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OutlineOutline
 MotivationMotivation
 Introduction to interval-valued computationsIntroduction to interval-valued computations
 Examples: Examples: 

– deciding SAT and QSATdeciding SAT and QSAT
– characterization of PSPACEcharacterization of PSPACE
– prime factorizationprime factorization

 Characterization of NPCharacterization of NP
 QuestionsQuestions
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MotivationMotivation

 Fuzzy logic (interval-values form an infinite Fuzzy logic (interval-values form an infinite 
Boolean algebra)Boolean algebra)

 Computing with intervals (optical computing)Computing with intervals (optical computing)
 Nice visualizationNice visualization
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HistoryHistory

 New computing paradigms -- last 20 years:New computing paradigms -- last 20 years:
 DNA computingDNA computing
 Membrane computingMembrane computing
 Quantum computingQuantum computing
 Interval-valued computing Interval-valued computing 

coined by Benedek Nagy (2005) coined by Benedek Nagy (2005) 
 Development: BN + SV, joining other people Development: BN + SV, joining other people 
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Interval-valuesInterval-values
Each interval [Each interval [aa,,bb)) with 0  with 0 ≤≤  aa  ≤≤  bb  ≤≤ 1 is an  1 is an atomic atomic 
intervalinterval which contains all the points  which contains all the points xx between  between aa and  and 
bb ( (aa  ≤≤  x x ≤≤  bb). ).     Interval-valued byte: bits indexed by Interval-valued byte: bits indexed by 
[0,1)[0,1)

Interval-value: Interval-value: a subset of [0,1)a subset of [0,1), finite union of atomic , finite union of atomic 
intervalsintervals.. It can be represented  It can be represented by its characteristic by its characteristic 
functionfunction: :    [0,1)    [0,1) →→ {0,1} {0,1}  

Graphical representation:Graphical representation:
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Classical ComputersClassical Computers
    Based on two-valued BooleanBased on two-valued Boolean Logic Logic

Other operations are derivedOther operations are derived::

equivalenceequivalence: A: A≡≡BB::=(A=(A→→B)B)∧∧(B(B→→A)A),,  ‘xor‘xor’:’: A A⊕⊕BB::=A=A≡¬≡¬BB
‘nor’:‘nor’: A A||BB::= = ¬¬AA∧¬∧¬BB, , ‘‘nandnand’’: A: A&&BB::= = ¬¬AA∨¬∨¬BB..  

Truth-table of basic logical operators 

¬

NameName 11stst variable variable 22ndnd variable variable NegationNegation ConjunctionConjunction DisjunctionDisjunction ImplicationImplication

SignSign AA BB   ¬AA AA∧∧BB AA∨∨BB AA→→BB

valuesvalues 00 00 11 00 00 11

00 11 11 00 11 11

11 00 00 00 11 00

11 11 00 11 11 11
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Classical ComputersClassical Computers

 Bits and bytesBits and bytes
 Bit: unit of information (answer for a YES/NO question)Bit: unit of information (answer for a YES/NO question)
 Byte: unit of data operationsByte: unit of data operations
 More bits in a byte More bits in a byte →→ higher level the CPU. higher level the CPU.
 Logical operators - bitwiseLogical operators - bitwise::

value of Avalue of A negation of Anegation of A value of Bvalue of B conjunction conjunction 
of  A and Bof  A and B

disjunction disjunction 
      of of   A and BA and B

xx11    xx22  …    …  xxnn ¬¬xx1 1 ¬¬xx2 2 ……¬¬xxnn
yy11      yy22  …    …  yynn xx11    xx22  …    …  xxnn

∧∧      ∧∧      . . . . . . ∧∧
yy11  yy22      ……      yynn

xx11    xx22  …    …  xxnn

∨∨      ∨∨      . . .. . .  ∨∨
yy11    yy22  ……      yynn
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Classical ComputersClassical Computers

Non-Boolean operators Non-Boolean operators 
example: example: SHIFT (SHIFT (Shifting bits in a byteShifting bits in a byte) ) 

value of A invalue of A in            ..  
binary codebinary code

                  left-shift Aleft-shift A             right-shift Aright-shift A

xx11    xx22  …    …  xxnn               xx22    xx33  …    …  xxn n  0 0             0  0  xx11    xx22  …    …  xxnn-1-1
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Generalizing the classical Generalizing the classical 
computationscomputations

 (Turing) the tape alphabet is fixed (in size): the information (Turing) the tape alphabet is fixed (in size): the information 
can be stored in a fixed size cell is limitedcan be stored in a fixed size cell is limited

 (Neumann) the number of bits in a byte is also fixed(Neumann) the number of bits in a byte is also fixed
 IdealizationIdealization in the classical paradigm: the size of the tape  in the classical paradigm: the size of the tape 

can grow arbitrarily if neededcan grow arbitrarily if needed
 Interval-values:Interval-values: the information can be stored in a data  the information can be stored in a data 

processing unit is not limited processing unit is not limited 
 IdealizationIdealization of interval-valued computing:.  of interval-valued computing:. the density of the 

memory can be raised unlimitedly
 Classical logic Classical logic  fuzzy logic (interval-valued) fuzzy logic (interval-valued)
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Interval-computationInterval-computation

 Logical gates, circuits:Logical gates, circuits:
 Classical computation is based onClassical computation is based on

 classical two-valued logic. classical two-valued logic.
 Interval-computation is based onInterval-computation is based on

interval-valued logicinterval-valued logic
(the number of bits in a unit can be increased (the number of bits in a unit can be increased 
during the computation). during the computation). 
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BOOLEAN OPERATIONSBOOLEAN OPERATIONS: : 
Logic of Interval-valuesLogic of Interval-values

 NegationNegation

set theoreticalset theoretical
complementcomplement

 for each point of the Interval we use the negation for each point of the Interval we use the negation 
of the original characteristic valueof the original characteristic value

A

¬A
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Logic of Logic of iinterval-valuesnterval-values
 ConjunctionConjunction  andand  DisjunctionDisjunction

                                                                                                                set theoreticalset theoretical
                                                        intersection                                                        intersection

                                                                                                                      unionunion

we use the logical operation pointwise for the we use the logical operation pointwise for the 
characteristic values of the argumentscharacteristic values of the arguments

  0  1

   A

   B

A ∧ B

A ∨ B
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Non-Non-BooleanBoolean operations operations for Interval- for Interval-
valuesvalues

 Tool:Tool:
 FlengthFlength(A) = (A) = b b – – aa, if A contains the interval , if A contains the interval [[aa,,bb) ) 

and A does not contain any interval (and A does not contain any interval (aa,,cc) with ) with cc  ≥≥  
bb, moreover the difference of A and [, moreover the difference of A and [aa,,bb)) does not  does not 
contain any point contain any point xx with  with xx <  < aa..
FlengthFlength(A) = 0, in other cases.(A) = 0, in other cases.

 It is the length of the first component of the It is the length of the first component of the 
interval-value A.interval-value A.



Non-Non-BooleanBoolean operations operations for Interval- for Interval-
valuesvalues

 SHIFT: SHIFT: (we define the two (we define the two 
directions in a different directions in a different 
way to get more effective way to get more effective 
device)device)

let Lshift(A,B) and Rshift(A,B) let Lshift(A,B) and Rshift(A,B) 
be the interval-values given be the interval-values given 
after A was shifted to the after A was shifted to the 
left and to the right by left and to the right by 
FlengthFlength(B)(B)..

       0               1

A

B

 
      Lshift(A,B)

Rshift(A,B)

Lshift(B,A)

Rshift(B,A)
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Product of interval-valuesProduct of interval-values

 Zooming an Zooming an 
interval-value ontointerval-value onto
the complementsthe complements
of the second.of the second.

Nagy: Nagy: An interval-valued computing deviceAn interval-valued computing device (2005) (2005)
, , CiECiE  20052005, ", "ComputabilityComputability  inin Europe": New  Europe": New ComputationalComputational  ParadigmsParadigms, Amsterdam, Netherlands, 166-177, Amsterdam, Netherlands, 166-177. . 

http://www.illc.uva.nl/staging/Publications/ResearchReports/X-2005-01.text.pdf
http://www.illc.uva.nl/staging/Publications/ResearchReports/X-2005-01.text.pdf
http://www.illc.uva.nl/staging/Publications/ResearchReports/X-2005-01.text.pdf
http://www.illc.uva.nl/staging/Publications/ResearchReports/X-2005-01.text.pdf
http://www.illc.uva.nl/staging/Publications/ResearchReports/X-2005-01.text.pdf
http://www.illc.uva.nl/staging/Publications/ResearchReports/X-2005-01.text.pdf
http://www.illc.uva.nl/staging/Publications/ResearchReports/X-2005-01.text.pdf
http://www.illc.uva.nl/staging/Publications/ResearchReports/X-2005-01.text.pdf
http://www.illc.uva.nl/staging/Publications/ResearchReports/X-2005-01.text.pdf
http://www.illc.uva.nl/staging/Publications/ResearchReports/X-2005-01.text.pdf
http://www.illc.uva.nl/staging/Publications/ResearchReports/X-2005-01.text.pdf
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Interval-valued computationsInterval-valued computations
 Computation sequence: Computation sequence: a a sequence of applications of sequence of applications of 

operators to already computed interval-values. operators to already computed interval-values. 
      (like Boolean networks)(like Boolean networks)

 The sequence starts with the only  predefined The sequence starts with the only  predefined 
constant of the system FIRSTHALF : [0,1/2) .constant of the system FIRSTHALF : [0,1/2) .

A language L is A language L is decidable by an interval-valued computationdecidable by an interval-valued computation iff   iff  
there is an algorithm there is an algorithm AA that for each input word  that for each input word ww  constructs an   constructs an 
appropriate computation sequence with last element appropriate computation sequence with last element AA((ww) such ) such 
that that ww  ∈∈  L if and only if  L if and only if the interval-value of the interval-value of AA((ww)  is )  is 
nonemptynonempty. . 
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Computation of functionsComputation of functions

 Discrete functions can also be computed by this Discrete functions can also be computed by this 
system.system.

 Special operation gives 0/1 bit on the output: Special operation gives 0/1 bit on the output: 
((OUTPUT, i), OUTPUT, i), where where i is an index less than the i is an index less than the 
index of the actual instructionindex of the actual instruction. . 

 ⊥⊥    ⇒⇒    0 is written out,  otherwise 1. 0 is written out,  otherwise 1. 
 these output bits are concatenated during the these output bits are concatenated during the 

computation process.computation process.
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Decidability by interval-valued 
computations vs. classical decidability
• A language L is A language L is decidable by an interval-decidable by an interval-

valued computationvalued computation iff  there is an algorithm  iff  there is an algorithm AA  
that for each input word that for each input word ww  constructs an   constructs an 
appropriate computation sequence with last appropriate computation sequence with last 
element element AA((ww) such that ) such that ww  ∈∈  L if and only if  L if and only if 
the interval-value of the interval-value of AA((ww)  is nonempty)  is nonempty. . 

 So, decidability by interval-values trivially 
coincides with classical decidability.
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Resource restrictions

 We say that a language L   is decidable by a 
linear interval-valued computation if and 
only if

 there is a positive constant c and a 
logarithmic space algorithm A with the 
following properties. For each input word w , 
A constructs an appropriate interval-valued 
computation sequence A(w) such that |

 |A(w)| is not greater than c · |w| and 
 w in L if and only if the value of the computation 

sequence A(w) is nonempty. 
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Polynomial restriction

 We say that a language L   is decidable by a 
polynomial interval-valued computation if 
and only if

 there is a polynom P and a logarithmic 
space algorithm A with the following 
properties. For each input word w , A 
constructs an appropriate interval-valued 
computation sequence A(w) such that |

 |A(w)| is not greater than P( |w| ) and 
 w in L if and only if the value of the computation 

sequence A(w) is nonempty. 
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First examplesFirst examples

 Solution to SATSolution to SAT
 Independent interval-values for the variablesIndependent interval-values for the variables

 Solution to QSATSolution to QSAT
 Dealing with boolean quantifiersDealing with boolean quantifiers
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Solving SAT Solving SAT byby  iintervalnterval-value-valuess

 Let Let nn be the number of the variables of the SAT. be the number of the variables of the SAT.
 Let FIRSTHALF be a constant interval-value: [0,1/2). Let FIRSTHALF be a constant interval-value: [0,1/2). 

AA computing computing sequence  sequence :: starting from  starting from FIRSTHALFFIRSTHALF..

 That isThat is:: S S00,…, S,…, Snn, (, (nn  ∈∈  NN), ), 

 where Swhere S00  =   = FIRSTHALFFIRSTHALF, , 

 for each for each ii<<nn: S: Sii =  = opop(S(Skk, S, Sjj),), where  where kk,,jj<<ii  

 where where opop can be a Boolean operator, a shift or product (in  can be a Boolean operator, a shift or product (in 
negation only the first operand is used)negation only the first operand is used)
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Solving Solving SATSAT  
 We need to construct all possible We need to construct all possible 

combinations:combinations:
 It is possible by product, negationIt is possible by product, negation

and union. Their number is linear and union. Their number is linear 
on the number of variables:on the number of variables:

 AAi+1i+1=A=Aii*[0,1/2)*[0,1/2)∨¬∨¬AAii*[0,1/2)*[0,1/2)

 So, in this way the So, in this way the iith variable is:th variable is:

 

 

 

  0                 1
    

A1 = [0,1/2)

A1*[0,1/2)

 ¬A1

¬A1 *[0,1/2)

A2=A1*[0,1/2)∨ ¬A1 *[0,1/2)

A2*[0,1/2)

 ¬A2

¬A2 *[0,1/2)

A3=A2*[0,1/2)∨ ¬A2 *[0,1/2)
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Erősen párhuzamos algoritmusok Erősen párhuzamos algoritmusok 

prímfaktorizációra és ... (workshop)prímfaktorizációra és ... (workshop)

SatisfiabilitySatisfiability of  of 
¬¬((B ((B ∧∧ C)  C) →→  ¬¬(C (C ∨∨ (D  (D →→  ¬¬B)))B)))  
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 Similar to the evaluation by a truth-table, butSimilar to the evaluation by a truth-table, but
 all possible combinations of the truth-values are all possible combinations of the truth-values are 

evaluated parallely.evaluated parallely.

 Linear number of interval-valued operators to solve Linear number of interval-valued operators to solve 
SAT SAT 

 The computation is visualised by intervals:The computation is visualised by intervals:
 Interval-values of independent variables.Interval-values of independent variables.
 Logical operations (as in truth table).Logical operations (as in truth table).
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Erősen párhuzamos algoritmusok Erősen párhuzamos algoritmusok 

prímfaktorizációra és ... (workshop)prímfaktorizációra és ... (workshop)

Analogous truth-table - knowing the length of Analogous truth-table - knowing the length of 
the smallest componentthe smallest component    

1111000011110000

1100110011001100

1100000011000000

0000111100001111

1010101010101010

0101111101011111

1101111111011111

0010000000100000

0011111100111111

1100000011000000



QSATQSAT

 Formula where all the Boolean variables are Formula where all the Boolean variables are 
quantified in the following way:quantified in the following way:

 It is a known PSPACE-complete problem to It is a known PSPACE-complete problem to 
decide whether it is true or false.decide whether it is true or false.

 It is true ifIt is true if



Visual solution by interval-valuesVisual solution by interval-values

 VariablesVariables
 Boolean formula (SAT)Boolean formula (SAT)
 Dealing with quantifiers:Dealing with quantifiers:

look for the values of appropriate neighbourslook for the values of appropriate neighbours



EXAMPLE 1EXAMPLE 1



EXAMPLE 2EXAMPLE 2

This formulaThis formula

is not satisfiable.is not satisfiable.
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 TheThe  PSPACE-complete problemPSPACE-complete problem QSAT QSAT is  is 
solvable by a solvable by a linearlinear interval-valued  interval-valued 
computationcomputation..

Nagy, Vályi: Nagy, Vályi:  Solving a PSPACE-complete problem by a linear interval-valued computation Solving a PSPACE-complete problem by a linear interval-valued computation , , 
CiECiE 2006,  2006, ComputabilityComputability  inin Europe 2006:  Europe 2006: LogicalLogical  ApproachesApproaches  toto  ComputationalComputational  BarriersBarriers, University of , University of 
Wales Swansea, UK, 216-225. Wales Swansea, UK, 216-225. 

http://www.cs.swansea.ac.uk/reports/yr2006/CSR7-2006.pdf
http://www.cs.swansea.ac.uk/reports/yr2006/CSR7-2006.pdf
http://www.cs.swansea.ac.uk/reports/yr2006/CSR7-2006.pdf
http://www.cs.swansea.ac.uk/reports/yr2006/CSR7-2006.pdf
http://www.cs.swansea.ac.uk/reports/yr2006/CSR7-2006.pdf
http://www.cs.swansea.ac.uk/reports/yr2006/CSR7-2006.pdf
http://www.cs.swansea.ac.uk/reports/yr2006/CSR7-2006.pdf
http://www.cs.swansea.ac.uk/reports/yr2006/CSR7-2006.pdf
http://www.cs.swansea.ac.uk/reports/yr2006/CSR7-2006.pdf
http://www.cs.swansea.ac.uk/reports/yr2006/CSR7-2006.pdf
http://www.cs.swansea.ac.uk/reports/yr2006/CSR7-2006.pdf
http://www.cs.swansea.ac.uk/reports/yr2006/CSR7-2006.pdf
http://www.cs.swansea.ac.uk/reports/yr2006/CSR7-2006.pdf
http://www.cs.swansea.ac.uk/reports/yr2006/CSR7-2006.pdf
http://www.cs.swansea.ac.uk/reports/yr2006/CSR7-2006.pdf
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Restricted polynomial restriction

 We say that a language L   is decidable by a 
restricted interval-valued computation if and only 
if

 there is a polynom P and a logarithmic space 
algorithm A with the following properties. For each 
input word w , A constructs an appropriate interval-
valued computation sequence A(w) such that |

 |A(w)| is not greater than P( |w| ) and 
 w in L if and only if the value of the computation 

sequence A(w) is nonempty
 A(w) containing product operators only of the form 

(Product, 0, n) (product with FIRSTHALF)



Languages decided by restricted 
polynomial interval-valued 
computations vs. PSPACE

 Theorem: The class of languages decidable 
by a restricted polynomial interval-valued 
computation is equal to PSPACE.



The reverse direction

One direction of this class equation is already achieved. 

 For the reverse:

   a quadratic space algorithm decides whether the value of an 
input interval-valued computation sequence is

   equal to the full [0, 1). 
first: a recursive algorithm (exponential time is guaranteed) 
second: a back-track like control in such a way that the needed 
memory is limited by a quadratic function of the length of the 
input computation sequence.

 Nagy, Vályi:,  Interval-valued computations and their 
connection with PSPACE, Theoretical Computer Science - 
TCS 394/3 (2008), 208-222.) 

http://dx.doi.org/10.1016/j.tcs.2007.12.013
http://dx.doi.org/10.1016/j.tcs.2007.12.013
http://dx.doi.org/10.1016/j.tcs.2007.12.013
http://dx.doi.org/10.1016/j.tcs.2007.12.013
http://dx.doi.org/10.1016/j.tcs.2007.12.013
http://dx.doi.org/10.1016/j.tcs.2007.12.013
http://dx.doi.org/10.1016/j.tcs.2007.12.013
http://dx.doi.org/10.1016/j.tcs.2007.12.013
http://dx.doi.org/10.1016/j.tcs.2007.12.013


Characterizing NP within interval-
valued computing
'Trying_all' normal form of interval-valued computation sequences:

there exists a polynom Q(.) that for any input word w

it starts with generating some number (less than Q(|w|)) of 
'independent' interval-values, as in the case of SAT
and continues using only Boolean operators no more times than 
Q(|w|)

L is decidable by a trying_all interval-valued computation if there 
exists an logspace algorithm that generates for arbitrary input 
word a computation sequence of trying_all normal form that 
decides L



All member of NP is decidable by 
a trying_all normal form interval-
valued computation
If L is in NP 

– let P(.) be the witness size limiting polynom
– W is the witness language (in P => there exists a uniform 
Boolean network BN to decide it)

   – Let w is an input word for the algorithm that should construct 
the computation sequence of trying_all n. f.

   –  an amount of P(|w|) independent interval-values is generated 
and then the operators of BN executed step-by-step on them

then it is decidable by a trying_all n.f . interval-
valued computation
  



If L is decidable by a trying_all i-v computation
  a simple witness language exists for L:
 if a word w is in L then this fact can be witnessed by 
the description of the position in [0,1)  where the final 
result of the computation sequence was nonempty

then it is in NP

this simple idea is the base for two result:
Nagy, Vályi: Prime factorization by interval-valued computing, 
Publicationes Mathematicae Debrecen 79/3-4 (2011), 539-551.

    Nagy, Vályi: Discrete logarithm by interval-valued computing, DCM 
2012, 8th International Workshop on Developments in 
Computational Models, Cambridge, England 



What is the difference

Between the computations for PSPACE and 
NP?
  While deciding QSAT we use heavily shifts 
  computations with shifts cannot be   
  witnessed in poly size  (at least: now we 
cannot ) 
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ConclusionsConclusions

 The problems in NP are effectively solvable in The problems in NP are effectively solvable in 
this paradigm by its massive parallellism (not this paradigm by its massive parallellism (not 
surprising)surprising)



Open questions 

Not restricted polynomial sized interval-valued 
computations ? EXPSPACE

Other paradigm: computation starting with more 
sophisticated input D/A conversion and output A/D

Physical implementation ( for example: interval-value is the 
 positivity places of a [0,1) → IR  function )

If V is the set of possible interval-values then 
Th(V,¬,∩,∪,Lshift,Rshift,Product) is decidable? Even the 
set of its equations is decidable?
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Thank You for your attention !Thank You for your attention !

Happy birthday, István!Happy birthday, István!
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