Abstract H and S preservation theorems

Bertalan Pécsi zellerede@gmail.com

12 Sept 2012

Definition

Let \mathcal{M} , \mathcal{F} be given sets (classes) with a \models : $\mathcal{M} - \mathcal{F}$ relation, and let $\Delta \subseteq \mathcal{F}$.

Definition

Let \mathcal{M} , \mathcal{F} be given sets (classes) with a \models : $\mathcal{M} - \mathcal{F}$ relation, and let $\Delta \subseteq \mathcal{F}$. For $\mathcal{K} \subseteq \mathcal{M}$ and $\Gamma \subseteq \mathcal{F}$ we define

$$\mathbf{Th}^{\Delta} \mathcal{K} := \{ \varphi \in \Delta \mid \forall M \in \mathcal{K} : M \models \varphi \}$$

$$\mathbf{Mod} \, \Gamma := \{ M \in \mathcal{M} \mid \forall \varphi \in \Gamma : M \models \varphi \}$$

Definition

Let \mathcal{M} , \mathcal{F} be given sets (classes) with a \models : $\mathcal{M} - \mathcal{F}$ relation, and let $\Delta \subseteq \mathcal{F}$. For $\mathcal{K} \subseteq \mathcal{M}$ and $\Gamma \subseteq \mathcal{F}$ we define

$$\mathbf{Th}^{\Delta} \mathcal{K} := \{ \varphi \in \Delta \mid \forall M \in \mathcal{K} : M \models \varphi \}$$

$$\mathbf{Mod} \, \Gamma := \{ M \in \mathcal{M} \mid \forall \varphi \in \Gamma : M \models \varphi \}$$

Then $\operatorname{\mathbf{Mod}} \operatorname{\mathbf{Th}}^{\Delta}$ is a *closure operator* over \mathcal{M} .

Definition

Let \mathcal{M} , \mathcal{F} be given sets (classes) with a \models : $\mathcal{M} - \mathcal{F}$ relation, and let $\Delta \subseteq \mathcal{F}$. For $\mathcal{K} \subseteq \mathcal{M}$ and $\Gamma \subseteq \mathcal{F}$ we define

$$\mathbf{Th}^{\Delta} \mathcal{K} := \{ \varphi \in \Delta \mid \forall M \in \mathcal{K} : M \models \varphi \}$$

$$\mathbf{Mod} \, \Gamma := \{ M \in \mathcal{M} \mid \forall \varphi \in \Gamma : M \models \varphi \}$$

Then $\mathbf{Mod}\,\mathbf{Th}^{\Delta}$ is a closure operator over \mathcal{M} . A subclass $\mathcal{K}\subseteq\mathcal{M}$ is axiomatizable by Δ -"formulas" iff $\mathbf{Mod}\,\mathbf{Th}^{\Delta}\,\mathcal{K}=\mathcal{K}.$

Definition

Let \mathcal{M} , \mathcal{F} be given sets (classes) with a \models : $\mathcal{M} - \mathcal{F}$ relation, and let $\Delta \subseteq \mathcal{F}$. For $\mathcal{K} \subseteq \mathcal{M}$ and $\Gamma \subseteq \mathcal{F}$ we define

$$\mathbf{Th}^{\Delta} \mathcal{K} := \{ \varphi \in \Delta \mid \forall M \in \mathcal{K} : M \models \varphi \}$$

$$\mathbf{Mod} \, \Gamma := \{ M \in \mathcal{M} \mid \forall \varphi \in \Gamma : M \models \varphi \}$$

Then $\operatorname{\mathbf{Mod}} \operatorname{\mathbf{Th}}^\Delta$ is a closure operator over \mathcal{M} . A subclass $\mathcal{K} \subseteq \mathcal{M}$ is axiomatizable by Δ -"formulas" iff

$$\mathbf{Mod}\,\mathbf{Th}^{\Delta}\,\mathcal{K}=\mathcal{K}.$$

Definition

Let $\mathbb M$ be a category, and $Q\subseteq \mathbb M$ a class of arrows. For $\mathcal K\subseteq \mathrm{Ob}\mathbb M$:

$$\overline{Q}\mathcal{K} := \{ A \in \text{ObM} : \exists A \xrightarrow{Q} M, M \in \mathcal{K} \}
\overline{Q}\mathcal{K} := \{ B \in \text{ObM} : \exists M \xrightarrow{Q} B, M \in \mathcal{K} \}$$

Besides \mathbb{M} , let a category \mathbb{S} of 'Situations' be given, connected to \mathbb{M} by $S \to M$ morphisms (called *interpretations* of S in M).

Besides \mathbb{M} , let a category \mathbb{S} of 'Situations' be given, connected to \mathbb{M} by $S \to M$ morphisms (called *interpretations* of S in M). Such thing is known as (the collage of) a profunctor $\mathbb{L} : \mathbb{S} \to \mathbb{M}$.

Besides \mathbb{M} , let a category \mathbb{S} of 'Situations' be given, connected to \mathbb{M} by $S \to M$ morphisms (called *interpretations* of S in M). Such thing is known as (the collage of) a profunctor $\mathbb{L} : \mathbb{S} \to \mathbb{M}$.

```
\mathcal{F}:=\{\text{ trees in }\mathbb{S}\text{ without infinite path }\}
```

Besides \mathbb{M} , let a category \mathbb{S} of 'Situations' be given, connected to \mathbb{M} by $S \to M$ morphisms (called *interpretations* of S in M). Such thing is known as (the collage of) a profunctor $\mathbb{L} : \mathbb{S} \to \mathbb{M}$.

$$\mathcal{F}:=\{\text{ trees in }\mathbb{S}\text{ without infinite path }\}$$

For each $M \in Ob\mathbb{M}$ and $\varphi \in \mathcal{F}$, consider a *game*:

M

Besides \mathbb{M} , let a category \mathbb{S} of 'Situations' be given, connected to \mathbb{M} by $S \to M$ morphisms (called *interpretations* of S in M). Such thing is known as (the collage of) a profunctor $\mathbb{L} : \mathbb{S} \twoheadrightarrow \mathbb{M}$.

$$\mathcal{F} := \{ \text{ trees in } \mathbb{S} \text{ without infinite path } \}$$

For each $M \in Ob\mathbb{M}$ and $\varphi \in \mathcal{F}$, consider a *game*:

Besides \mathbb{M} , let a category \mathbb{S} of 'Situations' be given, connected to \mathbb{M} by $S \to M$ morphisms (called *interpretations* of S in M). Such thing is known as (the collage of) a profunctor $\mathbb{L} : \mathbb{S} \twoheadrightarrow \mathbb{M}$.

$$\mathcal{F} := \{ \text{ trees in } \mathbb{S} \text{ without infinite path } \}$$

For each $M \in Ob\mathbb{M}$ and $\varphi \in \mathcal{F}$, consider a *game*:

Besides \mathbb{M} , let a category \mathbb{S} of 'Situations' be given, connected to \mathbb{M} by $S \to M$ morphisms (called *interpretations* of S in M). Such thing is known as (the collage of) a profunctor $\mathbb{L} : \mathbb{S} \twoheadrightarrow \mathbb{M}$.

$$\mathcal{F} := \{ \text{ trees in } \mathbb{S} \text{ without infinite path } \}$$

For each $M \in \text{Ob}\mathbb{M}$ and $\varphi \in \mathcal{F}$, consider a *game*:

Besides \mathbb{M} , let a category \mathbb{S} of 'Situations' be given, connected to \mathbb{M} by $S \to M$ morphisms (called *interpretations* of S in M). Such thing is known as (the collage of) a profunctor $\mathbb{L} : \mathbb{S} \twoheadrightarrow \mathbb{M}$.

$$\mathcal{F} := \{ \text{ trees in } \mathbb{S} \text{ without infinite path } \}$$

For each $M \in \text{Ob}\mathbb{M}$ and $\varphi \in \mathcal{F}$, consider a game:

$$M \models \varphi \stackrel{def}{\Leftrightarrow}$$

Eve can answer every move of Adam (Eve has winning strategy)

If \mathbb{L} has initial object (0), Boolean logical connectives arise:

$$\neg \varphi := 0 \to \varphi$$

If \mathbb{L} has initial object (0), Boolean logical connectives arise:

$$\neg \varphi := 0 \to \varphi$$

If \mathbb{L} has initial object (0), Boolean logical connectives arise:

$$\neg \varphi := 0 \to \varphi$$

Example (FOL $_t$)

 $\mathbb{M} := \mathbb{M} o d_t$

Example (
$$\mathrm{FOL}_t$$
)
$$\mathbb{M} := \mathbb{M} \oplus \mathrm{d}_t$$

$$\mathrm{Ob}\mathbb{S} := \{\langle X, \Gamma \rangle \mid \Gamma \subseteq \{ \mathsf{atomic\ fmas\ on\ } X \} \}$$

```
\mathbb{M} := \mathbb{M} \circ \mathrm{d}_t \mathrm{Ob} \mathbb{S} := \{ \langle X, \Gamma \rangle \mid \Gamma \subseteq \{ \mathrm{atomic\ fmas\ on\ } X \} \} u : \langle X, \Gamma \rangle \to M \ \textit{interpretation, if} \ u : X \to M \ \mathrm{s.t.} \ M \models \Gamma[u].
```

```
Example (FOL<sub>t</sub>) \mathbb{M} := \mathbb{M} \text{ od}_t \text{ObS} := \{ \langle X, \Gamma \rangle \mid \Gamma \subseteq \{ \text{atomic fmas on } X \} \} u : \langle X, \Gamma \rangle \to M \text{ interpretation, if } u : X \to M \text{ s.t. } M \models \Gamma[u].
```

(Seems particularly useful for Partial Algebras. [Burmeister])

```
Example (FOL<sub>t</sub>) \mathbb{M} := \mathbb{M} \oplus \mathrm{d}_t \mathrm{Ob} \mathbb{S} := \{ \langle X, \Gamma \rangle \mid \Gamma \subseteq \{ \mathsf{atomic\ fmas\ on\ } X \} \} u : \langle X, \Gamma \rangle \to M \ \mathit{interpretation}, \ \mathsf{if} \ u : X \to M \ \mathsf{s.t.} \ M \models \Gamma[u].
```

(Seems particularly useful for Partial Algebras. [Burmeister])

Example (Diagrammatic language of categories)

 $\mathbb{M} := \mathbb{C}at$

 $\mathbb{S} := \{ \text{graphs with } commutativity conditions} \}$ interpretations := diagrams

[Freyd-Scedrov]

Definition

For $\delta \in \mathbb{S}$, $f \in \mathbb{M}$:

$$\delta \boxtimes f \stackrel{def}{\Leftrightarrow}$$

Definition

For $\delta \in \mathbb{S}$, $f \in \mathbb{M}$:

$$\delta \boxtimes f \stackrel{def}{\Leftrightarrow} \forall \bigvee_{-f}^{\delta}$$

Definition

For $\delta \in \mathbb{S}$, $f \in \mathbb{M}$:

$$\delta \boxtimes f \overset{def}{\Leftrightarrow} \forall \bigvee_{f} \overset{\delta}{\longrightarrow} \bigvee_{f} \exists \bigvee_{f} \overset{\delta}{\longrightarrow} \bigvee_{f} \bigvee_{f$$

Definition

For $\delta \in \mathbb{S}$, $f \in \mathbb{M}$:

$$\delta \boxtimes f \overset{def}{\Leftrightarrow} \forall \bigvee_{f} \overset{\delta}{\longrightarrow} \bigvee_{f} \exists \bigvee_{f} \overset{\delta}{\longrightarrow} \bigvee_{f} \bigvee_{f$$

For $D \subseteq \mathbb{S}$, $Q \subseteq \mathbb{M}$:

Example

$$\square^{\downarrow}(0 \to [x]) = \mathcal{S}urj$$

990

Definition

For $\delta \in \mathbb{S}$, $f \in \mathbb{M}$:

$$\delta \boxtimes f \overset{def}{\Leftrightarrow} \forall \bigvee_{f}^{-\frac{\delta}{d}} \exists \bigvee_{f}^{\frac{\delta}{d}}$$

For $D \subseteq \mathbb{S}$, $Q \subseteq \mathbb{M}$:

$$\square^{\uparrow}(Q) := \{ \delta \mid \forall f \in Q : \delta \square f \}$$
$$\square^{\downarrow}(D) := \{ f \mid \forall \delta \in D : \delta \square f \}$$

Example

$$\square^{\downarrow}(0 \to [x]) = \mathcal{S}urj,$$

$$\square^{\uparrow}(\mathcal{S}urj) \supseteq \{\langle X, \Gamma \rangle \to \langle X', \Gamma \rangle\},$$

Definition

For $\delta \in \mathbb{S}$, $f \in \mathbb{M}$:

$$\delta \boxtimes f \overset{def}{\Leftrightarrow} \forall \bigvee_{f}^{-\frac{\delta}{d}} \exists \bigvee_{f}^{\frac{\delta}{d}}$$

For $D \subseteq \mathbb{S}$, $Q \subseteq \mathbb{M}$:

Example

$$\square^{\downarrow}(0 \to [x]) = \mathcal{S}urj,$$

$$\square^{\uparrow}(\mathcal{S}urj) \supseteq \{\langle X, \Gamma \rangle \to \langle X', \Gamma \rangle \},$$

$$\square^{\uparrow}(\mathcal{E}mb) \supseteq \{\langle X, \Gamma \rangle \to \langle X, \Gamma' \rangle \}$$

Definition

$$\Delta_Q^{\operatorname{E\!we}} := \{\varphi \mid \operatorname{arrows\ of\ E\!we} \in \boxtimes^\uparrow(Q)\}$$

Definition

$$\begin{split} \Delta_Q^{\text{Eive}} &:= \{\varphi \mid \text{arrows of } \text{Eve} \in \boxtimes^\uparrow(Q)\} \\ \Delta_Q^{\text{Adam}} &:= \{\varphi \mid (0 \to \varphi) \in \Delta_Q^{\text{Eive}}\} \end{split}$$

Definition

$$\begin{split} \Delta_Q^{\text{Exe}} &:= \{\varphi \mid \text{arrows of Exe} \in {\textstyle \bigsqcup^\uparrow}(Q)\} \\ \Delta_Q^{\text{Adam}} &:= \{\varphi \mid (0 \to \varphi) \in \Delta_Q^{\text{Exe}}\} \end{split}$$

Theorem ("Easy" direction)

a) If $\mathcal{K}\subseteq \mathrm{Ob}\mathbb{M}$ is axiomatizable by Δ_Q^{Eve} fmas, then

$$\overleftarrow{Q}\mathcal{K}\subseteq\mathcal{K}$$

Definition

$$\begin{split} \Delta_Q^{\text{Eve}} &:= \{\varphi \mid \text{arrows of } \text{Eve} \in \text{\boxtimes}^{\uparrow}(Q)\} \\ \Delta_Q^{\text{Adam}} &:= \{\varphi \mid (0 \to \varphi) \in \Delta_Q^{\text{Eve}}\} \end{split}$$

Theorem ("Easy" direction)

a) If $\mathcal{K}\subseteq \mathrm{Ob}\mathbb{M}$ is axiomatizable by $\Delta_Q^{\mathtt{Eve}}$ fmas, then

$$\overline{Q}\mathcal{K}\subseteq\mathcal{K}$$

b) If $\mathcal{K}\subseteq \mathrm{Ob}\mathbb{M}$ is axiomatizable by $\Delta_Q^{\mathtt{Adem}}$ fmas, then

$$\overrightarrow{Q}\mathcal{K}\subseteq\mathcal{K}$$

$$\Delta_Q^{\operatorname{Eve}} := \{\varphi \mid \operatorname{arrows} \text{ of } \operatorname{Eve} \in {\boxtimes^\uparrow}(Q)\}$$

Theorem ("Easy" direction)

a) If $\mathcal{K}\subseteq \mathrm{Ob}\mathbb{M}$ is axiomatizable by $\Delta_Q^{\mathtt{Eve}}$ fmas, then

$$\overline{Q}\mathcal{K}\subseteq\mathcal{K}$$

Proof.

$$\Delta_Q^{\operatorname{Exe}} := \{\varphi \mid \operatorname{arrows\ of\ Exe} \in {\boxtimes^\uparrow}(Q)\}$$

Theorem ("Easy" direction)

a) If $\mathcal{K}\subseteq \mathrm{Ob}\mathbb{M}$ is axiomatizable by $\Delta_Q^{\mathtt{Eve}}$ fmas, then

$$\overline{Q}\mathcal{K}\subseteq\mathcal{K}$$

Proof.

Let $A\stackrel{f}{\to} M$, $f\in Q$, $M\in \mathcal{K}$ be given, and a $\varphi\in\Delta_Q^{\operatorname{Bire}}$ s.t. $M\models \varphi.$

$$A \xrightarrow{f} M$$

$$\Delta_Q^{\operatorname{Eve}} := \{\varphi \mid \operatorname{arrows} \text{ of } \operatorname{Eve} \in {\boxtimes^\uparrow}(Q)\}$$

Theorem ("Easy" direction)

a) If $\mathcal{K}\subseteq \mathrm{Ob}\mathbb{M}$ is axiomatizable by $\Delta_Q^{\mathtt{Eve}}$ fmas, then

$$\overline{Q}\mathcal{K}\subseteq\mathcal{K}$$

<u>Proof.</u>

Let $A\stackrel{f}{\to} M$, $f\in Q$, $M\in \mathcal{K}$ be given, and a $\varphi\in\Delta_Q^{\operatorname{Bire}}$ s.t. $M\models \varphi.$

$$\Delta_Q^{\operatorname{Eve}} := \{\varphi \mid \operatorname{arrows} \text{ of } \operatorname{Eve} \in {\boxtimes^\uparrow}(Q)\}$$

Theorem ("Easy" direction)

a) If $\mathcal{K}\subseteq \mathrm{Ob}\mathbb{M}$ is axiomatizable by $\Delta_Q^{\mathtt{Eve}}$ fmas, then

$$\overline{Q}\mathcal{K}\subseteq\mathcal{K}$$

Proof.

Let $A\stackrel{f}{\to} M$, $f\in Q$, $M\in \mathcal{K}$ be given, and a $\varphi\in\Delta_Q^{\operatorname{Bire}}$ s.t. $M\models \varphi.$

$$\Delta_Q^{\operatorname{Eve}} := \{\varphi \mid \operatorname{arrows} \text{ of } \operatorname{Eve} \in {\boxtimes^\uparrow}(Q)\}$$

Theorem ("Easy" direction)

a) If $\mathcal{K}\subseteq \mathrm{Ob}\mathbb{M}$ is axiomatizable by $\Delta_Q^{\mathtt{Eve}}$ fmas, then

$$\overline{Q}\mathcal{K}\subseteq\mathcal{K}$$

<u>Proof.</u>

Let $A \overset{f}{\to} M$, $f \in Q$, $M \in \mathcal{K}$ be given, and a $\varphi \in \Delta_Q^{\operatorname{Bire}}$ s.t. $M \models \varphi$.

$$\Delta_Q^{\operatorname{Eve}} := \{\varphi \mid \operatorname{arrows} \text{ of } \operatorname{Eve} \in {\boxtimes^\uparrow}(Q)\}$$

Theorem ("Easy" direction)

a) If $\mathcal{K}\subseteq \mathrm{Ob}\mathbb{M}$ is axiomatizable by $\Delta_Q^{\mathtt{Eve}}$ fmas, then

$$\overline{Q}\mathcal{K}\subseteq\mathcal{K}$$

Proof.

 $\text{Let } A \xrightarrow{f} M \text{, } f \in Q \text{, } M \in \mathcal{K} \text{ be given, and a } \varphi \in \Delta_Q^{\text{Bire}} \text{ s.t. } M \models \varphi.$

$$\Delta_Q^{\operatorname{Bve}} := \{\varphi \mid \operatorname{arrows} \text{ of } \operatorname{Eve} \in {\textstyle \bigsqcup}^{\uparrow}(Q)\}$$

Theorem ("Easy" direction)

a) If $\mathcal{K}\subseteq \mathrm{Ob}\mathbb{M}$ is axiomatizable by $\Delta_Q^{\mathtt{Eve}}$ fmas, then

$$\overline{Q}\mathcal{K}\subseteq\mathcal{K}$$

Proof.

 $\text{Let } A \xrightarrow{f} M \text{, } f \in Q \text{, } M \in \mathcal{K} \text{ be given, and a } \varphi \in \Delta_Q^{\text{Bire}} \text{ s.t. } M \models \varphi.$

Definition

 $Q\subseteq \mathbb{M}$ can be described by $\Delta\subseteq \mathcal{F}$ fmas, if

$$\forall M \in \text{ObM} \ \exists \varphi_M \in \Delta : \ A \models \varphi_M \Leftrightarrow \exists \underset{M \to A}{f} \in Q$$

Definition

 $Q\subseteq \mathbb{M}$ can be described by $\Delta\subseteq \mathcal{F}$ fmas, if

$$\forall M \in \mathrm{Ob}\mathbb{M} \ \exists \varphi_M \in \Delta: \ A \models \varphi_M \Leftrightarrow \exists \underset{M \to A}{f} \in Q$$

Theorem (Other direction, abstract)

In that case, for any $\mathcal{K} \subseteq \mathrm{Ob}\mathbb{M}$:

a)
$$\overleftarrow{Q}\mathcal{K} \subseteq \mathcal{K} \Rightarrow \mathbf{Mod} \, \mathbf{Th}^{\neg \Delta} \, \mathcal{K} \subseteq \mathcal{K}$$

Definition

 $Q\subseteq \mathbb{M}$ can be described by $\Delta\subseteq \mathcal{F}$ fmas, if

$$\forall M \in \mathrm{Ob}\mathbb{M} \ \exists \varphi_M \in \Delta: \ A \models \varphi_M \Leftrightarrow \exists \underset{M \to A}{f} \in Q$$

Theorem (Other direction, abstract)

In that case, for any $\mathcal{K} \subseteq \mathrm{Ob}\mathbb{M}$:

a)
$$\overline{Q}\mathcal{K} \subseteq \mathcal{K} \Rightarrow \mathbf{Mod} \, \mathbf{Th}^{\neg \Delta} \mathcal{K} \subseteq \mathcal{K}$$

b)
$$\overrightarrow{Q}\mathcal{K} \subseteq \mathcal{K} \Rightarrow \mathbf{ModTh}^{\bigvee \Delta} \mathcal{K} \subseteq \mathcal{K}$$

Theorem

Assume the following:

$$Q = \square^{\downarrow}(D)$$
 for some $D \subseteq \mathbb{S}$.

Theorem

Assume the following:

$$Q = \square^{\downarrow}(D)$$
 for some $D \subseteq \mathbb{S}$.

 $\ensuremath{\mathbb{L}}$ has pushouts,

Theorem

Assume the following:

$$Q = \square^{\downarrow}(D)$$
 for some $D \subseteq \mathbb{S}$.

 ${\mathbb L}$ has pushouts,

each $M \in \mathrm{Ob}\mathbb{M}$ has a coreflection in $\mathbb{S}\left(S_M \xrightarrow{\jmath} M\right)$ which is also a reflection arrow [It implies basically $\mathbb{M} \hookrightarrow \mathbb{S}$]

Theorem

Assume the following:

$$Q = \square^{\downarrow}(D)$$
 for some $D \subseteq \mathbb{S}$.

 ${\mathbb L}$ has pushouts,

each $M \in \mathrm{Ob}\mathbb{M}$ has a coreflection in $\mathbb{S}\left(S_M \xrightarrow{\jmath} M\right)$ which is also a reflection arrow [It implies basically $\mathbb{M} \hookrightarrow \mathbb{S}$]

Then Q can be described by Δ_Q^{Adam} formulas

Theorem

Assume the following:

$$Q = \square^{\downarrow}(D)$$
 for some $D \subseteq \mathbb{S}$.

 $\ensuremath{\mathbb{L}}$ has pushouts,

each $M \in \mathrm{Ob}\mathbb{M}$ has a coreflection in $\mathbb{S}\left(S_M \xrightarrow{\jmath} M\right)$ which is also a reflection arrow [It implies basically $\mathbb{M} \hookrightarrow \mathbb{S}$]

Then Q can be described by Δ_Q^{Adam} formulas, so

- a) $\overleftarrow{Q}\mathcal{K}\subseteq\mathcal{K}$ \Rightarrow \mathcal{K} is axiomatizable by $\Delta_Q^{\operatorname{Bie}}$ fmas
- b) $\overrightarrow{Q}\mathcal{K}\subseteq\mathcal{K}$ \Rightarrow \mathcal{K} is axiomatizable by $\Delta_Q^{ ext{Adam}}$ fmas

Theorem

Assume the following:

$$Q={\boxtimes^{\downarrow}}(D) \text{ for some } D\subseteq \mathbb{S}.$$

 $\ensuremath{\mathbb{L}}$ has pushouts,

each $M \in \mathrm{Ob}\mathbb{M}$ has a coreflection in $\mathbb{S}\left(S_M \xrightarrow{\jmath} M\right)$ which is also a reflection arrow [It implies basically $\mathbb{M} \hookrightarrow \mathbb{S}$]

Then Q can be described by Δ_Q^{Adam} formulas, so

- a) $\overleftarrow{Q}\mathcal{K}\subseteq\mathcal{K}\iff\mathcal{K}$ is axiomatizable by $\Delta_Q^{\operatorname{Exe}}$ fmas
- b) $\overrightarrow{Q}\mathcal{K}\subseteq\mathcal{K}\iff\mathcal{K}$ is axiomatizable by $\Delta_Q^{ ext{Adam}}$ fmas

Theorem

Assume the following:

$$Q = \square^{\downarrow}(D)$$
 for some $D \subseteq \mathbb{S}$.

 $\ensuremath{\mathbb{L}}$ has pushouts,

each $M \in \mathrm{Ob}\mathbb{M}$ has a coreflection in $\mathbb{S}\left(S_M \xrightarrow{\mathcal{I}} M\right)$ which is also a reflection arrow [It implies basically $\mathbb{M} \hookrightarrow \mathbb{S}$]

Then Q can be described by Δ_Q^{Adam} formulas

Proof.

For $M \in \mathrm{Ob}\mathbb{M}$,

Theorem

Assume the following:

$$Q = \square^{\downarrow}(D)$$
 for some $D \subseteq \mathbb{S}$.

 $\ensuremath{\mathbb{L}}$ has pushouts,

each $M \in \mathrm{Ob}\mathbb{M}$ has a coreflection in $\mathbb{S}\left(S_M \xrightarrow{\mathcal{I}} M\right)$ which is also a reflection arrow [It implies basically $\mathbb{M} \hookrightarrow \mathbb{S}$]

Then Q can be described by Δ_Q^{Adam} formulas

Proof.

For $M \in ObM$, take its coreflection $S_M \in ObS$,

Theorem

Assume the following:

$$Q = \square^{\downarrow}(D)$$
 for some $D \subseteq \mathbb{S}$.

 $\ensuremath{\mathbb{L}}$ has pushouts,

each $M \in \mathrm{Ob}\mathbb{M}$ has a coreflection in $\mathbb{S}\left(S_M \xrightarrow{\mathcal{I}} M\right)$ which is also a reflection arrow [It implies basically $\mathbb{M} \hookrightarrow \mathbb{S}$]

Then Q can be described by Δ_Q^{Adam} formulas

Proof.

For $M \in ObM$, take its coreflection $S_M \in ObS$,

$$\text{for all } \delta \in D \text{ and } \underbrace{\overset{\delta}{\varepsilon \psi}}_{S_M} \text{, take their pushout } \underbrace{\overset{\delta}{\varepsilon \psi}}_{S_M} \underbrace{\overset{\delta}{\sigma_{\delta,\varepsilon}}}_{\sigma_{\delta,\varepsilon}}$$

$$\varphi_M := 0 \longrightarrow S_M \overbrace{\sigma_{\delta,\varepsilon}} \longrightarrow S_M \quad \text{with all right inverses } \varrho.$$

WANTED! Interpolation theorem

Looking for conditions for $\Gamma, \Delta \subseteq \mathcal{F}$ to ensure

$$l.u.b.(\mathbf{Mod}\,\mathbf{Th}^{\Gamma}\,,\;\mathbf{Mod}\,\mathbf{Th}^{\Delta}\,) = \mathbf{Mod}\,\mathbf{Th}^{\Gamma\cap\Delta}$$

WANTED! Interpolation theorem

Looking for conditions for $\Gamma, \Delta \subseteq \mathcal{F}$ to ensure

$$\mathit{l.u.b.}(\mathbf{Mod}\,\mathbf{Th}^{\Gamma}\,,\,\,\mathbf{Mod}\,\mathbf{Th}^{\Delta}\,) = \mathbf{Mod}\,\mathbf{Th}^{\Gamma \cap \Delta}$$

Example

$$\begin{split} \mathbf{Mod}\,\mathbf{Th}^{\{\text{Positive fmas}\}} &= \mathbf{H}(=\overrightarrow{\mathcal{S}\mathit{urj}}),\\ \mathbf{Mod}\,\mathbf{Th}^{\{\text{Quasiequations}\}} &= \mathbf{SP} \end{split}$$

WANTED! Interpolation theorem

Looking for conditions for $\Gamma, \Delta \subseteq \mathcal{F}$ to ensure

$$l.u.b.(\mathbf{Mod} \mathbf{Th}^{\Gamma}, \ \mathbf{Mod} \mathbf{Th}^{\Delta}) = \mathbf{Mod} \mathbf{Th}^{\Gamma \cap \Delta}$$

Example

$$\begin{aligned} \mathbf{Mod} \, \mathbf{Th}^{\{\mathsf{Positive} \, \mathsf{fmas}\}} &= \mathbf{H}(=\overrightarrow{\mathcal{S}\mathit{urj}}), \\ \mathbf{Mod} \, \mathbf{Th}^{\{\mathsf{Quasiequations}\}} &= \mathbf{SP} \end{aligned}$$

Example

$$\mathbf{Mod}\,\mathbf{Th}^{\{\mathsf{Finite}\;\mathsf{fmas}\}} = \mathbf{EeUp}$$
 with any "nice" $\Delta\subseteq\mathcal{F}...$

Thank you, Gouranga:)