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Motivation

Fuzzy logic (interval-values form an infinite
Boolean algebra)

Computing with intervals (optical computing)
Nice visualization



History

New computing paradigms -- last 20 years:
DNA computing
Membrane computing
Quantum computing

Interval-valued computing
coined by Benedek Nagy (2005)

Development: BN + SV, joining other people



Interval-values
Each interval [a,b) with O <a< b <1is an atomic
interval which contains all the points x between a and
b (a £ x <b). Interval-valued byte: bits indexed by
[0,1)
Interval-value: a subset of [0,1), finite union of atomic
Intervals. It can be represented by its characteristic
function: [0,1) - {0,1}

Graphical representation:

— -




Classical Computers
Based on two-valued Boolean Logic

Truth-table of basic logical operators

Name 1st variable 2" variable Negation Conjunction  Disjunction  Implication
Sign A B ~A ACB ACB A-B
values 0 0 1 0 0 1

0 1 1 0 1 1

1 0 0 0 1 0

1 1 0 1 1 1

Other operations are derived:
equivalence: A=B:=(A - B)U(B - A), xor: ALIB:=A=-B
‘nor: A|B:= = AR B, ‘nand’: A&B:= -A[+B.



Classical Computers

Bits and bytes
Bit: unit of information (answer for a YES/NO question)
Byte: unit of data operations
More bits in a byte - higher level the CPU.
Logical operators - bitwise:

value of A negation of A value of B conjunction disjunction
of AandB of AandB
X, X, o X X, X, .. X Yi Y, o Y. X, X, oo X X, X, oo X
O o0 ...0 O o ...0

vy, ... Yy, viy,... VY,



Classical Computers

Non-Boolean operators
example: SHIFT (Shifting bits in a byte)

value of A In : left-shift A right-shift A
binary code
X, Xy o X, X, X; ... X 0 0 X, X, ... X,



Generalizing the classical
computations

(Turing) the tape alphabet is fixed (in size): the information
can be stored in a fixed size cell is limited

(Neumann) the number of bits in a byte is also fixed

Idealization in the classical paradigm: the size of the tape
can grow arbitrarily if needed

Interval-values: the information can be stored in a data
processing unit is not limited

Idealization of interval-valued computing:. the density of the
memory can be raised unlimitedly

Classical logic = fuzzy logic (interval-valued)



Interval-computation

Logical gates, circulits:
Classical computation is based on
classical two-valued logic.

Interval-computation is based on

Interval-valued logic
(the number of bits in a unit can be increased
during the computation).
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BO0LEAN OPERATIONS:

Logic ol Interval-values
Negation A
— R
set ineoreiical A
complermnent S ——— —

for each point of the tnterval we use the negatio

of the original characteristic value
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we use the logical operation pointwise for the
characteristic values of the arguments
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Non-Boolean operations for Interval-
values

Tool:

Flength(A) = b — a, if A contains the interval [a,b)
and A does not contain any interval (a,c) with ¢ =
b, moreover the difference of A and [a,b) does not
contain any point x with x < a.

Flength(A) = 0, In other cases.

It is the length of the first component of the
interval-value A.
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Non-Boolean operations for Interval-

values
SHIFT: (we define the two
directions in a different
way to get more effective
device)

let Lshift(A,B) and Rshift(A,B)
be the interval-values given
after A was shifted to the
left and to the right by
Flength(B).
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Product of interval-values

Zooming an
interval-value onto — —
the complements
of the second.
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Nagy: An interval-valued computing device (2005)
,» CIE 2005, "Computability in Europe™: New Cornputational Paradigrns, Amsterdam, Netherlands, 166-177.
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Interval-valued computations

Computation sequence: a sequence of applications of
operators to already computed interval-values.
(like Boolean networks)

The sequence starts with the only predefined
constant of the system FIRSTHALF : [0,1/2) .

@ A language L is decidable by an interval-valued computation iff
there is an algorithm A that for each input word w constructs an
appropriate computation sequence with last element A(w) such
that w O L if and only if the interval-value of A(w) is
nonempty.
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Computation of functions

Discrete functions can also be computed by this
system.

Special operation gives 0/1 bit on the output:
(OUTPUT, i), where i is an index less than the

index of the actual instruction.
[1 00 0O1s written out, otherwise 1.

these output bits are concatenated during the
computation process.
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Decidability by interval-valued
computations vs. classical decidability

* A language L is decidable by an interval-
valued computation iff there is an algorithm A
that for each input word w constructs an
appropriate computation sequence with last
element A(w) such that w O L if and only if
the interval-value of A(w) is honempty.

So, decidability by interval-values trivially
coincides with classical decidability.

LR12



Resource restrictions

We say that a language L Is decidable by a
linear interval-valued computation if and
only if
there Is a positive constant ¢ and a
logarithmic space algorithm A with the
following properties. For each input word w
A constructs an appropriate interval-valued
computation sequence A(w) such that |

|A(w)| is not greater than c - |w| and

w Iin L if and only if the value of the computation
sequence A(w) IS nonempty.

LR12



Polynomial restriction

We say that a language L Is decidable by a
polynomial interval-valued computation if
and only If

there Is a polynom P and a logarithmic

space algorithm A with the following

properties. For each input word w, A

constructs an appropriate interval-valued

computation sequence A(w) such that |
|A(w)| Is not greater than P( |w| ) and

w Iin L if and only if the value of the computation
sequence A(w) IS nonempty.

LR12



First examples

Solution to SAT
Independent interval-values for the variables

Solution to QSAT
Dealing with boolean quantifiers

21



Solving SAT by interval-values

Let n be the number of the variables of the SAT.

Let FIRSTHALF be a constant interval-value: [0,1/2).
A computing sequence : starting from FIRSTHALF.

Thatis: S,,..., S,, (n U N),

where S, = FIRSTHALF,

for each i<n: S; = op(S,, S)), where kj<i

where op can be a Boolean operator, a shift or product (in
negation only the first operand is used)

22



Solving SAT

We need to construct all possible
combinations:

It IS possible by product, negation
and union. Their number Is linear
on the number of variables:

Ai.;=A*[0,1/2)[(:=A*[0,1/2)
So, In this way the ith variable is:

npi—1
Lo ] [ 2
T LJ 2i—17 9

j:“

Az [0.12) |

A.*0,1/2)

|
\—_'Ah
| = A, ’MZ) |

A i O/ g\ *[0),1/2)

- ACml/2)
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Satisfiability of
-(BUOUC) - ~(CUOU(D - =B)))

-B

D
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(BAC)—> =(Cv(D-—>-=B))

‘
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y
’

————]

—((B A C) > =(C v (D—> =B)) o4
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Similar to the evaluation by a truth-table, but

all possible combinations of the truth-values are
evaluated parallely.

Linear number of interval-valued operators to solve
SAT

The computation Is visualised by intervals:
Interval-values of independent variables.
Logical operations (as in truth table).

25



Analogous truth-table - knowing the length of
the smallest component

— B 11110000

c 11001100

— B A C 11000000

| R 00001111

Q . 10101010

! 01011111

- D> B 11011111

‘ I B (D B) 00100000

‘ | v By 00111111

{ - 11000000
‘ — (B AC)— —(Cv(D——B))

—((B A C) > —(C v (D - =B)))

1
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QSAT

Formula where all the Boolean variables are
guantified in the following way:

Vti1dto ... Q,, o where (); 1s V for odd 7 and d for even 1.

It iIs a known PSPACE-complete problem to
decide whether it Is true or false.

It IS true If

Vit € {0,1}dta € {0, 1} ... Qnty, € {0, 1}o(x1 2 t1, ..., 20 - ty)



Visual solution by interval-values

Variables
Boolean formula (SAT)

Dealing with quantifiers:
look for the values of appropriate neighbours



EXAMPLE 1
| X4

—X4

B R R
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EXAMPLE 2

This formula
IS not satisfiable.

X1

I |

X2

--x3- |

X4

P(X1X2,%3,%4) -
((xl /\—|.7C2/\—|.X3)V(.X2/\X3/\ﬂX4)V(x 1 /\—|.7C2/\(X3®.7C4)))

Vx33x, Py x3.0)
Hxy Vx3 Ty (p(ay.x0.%3.%4)
N

Vx13x; Vxadxy (x)x9,%3,%4)




The PSPACE-complete problem QSAT is
solvable by a linear interval-valued
computation.

Nagy, Valyi: Solving a PSPACE-complete problem by a linear interval-valued computation,
CiE 2006, Cormputability in Europe 2006: Logical Approaches to Cornputational Barriers, University of
Wales Swansea, UK, 216-225.
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Restricted polynomial restriction

We say that a language L is decidable by a
restricted interval-valued computation if and only
If
there is a polynom P and a logarithmic space
algorithm A with the following properties. For each
Input word w , A constructs an appropriate interval-
valued computation sequence A(w) such that |

|A(w)]| Is not greater than P( |w| ) and

w in L if and only if the value of the computation

sequence A(w) iIs nonempty

A(w) containing product operators only of the form
(Product, 0, n) (product with FIRSTHALF)

LR12



Languages decided by restricted
polynomial interval-valued
computations vs. PSPACE

Theorem: The class of languages decidable
by a restricted polynomial interval-valued
computation is equal to PSPACE.



The reverse direction

One direction of this class equation is already achieved.
For the reverse:

a quadratic space algorithm decides whether the value of an
iInput interval-valued computation sequence is

equal to the full [0, 1).

first: a recursive algorithm (exponential time is guaranteed)
second: a back-track like control in such a way that the needed
memory is limited by a quadratic function of the length of the
Input computation sequence.

Nagy, Valyi:, Interval-valued computations and their
connection with PSPACE, Theoretical Computer Science -
TCS 394/3 (2008), 208-222.)
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Characterizing NP within interval-
valued computing

‘Trying_all' normal form of interval-valued computation sequences:
there exists a polynom Q(.) that for any input word w

It starts with generating some number (less than Q(|w|)) of
'Independent’ interval-values, as in the case of SAT

and continues using only Boolean operators no more times than

Q(lw])

L is decidable by a trying_all interval-valued computation if there
exists an logspace algorithm that generates for arbitrary input

word a computation sequence of trying_all normal form that
decides L



All member of NP is decidable by
a trying_all normal form interval-

valued computation
If Lisin NP

— let P(.) be the witness size limiting polynom
— W is the witness language (in P => there exists a uniform
Boolean network BN to decide it)

— Let w is an input word for the algorithm that should construct
the computation sequence of trying_all n. f.

— an amount of P(|w]|) independent interval-values is generated
and then the operators of BN executed step-by-step on them

then it is decidable by a trying_all n.f . interval-
valued computation



If L is decidable by a trying_all i-v computation
a simple witness language exists for L:
If a word w Is In L then this fact can be witnessed by
the description of the position in [0,1) where the final
result of the computation sequence was nonempty

thenitis in NP

this simple idea is the base for two result:
Nagy, Valyi. Prime factorization by interval-valued computing,
Publicationes Mathematicae Debrecen 79/3-4 (2011), 539-551.

Nagy, Valyi: Discrete logarithm by interval-valued computing, DCM
2012, 8th International Workshop on Developments in
Computational Models, Cambridge, England



What is the difference

Between the computations for PSPACE and
NP?
While deciding QSAT we use heavily shifts
computations with shifts cannot be
witnessed in poly size (at least: now we
cannot)



Conclusions

The problems in NP are effectively solvable In
this paradigm by its massive parallellism (not
surprising)
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Open questions

Not restricted polynomial sized interval-valued
computations ? EXPSPACE

Other paradigm: computation starting with more
sophisticated input D/A conversion and output A/D

Physical implementation ( for example: interval-value is the
positivity places of a [0,1) — IR function)

If V is the set of possible interval-values then
Th(V,—,n,u,Lshift,Rshift,Product) is decidable? Even the
set of its equations is decidable?
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Thank You for your attention !

Happy birthday, Istvan!
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