Approximating the 2-variable fragment of predicate logic with propositional modal logics: a survey of recent results

Agi Kurucz

Department of Informatics King's College London

Propositional bimodal logics

bimodal formulas: $| \varphi = p | \neg \varphi | \varphi \lor \psi | \diamond_0 \varphi | \diamond_1 \varphi | \Box_0 \varphi | \Box_1 \varphi$ relational structures: $\mathfrak{F} = \langle W, R_0, R_1 \rangle$ $\mathfrak{M}=\langle\mathfrak{F},
u
angle$, where $\overline{
u}$: Variables $ightarrow 2^W$ models: • $(\mathfrak{M}, w) \models p$ iff $w \in \nu(p)$ • $(\mathfrak{M}, w) \models \neg \varphi$ iff $(\mathfrak{M}, w) \not\models \varphi$ • $(\mathfrak{M}, w) \models \varphi \lor \psi$ iff $(\mathfrak{M}, w) \models \varphi$ or $(\mathfrak{M}, w) \models \psi$ • $(\mathfrak{M}, w) \models \diamond_i \varphi$ iff $\exists v (w R_i v \text{ and } (\mathfrak{M}, v) \models \varphi)$ • $(\mathfrak{M}, w) \models \Box_i \varphi$ iff $\forall v \text{ (if } wR_i v \text{ then } (\mathfrak{M}, v) \models \varphi)$ validity: $\mathfrak{F} \models \varphi$ iff $(\mathfrak{M}, w) \models \varphi$, for all $\mathfrak{M} = \langle \mathfrak{F}, \nu \rangle$ and $w \in W$

Modal logics vs. Boolean Algebras with Operators

- modal operator \diamond_i
- formula φ
- relational structure \mathfrak{F}
- $\mathfrak{F}\models \varphi$
- Logic_of $\mathcal{C} = \{ \varphi : \mathfrak{F} \models \varphi, \, \forall \mathfrak{F} \in \mathcal{C} \}$
 - finitely axiomatisable
 - decidable
 - finite model property

- unary function symbol f_{\diamond_i}
- term t_{arphi}
- full complex algebra $Cm(\mathfrak{F})$ of \mathfrak{F}
- $Cm(\mathfrak{F}) \models (t_{\varphi} = 1)$
- EqTheory_of $Var\{Cm(\mathfrak{F}): \mathfrak{F} \in \mathcal{C}\}$
 - finitely based
 - decidable
 - finite algebra property

2D cylindric set algebras

Subalgebras of the full complex algebra of 2D 'square-structures' of the form

 $\langle \mathit{W}\! imes\! \mathit{W}, \equiv_0, \equiv_1, D_{01}
angle$

where, for all $\langle x,y
angle$, $\langle x',y'
angle\in W{ imes}W$,

$$egin{aligned} &\langle x,y
angle \equiv_0 \langle x',y'
angle & ext{iff} \quad y=y' \ &\langle x,y
angle \equiv_1 \langle x',y'
angle & ext{iff} \quad x=x' \ &D_{01}=\{\langle x,x
angle \mid x\in W\} \end{aligned}$$

 $\mathsf{RCA}_2 = \mathsf{Var}\{Cm \ \langle \ W \times W, \equiv_0, \equiv_1, D_{01} \ \rangle \ | \ W \text{ is a nonempty set} \}$

Modal logic (or RCA₂) vs. two-variable predicate logic

multimodal formula φ	\sim	f-o formula $arphi^*$ with ≤ 2 variables
p	\mapsto	P(x,y)
$\neg \varphi$	\mapsto	$\neg \varphi^*$
$arphi ee \psi$	\mapsto	$arphi^* ee \psi^*$
$\diamond_0\varphi$	\mapsto	$\exists x \; arphi^*$
$\Box_0\varphi$	\mapsto	$orall x \; arphi^*$
$\Diamond_1 \varphi$	\mapsto	$\exists y \; \varphi^*$
$\Box_1 \varphi$	\mapsto	$orall y \; arphi^*$
δ	\mapsto	x = y

arphi is valid in 'square-structures' $\iff arphi^*$ is f-o valid

2D propositional approximations of RCA_2

We classify the properties of RCA2:

- Group (0): BAO properties
- Group (1): additional properties of the individual cylindrifications

• Group (2): 'dimension-connecting' properties due to the 2D structure

$$c_0c_1x = c_1c_0x$$
 $\diamond_0\diamond_1p \leftrightarrow \diamond_1\diamond_0p$ commutativity
Henkin axiom

What's next? We try to keep (0) and (2), but relax (1)

 \rightsquigarrow 2D structures with possibly 'sub-equivalence' relations

Diagonal-free case: 2D relational structures

Segerberg 1973, Shehtman 1978, Gabbay-Shehtman 1998

For $\mathfrak{F}_{0} = \langle W_{0}, R_{0} \rangle$ and $\mathfrak{F}_{1} = \langle W_{1}, R_{1} \rangle$, the *product structure is $\mathfrak{F}_{0} * \mathfrak{F}_{1} = \langle W_{0} \times W_{1}, R_{h}, R_{v} \rangle$, where $\langle x, y \rangle R_{h} \langle x', y' \rangle$ iff y = y' and $xR_{0}x'$ $\langle x, y \rangle R_{v} \langle x', y' \rangle$ iff x = x' and $yR_{1}y'$ $\mathfrak{F}_{0} * \mathfrak{F}_{1}$

Axiomatising 2D approximations: first steps

our 2D structures contain disjoint copies of the `component' structures, so their modally describable properties transfer to the 2D structure

• because our 2D structures are `full rectangles', we always have the formulas

(confluence follows from commutativity if one relation is symmetric)

Are these ENOUGH?

Axiomatising 2D approximations: known results

Gabbay-Shehtman 1998

f-o Horn formula: $\forall xy\bar{z} \left(\Phi(x,y,\bar{z}) \rightarrow R(x,y)\right)$ where Φ is positivemodal Horn axiom:modal formula with Horn f-o correspondent
(reflexive, transitive, symmetric, ...)

• If $Logic_of(\mathcal{C}_0)$ and $Logic_of(\mathcal{C}_1)$ are both Horn axiomatisable, then

Logic_of($C_0 * C_1$) =`component axioms + commutativity + confluence'

Can this be generalised to universal (sub-equivalence) properties?

Is there a 'natural' non-finitely axiomatisable 2D approximation?

Axiomatising 2D approximations: 'difference' structures

'difference' structures:

$$\langle \mathit{W},
eq
angle$$

modally describable properties: symmetry and

pseudo-transitivity (universal but not Horn):

$$orall xyz \left(R(x,y) \wedge R(y,z)
ightarrow x = z ee R(x,z)
ight)$$

(we obtain equivalence by adding reflexivity)

Hampson-K 2012

- \mathcal{C}_{diff} :
- the class of all 'difference' structures
- any class of 'sub-equivalence' structures

Every axiomatisation of Logic_of ($C_{diff} * C$) must contain

infinitely many propositional variables.

Axiomatising 2D approximations: 'linear' structures

Another universal but not Horn, 'sub-equivalence' property:

weak connectedness

 $orall xyz \left(R(x,y) \wedge R(x,z)
ightarrow y = z ee R(y,z) ee R(z,y)
ight)$

(linearly ordered chain of clusters if transitive and rooted)

K-Marcelino 2010

- \mathcal{C}_{lin} : the class of all 'linear' (transitive and weakly connected) structures
 - \mathcal{C}_{all} : the class of **all** structures
 - \mathcal{C}_{tr} : the class of all **transitive** structures

Any axiomatisation of $\text{Logic}_{of}(\mathcal{C}_{lin} * \mathcal{C}_{all})$

or **Logic_of**(
$$C_{lin} * C_{tr}$$
) must contain

- infinitely many propositional variables
- formulas of arbitrarily large ◊₁-depth

Open: Is $Logic_of(C_{lin} * C_{equiv})$ finitely axiomatisable?

Complexity of the satisfiability problem: some upper bounds

• Scott 62, Mortimer 1975

 $\mathsf{RDf}_2 \sim \mathsf{Logic}_{-}\mathsf{of}(\mathcal{C}_{equiv} * \mathcal{C}_{equiv})$

is decidable in NEXPTIME

has the finite model property

(reducible to two-variable equality-free fragment of f-o logic)

Gr\u00e4del-Otto-Rosen 1997, Pacholski-Swast-Tendera 1997, Pratt-Hartman 2005

 $\mathsf{Logic}_{\mathsf{o}}\mathsf{o}\mathsf{f}(\mathcal{C}_{\mathsf{diff}} * \mathcal{C}_{\mathsf{diff}})$

is still decidable in NEXPTIME

NO finite model property

(reducible to two-variable fragment of f-o logic with counting quantifiers)

• Gabbay–Shehtman 1998

Logic_of($C_{all} * C_{all}$) is **decidable**

has the finite model property

Complexity of the satisfiability problem: some lower bounds

• Marx 1999

Any class of *products of `sub-equivalence' structures is NEXPTIME-hard

• Göller–Jung–Lohrey 2012

Logic_of $(C_{all} * C_{all})$ is not decidable in elementary time

• Gabelaia–K–Wolter–Zakharyaschev 2005

Transitive (but not symmetric) structures usually result in 'bad' logics

Logic_of($C_{tr} * C_{tr}$) is **undecidable**

(same as Logic_of(two commuting and confluent transitive relations)

- or, EqTheory_of(two commuting and confluent closure operators)
- Hampson-K 2012

 $Logic_of(C_{lin} * C_{diff})$ is undecidable

Open: Is Logic_of($C_{tr} * C_{diff}$) decidable?

Adding the diagonal

- We add a constant δ to the bimodal language with \diamond_0 , \diamond_1 , interpreted in 2D structures as $D_{01} = \{\langle x, y \rangle \in W_0 \times W_1 \mid x = y\}$
- Either: we consider `square' products $\mathfrak{F} * \mathfrak{F} \mathfrak{F}$ of the same structure \mathfrak{F}

The diagonal subset D_{01} always has the following properties:

$$egin{aligned} &orall x\in W_0,\ &orall y,y'\in W_1\left(\left\langle x,y
ight
angle,\ &\langle x,y'
ight
angle\in D_{01} &\Longrightarrow y=y'
ight)\ &orall x,x'\in W_0,\ &orall y\in W_1\left(\left\langle x,y
ight
angle,\ &\langle x',y
ight
angle\in D_{01} &\Longrightarrow x=x'
ight) \end{aligned}$$

Axiomatising 2D approximations with diagonal

RCA₂ ~ Logic_of ($C_{equiv} *^{sq} C_{equiv}$):

well-known finite axiomatisation

• Kikot 2010

• *K 2010*

 $RCA_2 \sim Logic_of(C_{equiv} * {}^{sq} C_{equiv})$ is finitely axiomatisable over

 $\text{Logic}_{\text{of}}(\mathcal{C}_{all} *^{sq} \mathcal{C}_{all})$

Satisfiability problems of 2D approximations with diagonal

• Mortimer 1975

 $\mathsf{RCA}_2 ~\sim~ \mathsf{Logic_of}(\,\mathcal{C}_{\mathit{equiv}} *^{\mathit{sq}} \,\mathcal{C}_{\mathit{equiv}})$

is decidable in NEXPTIME

has the finite model property

(reducible to two-variable fragment of f-o logic)

K–Kikot 2010

(these are all decidable without diagonal)

Open: Is Logic_of($C_{all} *^{\delta} C_{equiv}$) decidable?

Possible future directions

- connections with other extensions of the two-variable f-o fragment
 - with equivalence closure (*Kieronski–Pratt-Hartmann–Tendera 2012*)
 - various undecidable extensions (Grädel–Otto–Rosen 1999)
- less interaction between the components (relativisations)

Open: Is the logic of two commuting transitive relations decidable?

- reducts over 2D structures
 - positive
 - (\diamond_i, \wedge) (positive existential queries, description logic \mathcal{EL} , reflection calculus in provability logics)
 - unary negation (ten Cate-Segoufin 2011)
- connections with f-o guarded fragments

Andréka-van Benthem-Németi 1998 Marx 2001, Grädel 1999 Bárány-ten Cate-Segoufin 2011

other logical properties over 2D structures: interpolation, definability, ...