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Aim: 
to construct structures that generalize GR 
spacetimes and allow for indeterminism 
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The Hausdorff property

Let T (X) be a topology on set X . T (X) has the

Hausdorff property iff for every x, y ∈ X there

are Ox, Oy ∈ T (X) such that x ∈ Ox, y ∈ Oy and

Ox ∩Oy = ∅
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Logic for (in)determinism, tenses, and agency
(Prior-Kripke-Thomason, Belnap, ...)
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Interplay of tenses, possibilities and agents’ actions

Logic for (in)determinism, tenses, and agency
(Prior-Kripke-Thomason, Belnap, ...)

Yesterday both X and non-X were possible.
Today it is already settled that X occurred.

5



!

¬!

¬!

¬!

¬!

¬!

¬!

¬!

¬!

¬!

¬!

¬!

h

e

h'

Branching Time (BT) semantics (Kripke -Prior- 
Thomason): formulas are evaluated at the event/
history pairs, i.e., M, e/h |= ϕ

e/h |= F : φ but e/h� |= ¬F : φ
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Problem:   hyper-events
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Problem:   hyper-events

- simultaneity assumed, BT is a non-relativistic 
framework
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Problem:   hyper-events

- simultaneity assumed, BT is a non-relativistic 
framework

- the Pittsburgh worry: no room for actions of 
independent agents 
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Solution:
Branching Space-Times (BST) (Belnap 1992)

+_
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Two histories (h, h’), one choice point (e), i.e., a 
maximal point in the intersection of h and h’.
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Different behavior of maximal chains in a history
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Failure of the Hausdorff property ?
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Results (Belnap, Kishida, Placek):

a multi-history BST model is generically non-
Hausdorff (in the Bartha topology);

each history in a BST model is Hausdorff (in the 
Bartha topology)

Direction: a spacetime/history is Hausdorff, a 
bundle of spacetimes is not Hausdorff
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GR and Hausdorff
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Standard: a GR spacetime is a smooth 4-dim 
Lorenzian manifold, satisfying the Hausdorff 
property and the countable cover condition.
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GR and Hausdorff

Standard: a GR spacetime is a smooth 4-dim 
Lorenzian manifold, satisfying the Hausdorff 
property and the countable cover condition.

Results (Belnap, Kishida, Placek):

a multi-history BST model is generically non-
Hausdorff (in the Bartha topology);

each history in a BST model is Hausdorff (in the 
Bartha topology)

A reaction to singularity theorems (Hawking, 
Penrose, early 1970’s) -
allow for non-Hausdorff spacetimes
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Initial results were encouraging: a non-Hausdorff 
extension of Taub-NUT spacetime has no 
bifurcating geodesics or other causal anomalies. 
(Hajicek 1971) 
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Initial results were encouraging: a non-Hausdorff 
extension of Taub-NUT spacetime has no 
bifurcating geodesics or other causal anomalies. 
(Hajicek 1971) 

Results (Belnap, Kishida, Placek):

a multi-history BST model is generically non-
Hausdorff (in the Bartha topology);

each history in a BST model is Hausdorff (in the 
Bartha topology)

A series of blows:
non-Hausdorff spacetime violates the strong 
causality condition (Hajicek 1972).
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Non-Hausdorff comes with a price (for a survey, 
see Earman 2008)
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Non-Hausdorff comes with a price (for a survey, 
see Earman 2008)

Back to sanity: 
“I must ... return firmly to sanity by repeating to 
myself three times: spacetime is a Hausdorff 
differentiable manifold; spacetime is a 
Hausdorff ...”(Penrose 1979).
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Consensus:
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Results (Belnap, Kishida, Placek):

a multi-history BST model is generically non-
Hausdorff (in the Bartha topology);

each history in a BST model is Hausdorff (in the 
Bartha topology)

Project:
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Results (Belnap, Kishida, Placek):

a multi-history BST model is generically non-
Hausdorff (in the Bartha topology);

each history in a BST model is Hausdorff (in the 
Bartha topology)

Begin with a larger structure which has room 
for spacetime and for alternative possibilities.

Project:
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Results (Belnap, Kishida, Placek):

a multi-history BST model is generically non-
Hausdorff (in the Bartha topology);

each history in a BST model is Hausdorff (in the 
Bartha topology)

Begin with a larger structure which has room 
for spacetime and for alternative possibilities.
Define spacetimes as maximal Hausdorff 
submanifolds

Project:
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Idea: take the concept of normal convex set 
 from GR;  since BST comes with the notion of 
alternative possibilities, generalize it to make  
room for alternative possibilitires. Call it: patch. 
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A pairW = �W,�,O�, where W �= ∅, � is a pre-order
on W , and O ⊆ P(W ), is a generalized BST model iff
for every e ∈ W there is a set of patches Oe ⊆ O around e

such that for all O ∈ Oe:
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– ∀e�∈O∀t∈MC(W ; e�) (∃x,y∈ t ∩O(x≺|O e� ≺|O y

∧ t
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– ∀e�∈O∀t∈MC(W ; e�) (∃x,y∈ t ∩O(x≺|O e� ≺|O y

∧ t
�|Ox;≺|Oy⊆O);

– every lower bounded chain in �O,�|O� has
an infimum in O;
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– if a chain C in �O,�|O� is upper bounded by b ∈ O,
then B := {x ∈ Oe | C �|O x ∧ x �|O b} has
a unique minimum,
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– if a chain C in �O,�|O� is upper bounded by b ∈ O,
then B := {x ∈ Oe | C �|O x ∧ x �|O b} has
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– if x, y and O and x � z � y, then z ∈ O; and
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– if a chain C in �O,�|O� is upper bounded by b ∈ O,
then B := {x ∈ Oe | C �|O x ∧ x �|O b} has
a unique minimum,

– if x, y and O and x � z � y, then z ∈ O; and

3. O =
�
{Oe | e ∈ W};

4. If x, y ∈ O ∩O�, where O,O� ∈ O, then x �|O y

iff x �|O� y.
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Seeds of modal inconsistency: splitting pairs
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LetW = �W,�,O� be a generalized BST model and
O ∈ O. We say that e, e� ∈ O form a splitting pair in O,
iff e �= e� and there is a chain C in �O,�|O� such
that e and e� are minimal upper bounds of C in O.
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If there is a splitting pair {x, x�}, then
¬∃z ∈ W (x � z ∧ x� � z).

How splitting pairs mesh with the pre-order?
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Gonsistency

{e, e�} ⊆W is consistent iff there is no splitting
pair {x, x�} such that x � e and x� � e�.
A ⊆W is consistent iff A is pairwise consistent.

22



22

Gonsistency

{e, e�} ⊆W is consistent iff there is no splitting
pair {x, x�} such that x � e and x� � e�.
A ⊆W is consistent iff A is pairwise consistent.

e, e� ∈ W are inconsistent iff there is a splitting
pair {x, x�} such x � e ∧ x� � e�.

22



22

Gonsistency

{e, e�} ⊆W is consistent iff there is no splitting
pair {x, x�} such that x � e and x� � e�.
A ⊆W is consistent iff A is pairwise consistent.

e, e� ∈ W are inconsistent iff there is a splitting
pair {x, x�} such x � e ∧ x� � e�.
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There is at least one maximal pairwise consistent
subset of W .
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Let A, A� be maximal consistent subsets of W . Then:

(1) A is downward closed.

(2) A has no maximal∗ and no minimal elements

(3) If e� ∈ A� \ A, then there is a “choice pair” {x, x�} for
A and A�, i.e., there is a a chain C ⊆ A ∩A�, such that
x = supA(C), x� = supA�(C), x �= x�, and x� � e�

(4) If e, e�, e∗ ∈ W and e � e∗, e� � e∗, then there is A
s.t. e, e�, e∗ ∈ A.
.
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Terminology: 
maximal consistent subsets of generalized BST 
are called g-histories

24



25

g-manifold: putting differential structure on a 
generalized BST model 

(generalization of the Geroch-Malament approach)
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n-g-chart

An n-g-chart on a modelW = �W,�,O� is a pair �O,ϕ�,
where O∈O and ϕ : O → Rn satisfies, for every H∈Hist

If O ∩H �= ∅, then
ϕ|H∩O is injective (i.e., one-to-one),
ϕ[O ∩H] is an open subset of Rn, and
∀e, e� ∈ O ∩H e ≺|O e� ↔ ϕ(e) <M ϕ(e�).
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Compatibility of charts
Two n-g-charts �O1, ϕ1� and �O2, ϕ2� are compatible
iff for every H ∈ gHist either O1 ∩O2 ∩H = ∅ or
O1 ∩O2 ∩H �= ∅ and these two conditions obtain:
(1) ϕi[O1 ∩O2 ∩H] (i=1, 2) are open subsets of Rn

(2) ϕ2ϕ
−1
1 : ϕ1[O1 ∩O2 ∩H]→Rn and

ϕ1ϕ
−1
2 : ϕ2[O1 ∩O2 ∩H] → Rn are smooth.
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n-g-manifold

An n-g-manifold is a pair �W, C�, whereW = �W,�,O�
is a generalized BST model and Cis a set of n-g-charts
onW satisfying:
(M1) Any two n-g-charts in C are compatible.
(M2) For every p∈W there is �O,ϕ�∈C such that p ∈ O.
(M3) C is maximal in the sense that every n-g-chart onW
that is compatible with each n-g-chart in C belongs to C.
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g-manifold topology

Let �W, C� be a g-manifold on a generalized BST model
W = �W,�,O�. We say that S ⊆ W is open in the g-manifold
topology, S ∈ T(W ), iff

∀p∈S ∃ �O,ϕ�∈C (p ∈ O ∧O ⊆ S).
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Local Euclidean?
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Local Euclidean?

If a generalized BST model has a maximal element
in the intersection of some two g-histories,
then T (W ) is not locally Euclidean.
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Local Euclidean?

If a generalized BST model has a maximal element
in the intersection of some two g-histories,
then T (W ) is not locally Euclidean.

However, each g-history in a generalized BST model

is locally Euclidean in this sense:

for each g-history H , the subspace topology T⊆W (H)
is locally Euclidean.
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Maximality

Let H be a g-history in a generalized BST modelW=�W,�,O�
and �W, C� be a g-manifold onW . Then H is a maximal subset

of W with respect to being Hausdorff and downward closed.
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Maximality

Let H be a g-history in a generalized BST modelW=�W,�,O�
and �W, C� be a g-manifold onW . Then H is a maximal subset

of W with respect to being Hausdorff and downward closed.

Let �W, C� be a g-manifold on W = �W,�,O� and T (W ) be its

manifold topology.

Then: if A is a maximal subset of W with respect to being

Hausdorff and downward closed, then A ∈ gHist.
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Importance (if any):
- two constructions of a possible history, via 
consistency and via maximal Hausdorfness, yield 
same thing
- spacetime = maximal Hausdorff manifold in a 
larger thing 
- GR-firendly branching.
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