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Families of Relations

By a Λ-family of relations we mean a collection C of binary relations over a
base set UC such that such that C is closed under the operations in Λ. Let
R(Λ) denote the class of all Λ-families of relations.

Binary operations join +, meet ·, relation composition ;, right \ and left /
residuals of composition.

Unary operations converse `, converse negation ∼.
Constants identity 1′, zero 0, unit 1.

Sz. Mikulás () Residuated Algebras 2 / 18



Operations

The interpretations of the elements of Λ in a Λ-family of relations C are as
follows. Join + is union, meet · is intersection, zero 0 is the empty set, unit
1 is the universal relation UC × UC and

x ; y = {(u, v) ∈ UC × UC : (u,w) ∈ x and (w , v) ∈ y for some w}
x \ y = {(u, v) ∈ UC × UC : for every w , (w , u) ∈ x implies (w , v) ∈ y}
x / y = {(u, v) ∈ UC × UC : for every w , (v ,w) ∈ y implies (u,w) ∈ x}

x` = {(u, v) ∈ UC × UC : (v , u) ∈ x}
∼ x = {(u, v) ∈ UC × UC : (v , u) /∈ x}
1′ = {(u, v) ∈ UC × UC : u = v}
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Special Classes

Assume that ; is definable by Λ and let C be a Λ-family of relations. We
say that C is commutative if

C |= x ; y = y ; x

and dense if
C |= x ≤ x ; x

for all elements x , y of C, respectively.
The class of commutative and dense Λ-families of relations is denoted by
Rcd (Λ).
Note that the interpretations of the two residuals coincide in commutative
families of relations C: C |= x \ y iff C |= y / x .
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Standard Semantics

We write C |= τ = σ iff the interpretation of τ equals the interpretation of
σ, for every valuation v into C.
C |= τ ≤ σ is defined analogously by interpreting ≤ as the subset relation
⊆. Validity will be denoted by |=.
An important feature of the (right) residual is the following. We have
x ≤ y iff x \ y contains the identity relation:

C |= x ≤ y iff C |= 1′ ≤ x \ y (1)

for every C ∈ R(Λ).
Note that this makes sense even when 1′ is not in Λ, since it is meaningful
whether {(u, u) ∈ UC × UC} is a subset of the interpretation of a Λ-term.
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State-Semantics

Let C ∈ R(Λ) for some signature Λ. We define, for every Λ-term τ ,

C |=s τ iff C |= 1′ ≤ τ (2)

We say that τ is state-valid in R(Λ) (in symbols, |=s τ) iff C |=s τ for every
C ∈ R(Λ).
For instance, x \ y is true at (u, u) iff, for every v , (v , u) is in the
interpretation of y whenever it is in the interpretation of x .
Cf. PDL.
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Connection to Relevance Logic

State-semantics over commutative and dense families of relations is a
sound semantics for relevance logic (Dunn, Maddux).

[M, JLC09], [Hirsch-M, RSL11]

The equational theories of R(cd)(Λ) are not finitely axiomatizable for
{·,+, \} ⊆ Λ ⊆ {·,+, ;, \,∼, 1′}.

Thus

Relevance logic is not complete w.r.t. (commutative and dense)
state-semantics.
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Residuated Semigroups

There are (strongly) complete and sound Hilbert-style calculi w.r.t. the
state-semantics for

1 R(;, \, /) and
2 Rcd (;, \).

The proof of [Andréka-M, JoLLI94] Theorem 3.3 goes through with
straightforward modifications.
1. For R(;, \, /) essentially the Lambek Calculus with empty terms, LC0,
works.

|=(cd) A0, . . . ,An−1 ⇒ An iff |=(cd) ⇒ (A0 ; . . . ; An−1) \ An

iff |=(cd)
s (A0 ; . . . ; An−1) \ An

2. For Rcd (;, \) we add the following two axioms (corresponding to
commutativity and density) to LC0:

A ; B ⇒ B ; A A⇒ A ; A
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Lower semilattice-ordered residuated semigroups

We define the following Hilbert-style calculus `s . We use the convention
that x , y , z may denote empty formulas, while A,B,C must be non-empty
formulas. If x is the empty formula, then x \ A and x ; A denote A. We
have the axioms

(Refl) A \ A
(Ass1) ((A ; B) ; C ) \ (A ; (B ; C ))

(Ass2) (A ; (B ; C )) \ ((A ; B) ; C )

(ResR) ((A ; x) \ B) \ (x \ (A \ B))

(Meet1) (A · B) \ A
(Meet2) (A · B) \ B
(Meet3) ((A \ B) · (A \ C )) \ (A \ (B · C ))
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Lower semilattice-ordered residuated semigroups 2

Derivation rules

(MP)
x \ A A \ B

x \ B

(ResL)
x \ A (y ; B ; z) \ C
(y ; x ; (A \ B) ; z) \ C

(Mon1)
x \ A y \ B
(x ; y) \ (A ; B)

(Mon2)
x \ A y \ B
(x · y) \ (A · B)

(Ide1)
A

B \ (A ; B)

(Ide2)
A

B \ (B ; A)
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Lower semilattice-ordered residuated semigroups 3

If we include the additional axioms

(Comm) (A ; B) \ (B ; A)

(Dens) A \ (A ; A)

then the calculus is denoted by `cd
s .

The calculus `cd
s is strongly sound and complete w.r.t. state-semantics for

Rcd (·, ;, \):
Γ `cd

s ϕ iff Γ |=cd
s ϕ

for any set Γ of formulas and formula ϕ.

A similar construction as in the proof of [Andréka-M, JoLLI94]
Theorem 3.3 works. We take the Lindenbaum–Tarski algebra FΓ of `cd

s
and show that FΓ ∈ Rcd (·, ;, \).
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Initial Step

By a filter of FΓ we mean a subset of elements closed upward (w.r.t. the
ordering defined by meet ·) and under meet. For an element a, let F (a)
denote the principal filter generated by a. We will need E , the filter of (the
equivalence classes of) Γ-theorems of `cd

s , as well.
In the 0th step of the step-by-step construction, we choose distinct ua, va
for distinct elements a, and let

`0(ua, ua) = `0(va, va) = E
`0(ua, va) = F (a)

Note that the labels are coherent, e.g., for every e ∈ `0(ua, ua) and
a′ ∈ `0(ua, va), we have e ; a′ ∈ `0(ua, va) by (Ide1).
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Step for the Residuals
In the (α+ 1)th step we have two subcases. To deal with the residual \ we
choose a fresh point z , for every point x and element a, and define

`α+1(z , z) = E
`α+1(z , x) = F (a)

`α+1(z , p) = F (a ; `α(x , p)) p 6= x , z

z

E

��

F (a)

��

F (a;`α(x ,p))

��
xE 99

`α(x ,p)
// p Eee

Coherence is easy to check.
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Step for Composition

To deal with composition ; we choose a fresh point z , for every
a ∈ `α(x , y) and b, c such that a ≤ b ; c , and define

`α+1(z , z) = E
`α+1(x , z) = F (b)

`α+1(z , y) = F (c)

`α+1(r , z) = F (`α(r , x) ; b) r 6= x , z
`α+1(z , s) = F (c ; `α(y , s)) s 6= y , z
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For instance, we need c ; d ; b ∈ `α+1(z , z) for every d ∈ `α(y , x) (in case
`α(y , x) 6= ∅). By induction, we have that a ; d ∈ `α(x , x), i.e., e ≤ a ; d
for some e ∈ E . Thus e ≤ (b ; c) ; d by a ≤ b ; c . By commutativity
(Comm), we get e ≤ c ; d ; b, whence c ; d ; b ∈ E = `α+1(z , z), as desired.
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Final Step

Limit step of the construction: take the union of the constructed labelled
structures.
After the construction terminates we end up with a labelled structure
(U × U, `). We can define a representation of FΓ by

rep(a) = {(u, v) ∈ U × U : a ∈ `(u, v)}

Since we used filters as labels, rep respects meet. Injectivity is guaranteed
by the 0th step (and the fact that we do not alter labels in later steps).
Checking that rep preserves composition and the residual can be done as in
the proof of [Andréka-M, JoLLI94] Theorem 3.2.
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Upper semilattice-ordered residuated semigroups

Let {+, ;, \, /} ⊆ Λ ⊆ {+, ;, \, /,`, 0, 1′, 1}. Then state-validities for
Rcd (Λ) and R(Λ) are not finitely axiomatizable.

The heart of the proof is the following.

Andréka-M-Németi, KF12
Let {+, ;, \, /} ⊆ Λ ⊆ {+, ;, \, /,`, 0, 1′, 1}. The equational theory of R(Λ)
is not finitely axiomatizable.
Moreover, there is no first-order logic formula valid in
R(+, ;, \, /,`, 0, 1′, 1) which implies all the equations valid in R(+, ;, \, /).
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Open Problems

Are the (state-)validities for Rcd (·, ;, \, 1′) and R(·, ;, \, /, 1′) finitely
axiomatizable?
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