### Tomasz Placek

## Relativity and modal logic meet Hausdorff

First International Conference on Logic and Relativity: honoring István Németi's 70th birthday September 8 - 12, 2012, Budapest

email: Tomasz.Placek@uj.edu.pl

Jagiellonian University, Kraków

1

### Research supported by grant 668/N-RNP-ESF/2010/0 of the (Polish) Ministry of Education

#### Aim:

# to construct structures that generalize GR spacetimes and allow for indeterminism



### The Hausdorff property

Let  $\mathcal{T}(X)$  be a topology on set X.  $\mathcal{T}(X)$  has the Hausdorff property iff for every  $x, y \in X$  there are  $O_x, O_y \in \mathcal{T}(X)$  such that  $x \in O_x, y \in O_y$  and  $O_x \cap O_y = \emptyset$  Logic for (in)determinism, tenses, and agency (Prior-Kripke-Thomason, Belnap, ...)

Logic for (in)determinism, tenses, and agency (Prior-Kripke-Thomason, Belnap, ...)

Interplay of tenses, possibilities and agents' actions

Logic for (in)determinism, tenses, and agency (Prior-Kripke-Thomason, Belnap, ...)

Interplay of tenses, possibilities and agents' actions

Yesterday both X and non-X were possible. Today it is already settled that X occurred. Branching Time (BT) semantics (Kripke -Prior-Thomason): formulas are evaluated at the event/history pairs, i.e.,  $\mathfrak{M}, e/h \models \varphi$ 



#### Problem: hyper-events

#### Problem: hyper-events

# - simultaneity assumed, BT is a non-relativistic framework

Problem: hyper-events

- simultaneity assumed, BT is a non-relativistic framework

- the Pittsburgh worry: no room for actions of independent agents

## Solution: Branching Space-Times (BST) (Belnap 1992)



Two histories (h, h'), one choice point (e), i.e., a maximal point in the intersection of h and h'.

#### Different behavior of maximal chains in a history

е

#### Failure of the Hausdorff property ?



Results (Belnap, Kishida, Placek): a multi-history BST model is generically non-Hausdorff (in the Bartha topology); Results (Belnap, Kishida, Placek): a multi-history BST model is generically non-Hausdorff (in the Bartha topology);

Each history in a BST model is Hausdorff (in the Bartha topology)

Results (Belnap, Kishida, Placek): a multi-history BST model is generically non-Hausdorff (in the Bartha topology);

Each history in a BST model is Hausdorff (in the Bartha topology)

Direction: a spacetime/history is Hausdorff, a bundle of spacetimes is not Hausdorff

#### GR and Hausdorff

#### GR and Hausdorff

Standard: a GR spacetime is a smooth 4-dim Lorenzian manifold, satisfying the Hausdorff property and the countable cover condition.

#### GR and Hausdorff

Standard: a GR spacetime is a smooth 4-dim Lorenzian manifold, satisfying the Hausdorff property and the countable cover condition.

A reaction to singularity theorems (Hawking, Penrose, early 1970's) allow for non-Hausdorff spacetimes Initial results were encouraging: a non-Hausdorff extension of Taub-NUT spacetime has no bifurcating geodesics or other causal anomalies. (Hajicek 1971) Initial results were encouraging: a non-Hausdorff extension of Taub-NUT spacetime has no bifurcating geodesics or other causal anomalies. (Hajicek 1971)

A series of blows: non-Hausdorff spacetime violates the strong causality condition (Hajicek 1972).

# Non-Hausdorff comes with a price (for a survey, see Earman 2008)

# Non-Hausdorff comes with a price (for a survey, see Earman 2008)

#### Back to sanity:

"I must ... return firmly to sanity by repeating to myself three times: spacetime is a Hausdorff differentiable manifold; spacetime is a Hausdorff ..."(Penrose 1979).

### Consensus: a spacetime is Hausdorff,

#### a spacetime is Hausdorff,

to represent alternative possibilities: postulate a bundle of spacetimes (possible worlds / histories)

a spacetime is Hausdorff,

to represent alternative possibilities: postulate a bundle of spacetimes (possible worlds / histories) a bundle of spacetimes needn't be Hausdorff

a spacetime is Hausdorff,

to represent alternative possibilities: postulate a bundle of spacetimes (possible worlds / histories) a bundle of spacetimes needn't be Hausdorff but in a bundle we have a dilemma: Hausdorff or local Euclidicity?

a spacetime is Hausdorff,

to represent alternative possibilities: postulate a bundle of spacetimes (possible worlds / histories) a bundle of spacetimes needn't be Hausdorff but in a bundle we have a dilemma: Hausdorff or local Euclidicity?





## Project:

#### Project:

Begin with a larger structure which has room for spacetime and for alternative possibilities.

#### Project:

Begin with a larger structure which has room for spacetime and for alternative possibilities. Define spacetimes as maximal Hausdorff submanifolds Idea: take the concept of normal convex set from GR; since BST comes with the notion of alternative possibilities, generalize it to make room for alternative possibilitires. Call it: patch. A pair  $\mathcal{W} = \langle W, \preceq, \mathcal{O} \rangle$ , where  $W \neq \emptyset, \preceq$  is a pre-order on W, and  $\mathcal{O} \subseteq \mathcal{P}(W)$ , is a generalized BST model iff for every  $e \in W$  there is a set of patches  $\mathcal{O}_e \subseteq \mathcal{O}$  around esuch that for all  $O \in \mathcal{O}_e$ : A pair  $\mathcal{W} = \langle W, \preceq, \mathcal{O} \rangle$ , where  $W \neq \emptyset, \preceq$  is a pre-order on W, and  $\mathcal{O} \subseteq \mathcal{P}(W)$ , is a generalized BST model iff for every  $e \in W$  there is a set of patches  $\mathcal{O}_e \subseteq \mathcal{O}$  around esuch that for all  $O \in \mathcal{O}_e$ :


1.  $e \in O$  and 2.  $\langle O, \preceq_{|O} \rangle$  is a nonempty dense partial order satisfying the following:

1.  $e \in O$  and 2.  $\langle O, \preceq_{|O} \rangle$  is a nonempty dense partial order satisfying the following:



1.  $e \in O$  and 2.  $\langle O, \preceq_{|O} \rangle$  is a nonempty dense partial order satisfying the following:



1.  $e \in O$  and 2.  $\langle O, \preceq_{|O} \rangle$  is a nonempty dense partial order satisfying the following:

1.  $e \in O$  and 2.  $\langle O, \preceq_{|O} \rangle$  is a nonempty dense partial order satisfying the following:

 $- \forall e' \in O \forall t \in MC(W; e') \ (\exists x, y \in t \cap O(x \prec_{|O} e' \prec_{|O} y \land t^{\succ_{|O} x; \prec_{|O} y} \subseteq O);$ 

– every lower bounded chain in  $\langle O, \preceq_{|O} \rangle$  has an infimum in O;

- if a chain C in  $\langle O, \preceq_{|O} \rangle$  is upper bounded by  $b \in O$ , then  $B := \{x \in O_e \mid C \preceq_{|O} x \land x \preceq_{|O} b\}$  has a unique minimum,



- if x, y and O and  $x \leq z \leq y$ , then  $z \in O$ ; and

- if x, y and O and  $x \leq z \leq y$ , then  $z \in O$ ; and



- if x, y and O and  $x \leq z \leq y$ , then  $z \in O$ ; and

- if x, y and O and  $x \leq z \leq y$ , then  $z \in O$ ; and

3.  $\mathcal{O} = \bigcup \{ \mathcal{O}_e \mid e \in W \};$ 

4. If  $x, y \in O \cap O'$ , where  $O, O' \in O$ , then  $x \leq_{|O'} y$  iff  $x \leq_{|O'} y$ .

## Seeds of modal inconsistency: splitting pairs

Seeds of modal inconsistency: splitting pairs

Let  $\mathcal{W} = \langle W, \preceq, \mathcal{O} \rangle$  be a generalized BST model and  $O \in \mathcal{O}$ . We say that  $e, e' \in O$  form a splitting pair in O, iff  $e \neq e'$  and there is a chain C in  $\langle O, \preceq_{|O} \rangle$  such that e and e' are minimal upper bounds of C in O.

Seeds of modal inconsistency: splitting pairs

Let  $\mathcal{W} = \langle W, \preceq, \mathcal{O} \rangle$  be a generalized BST model and  $O \in \mathcal{O}$ . We say that  $e, e' \in O$  form a splitting pair in O, iff  $e \neq e'$  and there is a chain C in  $\langle O, \preceq_{|O} \rangle$  such that e and e' are minimal upper bounds of C in O.







## Gonsistency

 $\{e, e'\} \subseteq W$  is consistent iff there is no splitting pair  $\{x, x'\}$  such that  $x \leq e$  and  $x' \leq e'$ .  $A \subseteq W$  is consistent iff A is pairwise consistent.

## Gonsistency

 $\{e, e'\} \subseteq W$  is consistent iff there is no splitting pair  $\{x, x'\}$  such that  $x \leq e$  and  $x' \leq e'$ .  $A \subseteq W$  is consistent iff A is pairwise consistent.

 $e, e' \in W$  are inconsistent iff there is a splitting pair  $\{x, x'\}$  such  $x \leq e \land x' \leq e'$ .

## Gonsistency

 $\{e, e'\} \subseteq W$  is consistent iff there is no splitting pair  $\{x, x'\}$  such that  $x \leq e$  and  $x' \leq e'$ .  $A \subseteq W$  is consistent iff A is pairwise consistent.

 $e, e' \in W$  are inconsistent iff there is a splitting pair  $\{x, x'\}$  such  $x \leq e \land x' \leq e'$ .



# There is at least one maximal pairwise consistent subset of W.

Let A, A' be maximal consistent subsets of W. Then:

(1) A is downward closed.

(2) A has no maximal<sup>\*</sup> and no minimal elements

(3) If  $e' \in A' \setminus A$ , then there is a "choice pair"  $\{x, x'\}$  for A and A', i.e., there is a chain  $C \subseteq A \cap A'$ , such that  $x = \sup_A(C), x' = \sup_{A'}(C), x \neq x'$ , and  $x' \leq e'$ 

(4) If  $e, e', e^* \in W$  and  $e \leq e^*, e' \leq e^*$ , then there is A s.t.  $e, e', e^* \in A$ .

# Terminology: maximal consistent subsets of generalized BST are called g-histories

# g-manifold: putting differential structure on a generalized BST model (generalization of the Geroch-Malament approach)

*n*-g-chart

An *n*-g-chart on a model  $\mathcal{W} = \langle W, \preceq, \mathcal{O} \rangle$  is a pair  $\langle O, \varphi \rangle$ , where  $O \in \mathcal{O}$  and  $\varphi : O \to \mathbb{R}^n$  satisfies, for every  $H \in Hist$ If  $O \cap H \neq \emptyset$ , then  $\varphi_{|H \cap O}$  is injective (i.e., one-to-one),  $\varphi[O \cap H]$  is an open subset of  $\mathbb{R}^n$ , and  $\forall e, e' \in O \cap H \ e \prec_{|O} e' \leftrightarrow \varphi(e) <_M \varphi(e')$ .



*n*-g-chart

An *n*-g-chart on a model  $\mathcal{W} = \langle W, \preceq, \mathcal{O} \rangle$  is a pair  $\langle O, \varphi \rangle$ , where  $O \in \mathcal{O}$  and  $\varphi : O \to \mathbb{R}^n$  satisfies, for every  $H \in Hist$ If  $O \cap H \neq \emptyset$ , then  $\varphi_{|H \cap O}$  is injective (i.e., one-to-one),  $\varphi[O \cap H]$  is an open subset of  $\mathbb{R}^n$ , and  $\forall e, e' \in O \cap H \ e \prec_{|O} e' \leftrightarrow \varphi(e) <_M \varphi(e')$ .





## Compatibility of charts

Two *n*-g-charts  $\langle O_1, \varphi_1 \rangle$  and  $\langle O_2, \varphi_2 \rangle$  are compatible iff for every  $H \in gHist$  either  $O_1 \cap O_2 \cap H = \emptyset$  or  $O_1 \cap O_2 \cap H \neq \emptyset$  and these two conditions obtain: (1)  $\varphi_i[O_1 \cap O_2 \cap H]$  (i=1,2) are open subsets of  $\mathbb{R}^n$ (2)  $\varphi_2 \varphi_1^{-1} : \varphi_1[O_1 \cap O_2 \cap H] \to \mathbb{R}^n$  and  $\varphi_1 \varphi_2^{-1} : \varphi_2[O_1 \cap O_2 \cap H] \to \mathbb{R}^n$  are smooth. *n*-g-manifold

An *n*-g-manifold is a pair  $\langle \mathcal{W}, \mathcal{C} \rangle$ , where  $\mathcal{W} = \langle W, \leq, \mathcal{O} \rangle$  is a generalized BST model and  $\mathcal{C}$  is a set of *n*-g-charts on  $\mathcal{W}$  satisfying:

(M1) Any two *n*-g-charts in C are compatible.

(M2) For every  $p \in W$  there is  $\langle O, \varphi \rangle \in C$  such that  $p \in O$ . (M3) C is maximal in the sense that every *n*-g-chart on W that is compatible with each *n*-g-chart in C belongs to C.

#### g-manifold topology

Let  $\langle \mathcal{W}, \mathcal{C} \rangle$  be a g-manifold on a generalized BST model  $\mathcal{W} = \langle W, \preceq, \mathcal{O} \rangle$ . We say that  $S \subseteq W$  is open in the g-manifold topology,  $S \in \mathfrak{T}(W)$ , iff

## $\forall p \in S \exists \langle O, \varphi \rangle \in \mathcal{C} \ (p \in O \land O \subseteq S).$

# Local Euclidean?
# Local Euclidean?

If a generalized BST model has a maximal element in the intersection of some two g-histories, then  $\mathcal{T}(W)$  is not locally Euclidean.

# Local Euclidean?

If a generalized BST model has a maximal element in the intersection of some two g-histories, then  $\mathcal{T}(W)$  is not locally Euclidean.

However, each g-history in a generalized BST model is locally Euclidean in this sense:

for each g-history H, the subspace topology  $\mathcal{T}_{\subseteq W}(H)$  is locally Euclidean.

### Maximality

Let *H* be a g-history in a generalized BST model  $\mathcal{W} = \langle W, \leq, \mathcal{O} \rangle$ and  $\langle \mathcal{W}, \mathcal{C} \rangle$  be a g-manifold on  $\mathcal{W}$ . Then *H* is a maximal subset of *W* with respect to being Hausdorff and downward closed.

### Maximality

Let *H* be a g-history in a generalized BST model  $\mathcal{W} = \langle W, \leq, \mathcal{O} \rangle$ and  $\langle \mathcal{W}, \mathcal{C} \rangle$  be a g-manifold on  $\mathcal{W}$ . Then *H* is a maximal subset of *W* with respect to being Hausdorff and downward closed.

Let  $\langle \mathcal{W}, \mathcal{C} \rangle$  be a g-manifold on  $\mathcal{W} = \langle W, \preceq, \mathcal{O} \rangle$  and  $\mathcal{T}(W)$  be its manifold topology. Then: if A is a maximal subset of W with respect to being

Hausdorff and downward closed, then  $A \in gHist$ .

# Importance (if any):

- two constructions of a possible history, via consistency and via maximal Hausdorfness, yield same thing
- spacetime = maximal Hausdorff manifold in a larger thing
- GR-firendly branching.

## Special thanks to:

Nuel Belnap Petr Hoŕava

## END

## THANK YOU FOR YOUR ATTENTION