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Preliminaries

A parallelizable manifold is an n-dimensional C'>® manifold M which
admits n linearly independent global vector fields)z,\ (i=1,...,n)
on M. Such a space is also known in the literature as a teleparallel
or Absolute Parallelism (AP-) space. Let )Z,\“ (u = 1,...,n) be

the coordinate components of the :-th vector fieId)Z,\. The Einstein
summation convention is applied on both Latin (mesh) and Greek
(world) indices, where all Latin indices are written in a lower position.
The covariant components of )1_\/‘ are given via the relations

%“M%‘V = §H, )i\/i?w = G- (1)



The canonical connection is defined by

I‘gy = >7;\a>z'\'“’y (2)

If “|” denotes covariant derivative with respect to the canonical
connection, then

Auly = 0, A, =0. (3)

The above relation is known in the literature as the AP-condition.



Let

N 2= i = T (4)
denote the torsion tensor field of "7} . Itis of particular importance
to note that the AP-condition together with the commutation formula

A% = Ao = X RBeyy + A% Ay,

forces the curvature tensor field Rfjm of the canonical connection
7, to vanish identically.



There are other three natural (built-in) connections which are non-

flat. Namely, the dual connection

ro . o
re, =rg,

the symmetric connection

~ 1
and the Riemannian connection (Christoffel symbols)
1

rﬁy L= 5 9" (Gev,pn + Gep,v — Guv,e)

associated to the metric structure defined by

g = ko

(9)



The contortion tensor field is defined by

(@]
a . ra _ra Qo
Vv =T =T = A )Z‘ALTV'

The basic vector field C), is defined by

CM = /\/Ojoz — 'Vﬁéoz

o O o
/\/,LI/ - ’V,U,V o ’Vz/lu»

1
Yuvo — E(A'LWU + /\au,u + /\I/O',LL)-

(10)
(11)

(12)



The Generalized Field Theory (GFT) Starting with the Lagrangian

L= g" L, = g" (AXNAS, — CuCl), (13)

ep’ ‘av

the authors of the theory, using a certain variational technique, ob-
tained the differential identity
E* ~ = 0. 14
v|p (4
Regarding the above identity as representing a certain conserva-
tion law, the field equations of the GFT are taken to be

where
E,LLI/ L= g,LLI/L — 2L,LLV — Q(CMCV — CV|,LL) _I_ 29/1,1/<C6C€ — C€|€)
— 2(CNger + gN

uyak)'
(16)



Considering the symmetric part of (16) and after some intricate
calculations, the Einstein field equations are found to be

1
Ruy — 5 g R =Ty, (17)
in which the energy-momentum tensor 7},,, is expressed in terms
of the fundamental second order symmetric tensor fields of Table
1.2 in the form
1
where o and w are the trace of o, and @, respectively. Moreover,

according to (17), 7}, satisfies the conservation law

TH o = 0. (19)
Iz



On the other hand, considering the skew-symmetric part of (16), it
is deduced that the electromagnetic field is expressed as the curl
of the basic vector field C',, namely,

Fuy = Cup — Cup (20)

Moreover, it is given in terms of the fundamental second order
skew-symmetric tensor fields of Table 1.2 in the form

Fuv = yuv — Euv + Nuw, (21)

In view of (20), F},, satisfies the (generalized) second Maxwell’s
equation

,LLTV — F,uy,a T FVG,,LL + Fa,u,y = 0. (22)



Finally, the tensor density 7/ = |A\|[FF”, |\| := det|\g], is intro-
duced, from which the vector density

j'UJ = .FMV7V (23)
Is defined. It satisfies the conservation law
o

Jy. is interpreted as the current density.



The geometry of the tangent bundle:
Let M be a paracompact manifold of dimension n of class C°°. Let

w . TM — M be its tangent bundle. If (U, z*) is a local chart
on M, then (=~ 1(U), (=*, y®)) is the corresponding local chart on
T'M. The coordinate transformation on 7"M is given by:

M/ L lu/ v CL/ L CL/ a
ot =2 (2”), ¥* =pay",

=1,...,n,a=1,...,n; palzaya _8xa and det(p% )#O
/’L a 8y a a




The paracompactness of M ensures the existence of a nonlinear
connection N on T'M with coefficients N2(xz,vy). The transforma-
tion formula for the coefficients NJ is given by

/ / / /
NS = pg o NG + g Doty s (25)



The nonlinear connection leads to the direct sum decom-
position

Tu(TM) = Hy(TM) & Vo, (TM), Yue TM\ {0},
(26)
where V,,(T'M ) is the vertical space at « with local ba-
sis 0y 1= aiya and H,(T'M) is the horizontal space at
u, associated with NV, supplementary to V,, (7'M ), with
local bases 6, := 8, — N 9.



Definition . The curvature of a nonlinear connection is

given by

Definition . A nonlinear connection N fj IS said to be In-

tegrable if R}, = O.



Definition . A d-connection D on I’ M is a linear connection on I’ M
which preserves by parallelism the horizontal and vertical distribu-
tion: if Y is a horizontal (vertical) vector field, then DY is a hori-
zontal (vertical) vector field, for all X € X(T'M).

The coefficients of a d-connection D = (I’gy, T Cie i) are
defined by

D51/5M — rgyéoza D51/8b =. I_gyaa;



Definition . An hv-metric on T'M is a covariant d-tensor field G : =
hG+vG onT M, where hG 1= Y da:o‘@)dxﬁ, vG = g, 5ya®5yb
such that:

JdaB — 9B det(Qaﬁ) 7 0, gab = Gba, det(gqp) 7 O.
Definition . A d-connection D on T M is said to be metric or com-
patible with the metric G if

9aBlu = Jabllc = Jablu = Jabllc = O- (29)



Theorem . For a g/ven hv metr/c on T M, there exists a unique met-

I‘gy, CO‘ Cbc) on T'M with the prop-

ric d-connection D= (I‘ 1)

erties that

P

(a) erLV :Z. abNg —|— % gac(éygbc — dde 8bNVd — dbd 8CN£Z), C/Ojc =
%gaegcglue.

(b) |—a =5 go‘e(cmgeu + 51/96,u 569/“/)7 Cgc .= %gad(abgdc +
(9cgdb Bagbe)

We call the connection D the natural metric d-connection.



EAP-space

We assume that A, i = 1,...,n, are n vector fields globally
defined on T'M. In the adapted basis (6o, 0s), We have A=
h>\ + v>\ = Ao‘éa + A“@a We further assume that the n hor/zontal
vector f/e/ds h)\ and the n vertical vector fields v)\ are separately
linearly /ndependent so that

AAg =05, Xda =0y AN =06 Ada=3y (30)

where (>Z,\a) and ()Z,\a) denote the inverse matrices of ()Z,\O‘) and (>Z,\“)

respectively. We refer to the vector fields >1\ as the fundamental
vector fields.



In this case, the metric is given by:

daB ‘= AaAgs  Gab ‘= Aadp (31)

The inverse of the matrices (g,3) and (g,p) are given

by (¢*P) and (¢??) respectively, where

1 (



Theorem . The d-connection D —= (I‘g,/, T O i) defined
by

rﬁu — %\a(5v>lxu)a I_Céy — %\a(&/%\b); Cﬁéc — %\a(ac%w)a Cgc — %\a(acé\b)
(33)
satisfies the AP-condition
(@8 - (8 - a - a —_—
A = A T A = A =0 (34)
Consequently, D is a metric d-connection.

This d-connection is referred to as the canonical d-connection.



Definition . The torsion tensor field T = (A, Rf,,, C5., Pf., T.)

of the canonical d-connection is referred to as the torsion of the
EAP-space.

Definition . In the adapted basis (5,,, 0.), the contortion tensor C
Is characterized by the d-tensor fields with local coefficients

(’y/?(,él/a 7{?”7 ’ch, ’ch) defined b_y

’731/ = rgy — rgw /Vg,u = rg,u — rg,u;
730 = C,Zéc - Cgcv ’Vl?c = Cgc — gc' (35)

Definition . The basic vector B = (Cy, C,) is given by

CM = /\,?Léoz — ’Vgou Cb = Tbaa — ’yga (36)



Definition . Let D = (I'fj,, 'y, Cfi,
connection.

Cy'.) be the canonical d-
(a) The dual d-connection D = ("%, I:gu, Ce., C1) is defined
by

o i=T5, g, =g, Ch. = Cg

VL [LCo égc — gb (37)

(b) The symmetric d-connection D = (%, Iﬁgﬂ, C%., C2) is de-
fined by
_ 1 _
i o= E(Fﬁy 0700 Bey =g,

~ ~ 1
Chc = Cpe, Ch, = 5(050 + C%). (38)



The Cartan and Berwald-type cases

(1) The Cartan-type case

Assume that the canonical d-connection D is of Cartan-type: T
0, y%. = d¢. Consequently,

(@) The nonlinear connection NN is expressed in the form Nj =
yb()i\aau%‘b)-

(b) The nonlinear connection Ny is integrable: R, = 0. More-
over, Ty = ;. = O.

(2) The Berwald-type case Assume that D is of Berwald-type:



N} = 5, Cji. = 0. Consequently,

(a) A, are functions of the positional argument = only. Conse-
quently, so are g,

(b) A7, v, and Cy, are functions of the positional argument x only.



Theorem . Assume that D is both of Cartan- and Berwald-type.
Then

(a) The hh-coefficients of the four defined d-connections are func-
tions of positional argument only and are identical to the co-
efficients of the corresponding connections in the conventional
AP-space.

(b) The torsion and the contortion tensor fields of the EAP-space
are functions of positional argument only and are given by

T — (/\IO,Z]/7 O? O? O? O)' C — (’ng7 O? 07 O)



Unified field equations
Unified horizontal field equations

Let
H = |)‘|9'LWH/Wa
where

The Euler-Lagrange equations for this Lagrangian are given by

5_7-[ __OH B 0 OH B 0 OH
5>\5. OAg  Ox" (9)\5,,y Ay* \ 0Ag:q

>=Q (40)



The unified horizontal field equations in the context of the EAP-
geometry have the form

O — g,LLI/H — 2H,LLI/ — QO’LLCI/ o leuJ]/(C1E|e — CECG) — 206/\[1,61/ + QCV|,LL
— 2.9605/\”]/6”6 - 2N€a;a(/\€ VL - /\IL”/ 6) _l_ QQIJ,I/CENea:a - QC,UNISL,CL
_|_ 2 6M7V7€CZ&R36'
(41)



Unified vertical field equations

Let
V= [|\||g®V,
where

Vab — TedaTgb — CaCb.

The Euler-Lagrange equations in this case reduce to

v 9 (V) _,
Oy Oye\ONpo)

(42)

(43)



The unified vertical field equations in the context of the EAP-
geometry have the form

0 =gV —2Vyp — anb(ceHe — C°Ce) — 2CqChp — QCeTaeb

d
+ 2Cy) 10 — 29" Tape)|a-
(44)



Physical consequences

Splitting of the horizontal field equations
Symmetric part: Considering the symmetric part of (41), we get

0= (gluyR — QR(MV)) ‘l’ g;u/(O —h — Q) o Q(UMV o hlﬂ/ - Q(,uu))

+ NO(Aug + Ayug) + 29, CP Ng — (CulNy + CuNy),
(45)

which represents the symmetric part of the horizontal unified
field equations.



Consequently,

o 1 o
By = 5 9 R = Ty, (46

Ty = %QMU—’Z—QWLQZ >—<Uw—hw—Q<w>>+<% NoSu =2 )
(47)

According to (46), T{,,,,) may be interpreted as the geometric en-

ergy momentum tensor.



Skew-symmetric part: Considering the skew-symmetric part of
(41), we get

0= 2{(7MV_€MV_£MV+N5/\gl/)+(M[,uu]_Z[uu])}+36MaV,€CI§aRg,w
(48)
Consequently, if

F/u/ .= (’YMV - £,ul/ + n,ul/) + Nﬁ(’)ﬂuuﬁ + Aﬁpﬂ/)"—

1 3 (49)
G N N = Za) + 5 SuancCiaFie

ELL



then

Fluy — 5]/C’u — 5,LLCV7 (50)

6#71/70' F,LLI/’OO' —_— — GM,V,O' RZ}/aCLCO'° (51)

Accordingly, if F},, is interpreted as the horizontal geometric elec-
tromagnetic field, then (51) represents the horizontal general-
ized Maxwell’s equations and, in view of (50), C); is the horizontal
geometric electromagnetic potential.



Now, let
J’u == FMVOV. (52)

Then

J'u‘,u _{FGH(RME Re,u) =+ Ra F'LWHQ}° (53)

In the case where the nonlinear connection NV is integrable, (53)

can be viewed as a generalized conservation law and J# as the
geometric horizontal current density.



Splitting of the vertical field equations

Symmetric part: Considering the skew-symmetric part
of (44), we get

0 = E(ap) '= (9a6S—25ab) +9ap(G—h)—2(oap—Pap),

so that
o) ]_ o
Sab — 5 habS — Taba (54)
Tab - 5 gab(a — h) — (Uab — hab)° (55)



Consequently, in view of (54) and (56), T,,;, could be in-
terpreted as the vertical geometric energy-momentum

tensor for both matter and electromagnetism.



Skew-symmetric part: Considering the skew-symmetric part of
(44), we conclude that if

Fab .= Yab — fab + Nab; (57)

then F,; is the vertical geometric electromagnetic field and, in
view of the relation

Fup = 9pCa — 9aCh, (58)

Cq, may be interpreted as the vertical geometric electromagnetic
potential. Moreover, we obtain the vertical generalized Maxwell’s
equations

6a,b,c F

abﬁc

= 0. (959)



Finally, if we set

J% = FabTb (60)

then, similar to (53), J“ satisfies the conservation law

J%,=0. (61)

Hence, J“ represents the vertical geometric current density.



Important special cases
Integrability condition

The nonlinear connection is integrable: R, = 0. Then, we have
Energy momentum tensor:

1
Ty = {5 guu(a —h) + (h/w - U/w)} + g2 + A(MV) (62)
Electromagnetic field:

F,UJI/ L= (”Y,uu - g,ul/ + 77,uu) + Nﬁ(’ylul/ﬁ + /\ﬁ,uy) + A[/u/]' (63)

Conservation law: T*# v = 0. (64)
Maxwell’s equations: G, » F/“/TU =0 (65)
Conservation law: J"o = 0. (66)

B



The Cartan-type case

The Cartan-type case can be regarded as a special case of the inte-
grability case, obtained by setting N/ = yb()i\aﬁu)i\b) and R%, =0
(among other things). Accordingly, relations (62) to (66) remain
valid under the Cartan type condition. On the other hand, there
are no vertical field equations (all vertical objects of Table 1 vanish).
The advantage in this case, is that the nonlinear connection, conse-
quently, all geometric objects considered, are expressed explicitily
in terms of the fundamental vector fields \’s.



The Berwald type case

The horizontal field equations in this case are given by

0=FEuw:=guwH —2H;u, — 2(C,Cy — Oym) + 29, (CCe — C€|€)
— Q(CGAMEV S gea/\,uyode)a

(67)

which are identical in form to the field equations of the GFT. More-

over, all geometrical objects involved in (67) are functions of the

positional argument x only.



In this case, we have

o 1 o
Ruyy — —guwR = Ty,

2
1
Energy momentum tensor: 7}, := > guv(o —h) — (ouw — huv),
(68)
Conservation Law: 7" Vo = 0. (69)

Electomagnetic field: F},, := vy — {uv + muw = 00CL — 9, Cy.

Maxwell’s equations: G, » F/u/fa = 0, (70)

Conservation Law: J“«‘)M = 0. (71)



The Cartan-Berwald case (Recovering the GFT)

We finally assume that the canonical d-connection is both of
Berwald- and Cartan-type. In this case, the horizontal field equa-
tions are given by (67), whereas the vertical field equations clearly
disappear. Moreover, relations (68) to (71) hold. Consequently, the
field equations obtained coincide in form and content with those of
the GFT. This is the typical case in which the GFT is naturally re-
trieved.



Concluding remarks

e We have constructed a unified field theory in the framework of
EAP-geometry. The formulated theory is a generalization of
the GFT, in which the chosen Lagrangians are the horizontal
and vertical analogues of the Lagrangian used in the construc-
tion of the GFT. Five different interesting cases for the horizon-
tal field equations have been singled out. The most general is
derived under the mere assumption that the nonlinear connec-
tion is independent of the horizontal fundamental vector fields.
From this, follows both the Integrability case and the Cartan
case. The Berwald case is also deduced independently. Fi-
nally, under the Cartan-Berwald condition, the constructed field
equations are shown to coincide with the GFT.



e Our constructed field theory is a pure geometrical attempt to
unify gravity and electromagnetism. The theory is manifestly
covariant. The underlying geometry of the theory is the EAP-
geometry. The symmetric part represents gravitation, while the
anti-symmetric part represents electromagnetism. Finally, all
physical objects involved are expressed in terms of the funda-
mental tensors of the EAP-space together with the nonlinear
connection N (and its curvature).
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