On generic automorphisms

Zalán Gyenis and Gábor Sági

Németifest

September 9, 2012

Motivation

G is a permutation group on a set of cardinality \aleph_0 . What should be regarded as a typical member of G?

- ▶ *G* is Polish group (\rightarrow Baire Category Theorem!)
- ▶ Basic open sets of the form $[p] = \{g \in G : g \text{ extends } p\}$, for p partial map.
- Typical elements should have any property which it would be unreasonable to prohibit on the basis of finitely many of its values.
- ► Typical elements should lie in certain dense open sets.

Motivation

Any two generic elements should look alike: they should be conjugates.

Definition (Truss) $g \in G$ is generic if it lies in a comeagre conjugacy class, that is, the complement of the conjugacy class

$$g^G = \left\{ h^{-1}gh: \ h \in G \right\}$$

is the union of countably many nowhere dense sets.

Equivalently, g^G is dense G_δ .

Examples

Groups having a dense conjugacy class:

- Automorphism group of a standard Borel space (Rokhlin),
- Unitary group of a separable infinite-dimensional Hilbert space (Choksi, Nadkarni),
- Isometry group of the Urysohn space,
- Homeomorphism group of the Hilbert cube, or the Cantor space

Examples

Groups having a generic element

- ▶ $Aut(\mathbb{N}, =)$ (the symmetric group on a countable set).
- ▶ Aut(Q, <).</p>
- ightharpoonup Aut(R), where R is the countable random graph.
- ▶ Aut(P), where P is the countable random poset.

Usual context

- ▶ $\mathcal{M} = \langle M, \text{ some relations} \rangle$ is a homogeneous, countable structure endowed with discrete topology.
- $G = Aut(\mathcal{M})$ automorphism group of \mathcal{M} .

 $G \subseteq {}^M M$ is a Polish group with the topology inherited from the product topology of ${}^M M$.

 g^G is dense if for any finite partial p there is $h \in G$ such that $h^{-1}gh \supseteq p$.

•0

Generic Automorphisms

Theorem (Truss)

 $\mathcal M$ has generic automorphism if and only if for all finite elementary mappings p and q there is an automorphism h such that $h^{-1}ph$ and q are compatible (i.e. $h^{-1}ph \cup q$ is elementary).

0

Proof idea

Define the poset (P, \leq) :

- ► P = finite elementary mappings,
- ▶ $p \le q$ if $q \subseteq h^{-1}ph$ for some automorphism h.

Dense sets:

- ▶ $D_x = \{p : x \in dom(p)\}, R_y = \{p : y \in ran(p)\},$
- ▶ $E_p = \{q: h^{-1}ph \subseteq q \text{ for some automorphism } h\}.$

There exists a generic filter F (in the forcing sense). $\bigcup F$ is an generic automorphism.

Truss' theorem

Proof idea

Define the poset (P, \leq) :

- ightharpoonup P = finite elementary mappings,
- ▶ $p \le q$ if $q \subseteq h^{-1}ph$ for some automorphism h.

Dense sets:

- ▶ $D_x = \{p : x \in dom(p)\}, R_y = \{p : y \in ran(p)\},$
- ▶ $E_p = \{q: h^{-1}ph \subseteq q \text{ for some automorphism } h\}.$

There exists a generic filter F (in the forcing sense). $\bigcup F$ is an generic automorphism.

Remark: Applying certain forcing axioms the proof can be extended to automorphism groups of not necessarily countable structures.

Ample generics

Ample generics

Definition: G has ample generics if for each finite n there is a comeager orbit for the diagonal conjugacy action of G on G^n

$$g \cdot (g_1, \ldots, g_n) = (g^{-1}g_1g, \ldots, g^{-1}g_ng).$$

Examples:

- ► Aut(Q, <) has a generic automorphism but does not have ample generics,
- Automorphism group of the countable random graph (Hrushovski),
- Free group on countably many generators (Bryant, Evans),
- Arithmetically saturated models of true arithmetic (Schmerl),
- ▶ Automorphism group of ω -stable, \aleph_0 -categorical (Hodges, Hodkinson, Lascar, Shelah)

Polish groups

The existence of ample generics of G implies:

- The small index property, (open subgroups are the ones with small index)
- Automatic continuity of homomorphisms, (homomorphism into separable groups are automatically continuous)
- ► *G* admits a unique Polish group topology.

Chromatic number of the direct product

The chromatic number $\chi(D)$ of a graph D is the least cardinal κ for which there is a coloring with κ colors so that no adjacent vertices have the same color.

$$H(\kappa,\lambda)$$
 is the statement: if $\chi(D), \chi(D') \ge \kappa$ then $\chi(D \times D') \ge \lambda$.

Easy:
$$\chi(D \times D') \leq \chi(D), \chi(D')$$
.

Chromatic number of the direct product

Hajnal: $H(\aleph_0, \aleph_0)$

Conjecture: $\exists n < \omega \ H(n,4)$ (weak Hedetniemi conjecture).

Schmerl: If $\mathcal{M} \not\models TA$ then TFAE:

- 1. \mathcal{M} has an automorphism whose set of conjugates is dense;
- 2. There is $n < \omega$ such that $\mathcal{M} \models H(n, 4)$.

Schmerl: If $\mathcal{M} \not\models TA$ is arithmetically saturated then TFAE:

- 1. \mathcal{M} has a generic automorphism;
- 2. There is $n < \omega$ such that $\mathcal{M} \models H(n, 4)$.

Hrushovski-type theorems

Hrushovksi: Each finite graph G can be enlarged to another finite graph H such that every partial isomorphism of G extends to an automorphism of H.

Same for relational structures:

Herwig: Each finite relational structure G can be enlarged to a finite H such that every partial isomorphism of G extends to an automorphism of H.

What if we want not just arbitrary relation structures extending G?

Hrushovski-type theorems

Let ${\bf K}$ be an amalgamation class and ${\cal M}$ be the Fraïssé limit of ${\bf K}$. Then the following are equivalent

- 1. Each $A \in \mathbf{K}$ can be embedded into some $B \in \mathbf{K}$ such that partial isomorphisms of A extends to automorphisms of B.
- 2. \mathcal{M} has a generic automorphism such that each finite *n*-tuple has a finite orbit (under the diagonal action).

Remark: This theorem can be reformulated as a pure semigroup theoretic statement.

Example: Countable random graph.

Lyndon's interpolation

Main message: A local version of Lyndon's interpolation theorem implies the existence of generic automorphisms.

Lyndon's interpolation: For first order theories S and T, if $S \cup T$ is unsatisfiable, then there is an interpolating sentence φ in the language of $S \cap T$ that is true in all models of S and false in all models of T.

Local version?

Local interpolation

An *n*-type of \mathcal{M} over a subset $A \subseteq M$ is a finitely satisfiable set $p(\bar{x})$ of formulae with free variables \bar{x} and parameters from A.

Typical example is the type of an *n*-tuple:

$$tp(\bar{a}/A) = \{ \varphi(\bar{x}, \bar{c}) : \mathcal{M} \models \varphi[\bar{a}, \bar{c}], \bar{c} \in A \}$$

which describes the connection between \bar{a} and elements of A.

A type p is algebraic if p can be realized by a finite number of elements only.

Fraïssé limits of amalgamation classes that are closed under disjoint unions (e.g. finite graphs) do not have algebraic types.

Local interpolation

Definition: \mathcal{M} has the local interpolation property if for any two types p and q of \mathcal{M} over a finite set, $p \cup q$ is satisfiable provided $p \cap q$ is.

Equivalently, if $p \cup q$ is not satisfiable then there is φ so that $\varphi \in p$ and $\neg \varphi \in q$.

Examples:

- 1. Random graph,
- 2. Random poset.

Local interpolation and generic automorphisms

Theorem (Gy–S): If $\mathcal M$ has no algebraic types and has the local interpolation property then it has a generic automorphism.

Lyndon's interpolation

Local interpolation and generic automorphisms

Theorem (Gy–S): If $\mathcal M$ has no algebraic types and has the local interpolation property then it has a generic automorphism.

Remark: No mention of partial mappings.

Some applications

Thank you!

Local interpolation and generic automorphisms

0000

Generic Automorphisms

00 000 00