν = 0

(among other things). Accordingly, relations (62) to (66) remain
valid under the Cartan type condition. On the other hand, there
are no vertical field equations (all vertical objects of Table 1 vanish).
The advantage in this case, is that the nonlinear connection, conse-
quently, all geometric objects considered, are expressed explicitily
in terms of the fundamental vector fields λ’s.



The Berwald type case

The horizontal field equations in this case are given by

0 = Eµν := gµνH − 2Hµν − 2(CµCν − Cν|µ) + 2gµν(CεCε − Cε|ε)
− 2(CεΛµεν + gεαΛµνα|ε),

(67)

which are identical in form to the field equations of the GFT. More-
over, all geometrical objects involved in (67) are functions of the
positional argument x only.



In this case, we have
◦
Rµν −

1

2
gµν

◦
R = Tµν;

Energy momentum tensor: Tµν :=
1

2
gµν(σ− h)− (σµν − hµν),

(68)

Conservation Law: Tµ ν o|µ
= 0. (69)

Electomagnetic field: Fµν := γµν − ξµν + ηµν = ∂νCµ − ∂µCν.

Maxwell’s equations: Sµ,ν,σ Fµν o|σ
= 0, (70)

Conservation Law: Jµo
|µ

= 0. (71)



The Cartan-Berwald case (Recovering the GFT)

We finally assume that the canonical d-connection is both of
Berwald- and Cartan-type. In this case, the horizontal field equa-
tions are given by (67), whereas the vertical field equations clearly
disappear. Moreover, relations (68) to (71) hold. Consequently, the
field equations obtained coincide in form and content with those of
the GFT. This is the typical case in which the GFT is naturally re-
trieved.



Concluding remarks

• We have constructed a unified field theory in the framework of
EAP-geometry. The formulated theory is a generalization of
the GFT, in which the chosen Lagrangians are the horizontal
and vertical analogues of the Lagrangian used in the construc-
tion of the GFT. Five different interesting cases for the horizon-
tal field equations have been singled out. The most general is
derived under the mere assumption that the nonlinear connec-
tion is independent of the horizontal fundamental vector fields.
From this, follows both the Integrability case and the Cartan
case. The Berwald case is also deduced independently. Fi-
nally, under the Cartan-Berwald condition, the constructed field
equations are shown to coincide with the GFT.



• Our constructed field theory is a pure geometrical attempt to
unify gravity and electromagnetism. The theory is manifestly
covariant. The underlying geometry of the theory is the EAP-
geometry. The symmetric part represents gravitation, while the
anti-symmetric part represents electromagnetism. Finally, all
physical objects involved are expressed in terms of the funda-
mental tensors of the EAP-space together with the nonlinear
connection N (and its curvature).
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