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Reading Completeness

How to read completeness (properly)

1 If A is a logical truth, then A is a theorem of S.

2 Whenever we have a logical truth, we know we can have a proof of it
as a theorem in a calculus S.

3 The set of logical truths is included in the set of theorems of S.

4 The set of logical truths is recursively enumerated (by a calculus S).
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Completeness for PL

Some facts from History:

1 Bernays, 1918: “Beiträge zur axiomatischen Behandlung des
LogikalKalküs”.

2 Post, 1921: “Introduction to a general theory of elementary
propositions”.

3 Behmann, 1922: “Beiträge zur Algebra der Logik, insbesondere zum
Entscheidungsproblem”.

4 Bernays, 1926: “Axiomatische Untersuchungen des Aussagen-Kalkuls
der ”Principia Mathematica“ ”.

5 Quine, 1938: “Completeness of the Propositional Calculus“.
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Post’s interpretation of the proof

”Our most important theorem gives a uniform method for
testing the truth of any proposition of the system; and by means
of this theorem it becomes possible to exhibit certain general
relations which exists between these propositions. [...] ...this
general procedure might be extended to other portions of
“Principia”, and we hope at some future time to present the
begining of such an attempt.“ [Post 1921, p.164]

”We thus see that given any function the theorem gives a
direct method for testing whether that function can or cannot be
asserted; and if the test shows that the function can be asserted
the above proof will give us an actual method for immediately
writting down a formal derivation of its assertion by means of the
postulates of Principia.“ [Post 1921, p.171]
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Gödel’s completeness proof for FOL
Normal forms

- It is a typical proof based on a critical use of ”normal forms“.

- A K-formula has the following aspect: (Un)(En)...(U0)(E0)A. That
is, a K-formula is a formula with a quantificational prefix formed by
alternations of universal quantifiers followed by exitential quantifiers.

- The degree of a K-formula is defined as the number of such
alternations. A K-formula of degree 1 corresponds to (U0)(E0)A

- The set of K-expressions is formed by the K-formulas of the
language.
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Gödel’s completeness proof for FOL
Normalization strategy

Normalization proccess

1 Theorem 3: If every K-expression is either refutable or satisfiable,
so is every expression.

2 Theorem 4: If every expression of degree k is either satisfiable or
refutable, so is every expression of degree k+1.

3 Theorem 5: Every formula of degree 1 is either satisfiable or
refutable.
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Gödel’s completeness proof for FOL
The inductive list of formulas

Introduction of an inductive list of formulas in a propositional
language

-(P)A =def (U0)(E0)A

-(∀x1
0x1

1 ...x1
i )(∃y0y1...yj )A-

A1 = A(x1
0x1

1 ...x1
i , y0y1...yj )

A2 = A(x2
0x2

1 ...x2
i , yj+1yj+2...y2j )&A1

. . . . . . . . .
An = A(xn

0 xn
1 ...xn

i , y(n−1)j+1y(n−1)j+2...ynj )&An−1
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Gödel’s completeness proof for FOL
Connecting with PL

Some basic facts and the propositional translation

- (Pn)An = (∃x0x1...xn)An

- Theorem 6: (P)A→ (Pn)An, for every n.

- Bn: for each An we obtain a corresponding propositional formula Bn

by replacing the elementary constituens of An by different
propositional variables.

- A basic fact from PL: each Bn is either satisfiable or refutable
(completeness for PL)
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Gödel’s completeness proof for FOL
Satisfying systems

- Two cases: at least one Bn is refutable or no Bn is refutable.

- Case 1: At least one Bn is refutable, then (Pn)An is refutable too,
and by (P)A→ (Pn)An, (P)A is refutable

- Case 2: No Bn is refutable, i.e. every Bn is satisfiable. Now we
obtain satisfiying systems Si of every level such that each one
contains the preceeding systems. From S1...Si ... we obtain a system S
as the sum of S1...Si ... which satisfies (P)A.

- Theorem (completeness): Every formula either is refutable or
satifiable

- Compactness is obtained as a corollary from the proof.
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Gödel’s completeness proof for FOL
Interpretations

Whitehead and Russell, as is well known, constructed logic
and mathematics...[...] in a purely formal way (that is, without
making further use of the meaning of symbols).

Let us note that the equivalence now proved,
”valid=provable“, entails, for the decision problem, a reduction
of the nondenumerable to the denumerable, since ”valid“ refers
to the totality of functions, while ”provable“ presuposses only
the denumerable totality of formal proofs.
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Henkin’s renowned proofs of completeness
Completeness in the theory of types 1950

Henkin’s proofs marked the beginning of the new paradigm.

Right at the beginning of his paper Henkin recalls Gödel’s results:

1 First order calculus is complete, 1930
2 Second order calculus is incomplete, 1931

“... no matter what (recursive) set of axioms are chosen, the system
will contain a formula which is valid but not a formal theorem.”

The standard semantics is being determined by structures
D = 〈〈Dα〉α∈TS , ...〉 where
D0 = {T , F} , D1 6= ∅, D(0,1) = ℘(D1),etc.
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Henkin’s renowned proofs of completeness
Completeness in the theory of types 1950

Concerning completeness of TT, Henkin’s idea was:

1 To change the semantics
2 we accept a wider class of models (including standard and

non-standard models)
3 caution: not so wide as to question comprehension axiom
4 redefine the concept of validity

So Henkin defines what he calls General models and proves

Theorem

If Λ is any consistent set of cwffs there is a general model (in which each
domain Dα is denumerable) with respect to which Λ is satisfiable.
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Henkin’s renowned proofs of completeness
Completeness in the theory of types 1950

The proof follows the following steps:

1 “...to construct a maximal consistent set Γ such that Γ contains Λ...”
Maximal consistent sets describe with enormous precision a possible
model for themselves

2 “Two cwffs Aα and Bα of type α will be called equivalent iff
Γ ` Aα ↔ Bα”
This is a genuine congruence relation

3 “We now define by induction on α a frame of domains {Dα} and
simultaneously a one-one mapping Φ of equivalence classes onto the
domains Dα such that Φ([Aα] is in Dα”

the new method of proof can be generalized
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Henkin’s renowned proofs of completeness
The Completeness of the First Order Functional Calculus. 1949

Completeness for first order logic was obtained readapting the method

The proof follows the following steps:

As in the previous proof for type theory a maximal consistent set Γω

is build.
“It is easy to see that Γω possesses the following properties:

1 Γω is a maximal consistent set of cwffs of Sω
2 If a formula (∃x)A is in Γω then Γω also contains a formula A‘′ ... by

substituting some constant for each free occurrence of the variable x”

An interpretation is build on top of this set using the set of
individuals constants.
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The completeness of FOL in Henkin’s course
Herbrand’s Theorem

Theorem (Extended Herbrand’s)

For any set of sentences Γ ∪ {A} ⊆ Sent(L) we have: Γ ` A iff
Γ ∪ ∆ `PL A, where ∆ ⊆ Sent(L′) effectively given. L′ = L∪ C (new
individual constants).

∆ = ∆1 ∪ ∆2 ∪ ∆3

∆1 sentences of form ∃xiB → B(ci ,B ) each ∃xiB ∈ Sent(L′)
∆2 axioms for quantifiers
∆3 axioms for the equality symbol

Γ ∪ ∆ `PL A implies Γ ` A is Herbrand’s theorem.

Γ ` A implies Γ ∪ ∆ `PL A proven by contraposition.

1 Γ ∪ ∆ 6`PL A implies Γ ∪ ∆ 6|=PL A (completeness PL)
2 From propositional interpretation = we obtain a first order structure A

such that |=A Γ but 6|=A A and so, Γ 6|= A
3 Thus, Γ 6` A (soundness FOL)
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Γ ` A implies Γ ∪ ∆ `PL A proven by contraposition.

1 Γ ∪ ∆ 6`PL A implies Γ ∪ ∆ 6|=PL A (completeness PL)
2 From propositional interpretation = we obtain a first order structure A

such that |=A Γ but 6|=A A and so, Γ 6|= A
3 Thus, Γ 6` A (soundness FOL)

Manzano, M. (USAL) & Alonso, E. (UAM) () Henkin on Completeness August 2012 15 / 19



The completeness of FOL in Henkin’s course
Herbrand’s Theorem

Theorem (Extended Herbrand’s)

For any set of sentences Γ ∪ {A} ⊆ Sent(L) we have: Γ ` A iff
Γ ∪ ∆ `PL A, where ∆ ⊆ Sent(L′) effectively given. L′ = L∪ C (new
individual constants).

∆ = ∆1 ∪ ∆2 ∪ ∆3

∆1 sentences of form ∃xiB → B(ci ,B ) each ∃xiB ∈ Sent(L′)
∆2 axioms for quantifiers
∆3 axioms for the equality symbol

Γ ∪ ∆ `PL A implies Γ ` A is Herbrand’s theorem.

Γ ` A implies Γ ∪ ∆ `PL A proven by contraposition.

1 Γ ∪ ∆ 6`PL A implies Γ ∪ ∆ 6|=PL A (completeness PL)
2 From propositional interpretation = we obtain a first order structure A

such that |=A Γ but 6|=A A and so, Γ 6|= A
3 Thus, Γ 6` A (soundness FOL)

Manzano, M. (USAL) & Alonso, E. (UAM) () Henkin on Completeness August 2012 15 / 19



The completeness of FOL in Henkin’s course
Herbrand’s Theorem

Theorem (Extended Herbrand’s)

For any set of sentences Γ ∪ {A} ⊆ Sent(L) we have: Γ ` A iff
Γ ∪ ∆ `PL A, where ∆ ⊆ Sent(L′) effectively given. L′ = L∪ C (new
individual constants).

∆ = ∆1 ∪ ∆2 ∪ ∆3

∆1 sentences of form ∃xiB → B(ci ,B ) each ∃xiB ∈ Sent(L′)
∆2 axioms for quantifiers
∆3 axioms for the equality symbol

Γ ∪ ∆ `PL A implies Γ ` A is Herbrand’s theorem.

Γ ` A implies Γ ∪ ∆ `PL A proven by contraposition.
1 Γ ∪ ∆ 6`PL A implies Γ ∪ ∆ 6|=PL A (completeness PL)

2 From propositional interpretation = we obtain a first order structure A
such that |=A Γ but 6|=A A and so, Γ 6|= A

3 Thus, Γ 6` A (soundness FOL)

Manzano, M. (USAL) & Alonso, E. (UAM) () Henkin on Completeness August 2012 15 / 19



The completeness of FOL in Henkin’s course
Herbrand’s Theorem

Theorem (Extended Herbrand’s)

For any set of sentences Γ ∪ {A} ⊆ Sent(L) we have: Γ ` A iff
Γ ∪ ∆ `PL A, where ∆ ⊆ Sent(L′) effectively given. L′ = L∪ C (new
individual constants).

∆ = ∆1 ∪ ∆2 ∪ ∆3

∆1 sentences of form ∃xiB → B(ci ,B ) each ∃xiB ∈ Sent(L′)
∆2 axioms for quantifiers
∆3 axioms for the equality symbol

Γ ∪ ∆ `PL A implies Γ ` A is Herbrand’s theorem.

Γ ` A implies Γ ∪ ∆ `PL A proven by contraposition.
1 Γ ∪ ∆ 6`PL A implies Γ ∪ ∆ 6|=PL A (completeness PL)
2 From propositional interpretation = we obtain a first order structure A

such that |=A Γ but 6|=A A and so, Γ 6|= A

3 Thus, Γ 6` A (soundness FOL)

Manzano, M. (USAL) & Alonso, E. (UAM) () Henkin on Completeness August 2012 15 / 19



The completeness of FOL in Henkin’s course
Herbrand’s Theorem

Theorem (Extended Herbrand’s)

For any set of sentences Γ ∪ {A} ⊆ Sent(L) we have: Γ ` A iff
Γ ∪ ∆ `PL A, where ∆ ⊆ Sent(L′) effectively given. L′ = L∪ C (new
individual constants).

∆ = ∆1 ∪ ∆2 ∪ ∆3

∆1 sentences of form ∃xiB → B(ci ,B ) each ∃xiB ∈ Sent(L′)
∆2 axioms for quantifiers
∆3 axioms for the equality symbol

Γ ∪ ∆ `PL A implies Γ ` A is Herbrand’s theorem.

Γ ` A implies Γ ∪ ∆ `PL A proven by contraposition.
1 Γ ∪ ∆ 6`PL A implies Γ ∪ ∆ 6|=PL A (completeness PL)
2 From propositional interpretation = we obtain a first order structure A

such that |=A Γ but 6|=A A and so, Γ 6|= A
3 Thus, Γ 6` A (soundness FOL)

Manzano, M. (USAL) & Alonso, E. (UAM) () Henkin on Completeness August 2012 15 / 19



The completeness of FOL in Henkin’s course
Predicate logic: Reduction to sentential logic

We effectively reduce the completeness problem for first order logic to
that of sentential logic.

Theorem (Completeness of FOL)

Previous theorem (using completeness of PL) implies completeness of FOL

Note that a proof of the kind described above, provides a
completeness proof for first order logic.

1 For the theorem shows Γ 6` A implies Γ ∪ ∆ 6`PL A
2 On the other hand, using the structure A we show that

Γ ∪ ∆ 6`PL A implies Γ 6|= A

Therefore, Γ |= A implies Γ ` A, which is completeness for first order
logic.

Manzano, M. (USAL) & Alonso, E. (UAM) () Henkin on Completeness August 2012 16 / 19



The completeness of FOL in Henkin’s course
Predicate logic: Reduction to sentential logic

We effectively reduce the completeness problem for first order logic to
that of sentential logic.

Theorem (Completeness of FOL)

Previous theorem (using completeness of PL) implies completeness of FOL

Note that a proof of the kind described above, provides a
completeness proof for first order logic.

1 For the theorem shows Γ 6` A implies Γ ∪ ∆ 6`PL A
2 On the other hand, using the structure A we show that

Γ ∪ ∆ 6`PL A implies Γ 6|= A

Therefore, Γ |= A implies Γ ` A, which is completeness for first order
logic.

Manzano, M. (USAL) & Alonso, E. (UAM) () Henkin on Completeness August 2012 16 / 19



The completeness of FOL in Henkin’s course
Predicate logic: Reduction to sentential logic

We effectively reduce the completeness problem for first order logic to
that of sentential logic.

Theorem (Completeness of FOL)

Previous theorem (using completeness of PL) implies completeness of FOL

Note that a proof of the kind described above, provides a
completeness proof for first order logic.

1 For the theorem shows Γ 6` A implies Γ ∪ ∆ 6`PL A

2 On the other hand, using the structure A we show that

Γ ∪ ∆ 6`PL A implies Γ 6|= A

Therefore, Γ |= A implies Γ ` A, which is completeness for first order
logic.

Manzano, M. (USAL) & Alonso, E. (UAM) () Henkin on Completeness August 2012 16 / 19



The completeness of FOL in Henkin’s course
Predicate logic: Reduction to sentential logic

We effectively reduce the completeness problem for first order logic to
that of sentential logic.

Theorem (Completeness of FOL)

Previous theorem (using completeness of PL) implies completeness of FOL

Note that a proof of the kind described above, provides a
completeness proof for first order logic.

1 For the theorem shows Γ 6` A implies Γ ∪ ∆ 6`PL A
2 On the other hand, using the structure A we show that

Γ ∪ ∆ 6`PL A implies Γ 6|= A

Therefore, Γ |= A implies Γ ` A, which is completeness for first order
logic.

Manzano, M. (USAL) & Alonso, E. (UAM) () Henkin on Completeness August 2012 16 / 19



The completeness of FOL in Henkin’s course
Predicate logic: Reduction to sentential logic

We effectively reduce the completeness problem for first order logic to
that of sentential logic.

Theorem (Completeness of FOL)

Previous theorem (using completeness of PL) implies completeness of FOL

Note that a proof of the kind described above, provides a
completeness proof for first order logic.

1 For the theorem shows Γ 6` A implies Γ ∪ ∆ 6`PL A
2 On the other hand, using the structure A we show that

Γ ∪ ∆ 6`PL A implies Γ 6|= A

Therefore, Γ |= A implies Γ ` A, which is completeness for first order
logic.

Manzano, M. (USAL) & Alonso, E. (UAM) () Henkin on Completeness August 2012 16 / 19



The completeness of FOL in Henkin’s course
An Extension of the Craig-Lyndon Interpolation Theorem

Craig had shown the following theorem:

Theorem

If A and C are any formulas of predicate logic such that A ` C , then
there is a formula B such that (i) A ` B and B ` C , and (ii) each
predicate symbol occurring in B occurs both in A and in C.

Henkin’s idea was to obtain completeness from a slightly modified
version of Craig’s theorem.

‘Notice, however, that if we alter Craig’s theorem by replacing the
symbol “`” with “|=” in the hypothesis, but leaving “`” unchanged
in condition (i) of the conclusion, then the resulting proposition yields
the completeness theorem as an immediate corollary.’
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The completeness of FOL in Henkin’s course
An Extension of the Craig-Lyndon Interpolation Theorem

The main theorem to be proven is:

Theorem

Let Γ and ∆ any sets of nnf’s (negation normal formula) such that Γ |= ∆.
There is a nnf B such that (i) Γ ` B and B ` ∆, and (ii) any predicate
symbol with a positive or negative occurrence in B has an occurrence of
the same sign in some formula of Γ and in some formula of ∆.

The strong completeness theorem is implied by the previous one. The
proof of the theorem is done by contraposition.
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Thank you very much
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