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Life

• Leon Henkin was born in 1921 in New York city, district of
Brooklyn, son of immigrant Russian Jews

• He died November 1st 2006, according to friends in common
by the same cause and means as Erathostenes of Cirene the
Greek mathematician

• I believe he was an extraordinary logician, an excellent and
devoted teacher, an exceptional person who did not elude
social compromise, not only a firm believer in equality but an
active individual hoping to achieve it

• Henkin’s influential papers in the domain of foundations of
mathematical logic begin with two on completeness of formal
systems, where he fashioned a new method that was applied
afterwards to many logical systems, including the non-classical
ones

• I am presenting this paper here because Henkin acts as an
emotional bond between Istvan and me. Henkin was the first
person to introduce Istvan’s and Hajnal’s work to me in 1982
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Life

He was conscious that we live in history and can hardly escape.
This is quoted from a thought-provoking paper on the history of
mathematical education:

"Waves of history wash over our nation, stirring up
our society and our institutions.
Soon we see changes in the way that all of us do

things, including our mathematics and our teaching.
These changes form themselves into rivulets and streams
that merge at various angles with those arising in parts of
our society quite different from education, mathematics,
or science. Rivers are formed, contributing powerful
currents that will produce future waves of history.
The Great Depression and World War II formed the

background of my years of study; the Cold War and the
Civil Rights Movement were the backdrop against which I
began my career as a research mathematicians, and later
began to involve myself with mathematics education."



Life
Academic

• During the period 1937-1941 he was an undergraduate at
Columbia University in New York, the main subject of study
being mathematics but he also enrolled in several courses in
the Philosophy Department, including logic courses by Ernest
Nagel

• At Princeton University he completed his Ph.D program in
mathematics, interrupted by four years of work as a
mathematician in the famous Manhattan Project – the period
May, 1942-March,1946– . The Completeness of Formal
Systems is the title of his dissertation written under Alonzo
Church that was defended in 1947 at Princeton University

• He joined the maths department at the University of Southern
California in 1949 and UC Berkeley in 1953. It was Alfred
Tarski, the founder in 1942 of the center for the study of logic
and foundations who called Henkin
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Completeness
Henkin’s thesis:The Completeness of Formal Systems

• He proved completeness for:

1 Type Theory
2 First Order Logic

• Two papers:

1 Completeness in the Theory of Types. JSL, 1950
2 The Completeness of the First-Order Functional Calculus. JSL,
1949

• Remarks:

1 The second result is not new (Gödel had already solved
positively the problem for first order logic about 15 years
earlier)

2 Simple type theory, with the standard semantics on a hierachy
of types was strong enough to hold arithmetic and therefore
should be incomplete (by Gödel’s incompleteness theorem)

• new method that was applied afterwards to many logical
systems, including the non-classical ones
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On mathematical induction

We believed that his work on mathematical induction was the
result of his devotion to mathematical education. Henkin always
considered On mathematical induction his best expository paper.

• In it the relationship between the induction axiom and
recursive definitions is studied in depth

• He defined induction models as the ones obeying the
induction axiom and was able to prove that not all recursive
operations can be defined. For instance, exponentiation fails.

• Induction models present straightforward mathematical
structures

1 either standard, that is, isomorphic to natural numbers,
2 or non-standard. The latter fall into two categories:

• cycles – namely Z modulo n–
• or what Henkin termed spoons, having a cycle and a handle.

• The reason being that induction axiom always drag along
either the first or the second Peano axioms for Arithmetic
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Offsprings of Henkin’s papers
Extensions of First Order Logic: Manzano, M. CUP. 1996

• I like to credit most of my ideas on translation between logics
to two papers of Henkin

1 Completeness in the theory of types, of 1950
2 and to his paper of 1953, Banishing the rule of substitution
for functional variables

• From 1: we learn that a modification of the semantics can
adapt validities (in the new semantics) to logical theorems

• From 2: many-sorted logic plays an important role
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Offsprings of Henkin’s papers
Extensions of First Order Logic: Manzano, M. CUP. 1996

• In connection with higher order logic, the many-sorted
calculus was introduced in the paper of 1953.

• Henkin proposes the comprehension axiom as a way to avoid
the rule of substitution.

• The new calculus allows me:

1 To prove completeness for HOL with the general semantics,
just using completeness of MSL (the property of being a
general structure can be axiomatized)

2 To isolate calculi between the MSL calculus and HOL, by
weakening comprehension

• And it is easy to find a semantics for the logic thus defined.
• The new logic will also be complete
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Offsprings of Henkin’s papers
Hybrid Type Theory: A Quartet in Four Movements. Areces, Blackburn, Huertas &

Manzano

• We were able to combine:

1 Reichenbach’s Tense and Temporal Reference
2 Prior’s analysis of tenses
3 Montague’s Universal Grammar
4 Henkin’s completeness
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Offsprings of Henkin’s papers
Patrick Blackburn: Tense, temporal reference and tense logic 1994

• Hybrid Language

1 Two sorts of atomic
formulas:
ATOM ∪ NOM

2 New set of modal
operators:
{@i | i ∈ NOM}

3 New formulas in this
extended language:

• NOM ⊆ FORM
• @i ϕ ∈ FORM

• Hybrid Semantics:
Kripke models

1 A,w 
 i iff the
instant w is labelled i

2 A,w 
 @i ϕ iff
A, v 
 ϕ
v being the unique
element of W where i
is true
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Zen Philosophy
The book of perfect emptiness

• Tang de Ying asked Ge:

• “Did things exist at the dawn of time?”

• Xia Ge answered:
• “If things had not existed at the dawn of time, how could they
possibly exist today?

• By the same token, men in the future could believe that
things did not exist today.

• The argument can be reformulated in this way

1 α := If things exist at a given point in time, then at any given
previous moment in time things must have existed.

2 β := Things exist today.
3 γ := The dawn of time is previous to all else.
4 δ := Things existed at the dawn of time.
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Zen Philosophy
Formalization in Hybrid Logic

• Fomalization

• Hypothesis

1 α := q → [P ] q
2 β := @tq
3 γ := @d [P ] ⊥

• Last premise: at the dawn
of time holds that at all
previous time ⊥ is true.

• Conclusion

δ := @dq

• Proof
• To prove δ from the
hypothesis we can use the
trichotomy axiom

@td ∨ @t 〈P〉 d ∨ @d 〈P〉 t

• @td says that t and d
names the same point

• @t 〈P〉 d says that at t we
have that d lies in the
past

• @d 〈P〉 t (is impossible)
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Offsprings of Henkin’s papers
The completeness of HTT: Areces, Blackburn, Huertas & Manzano

• We are loyal to Henkin’s conception and construction

• due to its expressive power HT T should be incomplete

1 but we know from Completeness in the theory of types the
use general models

2 A pre-structure is a structureM verifying all the conditions
for a standard structure, except for the fullness condition on
the domains of the hierarchy of types; it is only required that
D〈a,b〉 ⊆ DbDa

3 A general structure for HT T is a pre-structure closed under
interpretation, that is, for any meaningful expression in MEa,
its interpretation is a member of Da.

• being modal we cast doubts about the method of proof

1 but we learned from The completeness of the First-Order
Functional Calculus the use of constants

2 in HT T we use rigid terms
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Thanks, Leon

• Would you like to participate in a book about Leon Henkin?
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