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Let M, F be given sets (classes) with a |=: M — F relation, and
let Ac F.
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Definition
Let M, F be given sets (classes) with a |=: M — F relation, and
let A< F. For K< M and I' © F we define

Th2 K :={peA|VMeK: Mk ¢}
ModT':={M e M |Vpel': M = ¢}

Then Mod Th® is a closure operator over M.
A subclass K = M is axiomatizable by A-"formulas” iff

Mod Th2 K = K.

Definition
Let M be a category, and Q@ € M a class of arrows. For € ObM:

QK :={AecObM:3A 3 M, Me K}
QK :={BeObM:IM 3 B, M e K}
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An abstract infinitary logic

Besides M, let a category S of 'Situations’ be given, connected to
M by S — M morphisms (called interpretations of S in M).
Such thing is known as (the collage of) a profunctor L : S - M.

F := { trees in S without infinite path }

For each M € ObM and ¢ € F, consider a game:

~or def
T MEp &
R : ~ B can answer every move of Adam
: T SZ #f;: (Evre has winning strategy)
Adm: | Be: // : \x\
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If L has initial object (0), Boolean logical connectives arise:
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M := M(Ddt
ObS := {{X,TI') | I" < {atomic fmas on X}}
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An abstract infinitary logic

Example (FOL;)
M := M(Ddt
ObS := {(X,TI') | I" < {atomic fmas on X}}
u:{(X,I') > M interpretation, if u: X — M s.t. M =T[u].

(Seems particularly useful for Partial Algebras. [Burmeister])

Example (Diagrammatic language of categories)
M := Cat
S := {graphs with commutativity conditions}
interpretations := diagrams

[Freyd-Scedrov]
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Diagonal-fill-in

Definition
Ford eSS, feM:

For DCS, Q € M:

Example

71(Q) :
(D) :

240 - []) = Surj,

{
{
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f !
§|VfeQ:5af}
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Diagonal-fill-in

Definition
For o €S, feM:
R _
def a,”
onaf v =
. L
f f

For DCSS, @ € M:

71(Q) :

{0|vfeQ:60f}
(D) = {

f|IVseD:6Af}

Example

(0 — [x]) = Surj,
2 (Surj) 2 (X, T) — (X', TH},



Diagonal-fill-in

Definition
Ford eSS, feM:
b P
def d,”
SAf v I
. L
f f

For DCS, Q € M:

71(Q) :

{0|vieQ:é1af}
(D) = {f

|Vée D:0[Af}

Example

(0 — [x]) = Surj,

AN (Surj) 2 {{X,T) — (X', T},
2 (Emb) 2 {(X,T) — (X, I")}
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Theorem (“Easy” direction)
a) If £ € ObM is axiomatizable by Ag’e fmas, then
QKck




Preservation theorem

Definition
A%’e := {¢ | arrows of Ee € 11 (Q)}
A2 (| 0 ) < AF)

Theorem (“Easy” direction)
a) If K < ObM is axiomatizable by AEQ"E fmas, then
QKck
b) If K < ObM is axiomatizable by Ag™ fmas, then
drck




Preservation theorem

A?f' := {¢ | arrows of Ee € 11 (Q)}

Theorem (“Easy” direction)
a) If £ < ObM is axiomatizable by AfF fmas, then
0KckK

Proof.



Preservation theorem
AZP = {p | arrows of Bre € 7' (Q)}
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Preservation theorem
AZP = {p | arrows of Bre € 7' (Q)}

Theorem (“Easy” direction)
a) If £ < ObM is axiomatizable by AfF fmas, then
0KckK

Proof.

LetAiM,feQ,MelC be given, and a p € AP s.t. M = .

/\f\ﬂ
Sl ®1

R/-\\\
N,
S, ®i

%
Adem: : RNy
Ee

v y
A?M



Preservation theorem

A = { | arrows of Ere € '(Q)}

Theorem (“Easy” direction)
a) If £ < ObM is axiomatizable by AfF fmas, then
0KckK

Proof.

LetAiM,feQ,MelC be given, and a p € AP s.t. M = .



Preservation theorem

A = { | arrows of Ere € '(Q)}

Theorem (“Easy” direction)
a) If £ < ObM is axiomatizable by AfF fmas, then
0KckK

Proof.

LetAiM,feQ,MelC be given, and a p € AP s.t. M = .



Preservation theorem

A = { | arrows of Ere € '(Q)}

Theorem (“Easy” direction)
a) If £ < ObM is axiomatizable by AfF fmas, then
0KckK

Proof.
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Preservation theorem

Definition
QQ < M can be described by A < F fmas, if

VM eObM 3ppreA: Ao <3 f €Q
M—A
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Preservation theorem

Definition
@ € M can be described by A © F fmas, if

VM eObM 3ppreA: Ao <3 f €Q
M—A

Theorem (Other direction, abstract)
In that case, for any L € ObM:
a) QKK = ModTh 2K cKk

A
b) KK = ModTh' K< K
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Preservation theorem

Theorem
Assume the following:
Q = (D) for some D € S.
L has pushouts,
each M € ObM has a coreflection in S (S 7, M) which is
also a reflection arrow [It implies basically Ml — §]
Then @ can be described by Ag’“ formulas

Proof.
For M € ObM, take its coreflection S3; € ObS,
5 9
for all 6 € D and €¢*> , take their pushout ¥ |
Sy Swm 095,5

oy = 00— Su § {SM with all right inverses o.




Looking for conditions for I'; A € F to ensure
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Looking for conditions for I'; A € F to ensure

l.u.b.(Mod Th" |, Mod Th? ) = Mod Th" "4

Mod Th{ Positive fmas} __ H(: Sur])' )'
Mod Th{Quasiequations} — SP
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WANTED! Interpolation theorem

Looking for conditions for I'; A € F to ensure

l.u.b.(Mod Th" |, Mod Th? ) = Mod Th" "4

Example

Mod Th{Positive fmas} _ H(: 3777))v
Mod Th{Quasiequations} — SP

Example

Mod Th{Finite fmas} _ EeUp
with any “nice” A € F...
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Thank you,
Gouranga:)
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