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Logic (formal) Physics
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Logic- ‘ ’
based Al

Bringsjord, S. (2008) “The Logicist Manifesto: At Long Last Let
Logic-Based Al Become a Field Unto Itself” Journal of Applied Logic
6.4: 502-525.

Preprint: http://kryten.mm.rpi.edu/SB_LAI_Manifesto_091808.pdf

Bringsjord, S. (2008) “Logic-Based/Declarative Computational
Cognitive Modeling” in R. Sun, ed., The Cambridge Handbook of
Computational Psychology (Cambridge, UK: Cambridge University
Press), 127—169.

Preprint: http://kryten.mm.rpi.edu/sb_lccm_ab-toc_031607.pdf
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The Vision, Overall ...
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Available Axiomatizations

® Biology

® Axiomatic Method in Biology (VWoodger and
Tarski)

® (Long ago, a bit outdated now given modern
biology, and the biologists were clueless.)

® Semi-formally: biological ontologies.
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Hajnal Andréka, Judit X. Madarasz, and Istvan Németi. Logic of space-time and relativity theory.
In Aiello et al. (1), pages 607-711.

Hajnal Andréka, Judit X. Madarasz, Istvan Németi, and Gergely Székely. A logic road from special
relativity to general relativity. Synthese, pages 1-17, 2011.
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Proof Verification Given a proof p, a formula ¢, and a set of axioms I', verify that p represents a proof
of ¢ from I'. Expressed in query form: Is it true that I" =5 ¢?

Axioms

Theorem
Proof

Machine )Yes/NO

Sunday, September 23, 12



Proof Discovery Given a formula ¢ and a set of axioms I, find a proof p that derives ¢ from I'. Le.,
find a p such that I" -, ¢.
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Proof Discovery Given a formula ¢ and a set of axioms I, find a proof p that derives ¢ from I'. Le.,
find a p such that I" -, ¢.

Axioms

Theorem Machine > PrOOf
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generation.)
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Systems for Proof Verification
and Proof Discovery ...
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Proof Verification Using
Denotational Proof Languages

sentences proofs
L K
logic language denotational proof language

K. Arkoudas. Denotational Proof Languages. PhD thesis, MIT, 2000.
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Proof Verification Using
Denotational Proof Languages

sentences proofs

L K

logic language denotational proof language

K. Arkoudas. Denotational Proof Languages. PhD thesis, MIT, 2000.

K. Arkoudas and S. Bringsjord. Propositional Attitudes and Causation. International Journal of
Software and Informatics, 3(1):47-65, 20009.
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Important! Naive, “black-box”
use of an ATP won’t work ...
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Semi-Automated Proof
Discovery Using ATP

a first-order language £ whose sentences are S(L£)
let B C S(L) be the entire set of axioms that one is allowed to use

problem := (theorem, premises, 1ist(problem))

theorem € S(L)
premises C S(L)

_ error if premises Z 3
eval((theorem, premises,nil)) = . . _
prover(theorem, premises) if premises C 3

eval((theorem, premises, [p1,...,pn])) = (Aieval(p;)) = prover(theorem, premises U {theorem(p1),...,
theorem(py)}))

(This serves as well as a meta proof theory for semi-
automated proofs that do not use natural deduction in Slate.)
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The problem

ARTIFICIAL INTELLIGENCE: A MODERN APPROACH, 3/E

Either Jack or Curiosity killed the cat, who is named Tuna.
Did Curiosity kill the cat?
First, we express the original sentences, some background knowledge, and the negated
goal G in first-order logic:
A. Vz Vy Animal(y) = Loves(x,y)| = [y Loves(y,zx)]
B. Yz [3z Animal(z) A Kills(z,z)| = [Yy —Loves(y, z)]
C. Va Animal(z) = Loves(Jack,x)
D. Kills(Jack, Tuna) v Kills( Curiosity, Tuna)
E. Cat(Tuna)
F. Vz Cat(x) = Animal(x)
~G.  ~Kills( Curiosity, Tuna)
Now we apply the conversion procedure to convert each sentence to CNF:
Al.  Amimal(F(x)) V Loves(G(x), x)
A2. —Loves(z,F(x))V Loves(G(x),x)
B. —Loves(y,x)V ~Animal(z) VvV ~Kills(x, z)
C. —=Amimal(xz)V Loves(Jack,x)
D. Kills(Jack, Tuna) VvV Kills( Curiosity, Tuna)
E. Cat(Tuna)

F. =Cat(x)V Animal(z)

—=G. = Kills( Curiosity, Tuna) N egated goal
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Signature
 Predicate Symbol  Arity

Animal

Loves
Kills

I
2
2
I

Cat

F
G
Jack
Curiosity

o O O - —

Tuna




A Resolution Proof

Cat(Tuna)

1Cat(x)V Animal(x)

Kills(Jack,Tuna) V Kills(Curiosity, Tuna)

=Kills(Curiosity, Tuna)

\

Animal(Tuna)

Kills(Jack, Tuna)

\em_—

—Loves(y,x) V-Kills(x, Tuna)

\

~Loves(y,x) V=Animal(z) VKills(x,z) b~ ~Animal(x)V Loves(Jack,x)

~

—Loves(x,F(x))V Loves(G(x),x)

\

—“Animal(F(Jack)) Vv Loves(G(Jack),Jack)

Animal(F(x)) vV Loves(G(x),x)

—Loves(y,Jack)

Loves(G(Jack),Jack)

\
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In Slate

Slate - CuriosityKillsTuna.slt

A. ¥x (Vy (Animal(y) — Loves(x,y)) — 3y Loves(y,x)) B. ¥x (3z (Animal(z) a Kills(x,z)) — ¥y -Loves(y,x))
{A} Assume v {B} Assume v/

I [
C. ¥x (Animal(x) — Loves(Jack,x)) D. Kills(Jack,Tuna) v Kills(Curiosity,Tuna)
{C} Assume v L {D} Assume v/

\

E. Cat(Tuna) F. ¥x (Cat(x) — Animal(x))
{E} Assume v/ {F} Assume v/

[7. Kills(Curiosity,Tuna)

{A,B,C,D,E,F}
(NN SNARK Proof
Lin Formula Justification Premise
1 -Animal(X) v Loves(Jack,X) assertion vx (Animal(x) = Loves(Jack,x))
2 =Animal(X) v =Kills(Y,X) v —=Loves(Z,Y) assertion vx (3z (Animal(z) A Kills(x,z)) = vy —Loves(y,x))
3 =Kills(Curiosity,Tuna) negated_conjecture
4 Kills(Jack,Tuna) v Kills(Curiosity,Tuna) assertion Kills(Jack,Tuna) v Kills(Curiosity,Tuna)
5 Kills(ack,Tuna) (resolve 3 4)
6 —Cat(X) v Animal(X) assertion vx (Cat(x) = Animal(x))
7 Cat(Tuna) assertion Cat(Tuna)
8 Animal(Tuna) (resolve 6 7)
9 Animal(SKOLEMECXU1(X)) v Loves(SKOLEMECXU2(X),X) assertion vx (vy (Animal(y) = Loves(x,y)) = 3y Loves(y,x))
10 Animal(SKOLEMEGXU1(Jack)) (hyperresolve 2 5 8 9)
11 -Loves(XJack) (rewrite (resolve 2 5) 8)
12 -Loves(X,SKOLEMECXU1(X)) v Loves(SKOLEMECXU2(X),X) assertion vx (vy (Animal(y) = Loves(x,y)) = 3y Loves(y,x))
13 -Loves(Jack,SKOLEMEGXU1(Jack)) (resolve 11 12)
14 SSFALSE (rewrite (resolve 1 10) 13)

Sunday, September 23, 12



Proof Verification & Discovery in Slate

Sunday, September 23, 12



Proof Verification & Discovery in Slate

® Provides a highly-flexible, visual, hypergraph-based
workspace for proof construction and proof discovery.
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Proof Verification & Discovery in Slate

® Provides a highly-flexible, visual, hypergraph-based
workspace for proof construction and proof discovery.

® Mathematically, based on Bringsjord-Sundar G. extension
of KU machines.

® Proof theory
® Manual mode: natural-deduction-based.
® Workspaces for PC, FOL/MSL, 54, S5, SDL, QML, etc.
® Automated: Resolution- and paramodulation-based
® Uses eg SNARK underneath, and other/any ATPs.
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Proof Verification & Discovery in Slate

® Provides a highly-flexible, visual, hypergraph-based
workspace for proof construction and proof discovery.

® Mathematically, based on Bringsjord-Sundar G. extension
of KU machines.

® Proof theory
® Manual mode: natural-deduction-based.
® Workspaces for PC, FOL/MSL, 54, S5, SDL, QML, etc.
® Automated: Resolution- and paramodulation-based
® Uses eg SNARK underneath, and other/any ATPs.
® Used to teach logic in RPI.
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Examples ...
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Special-Relativity Axiomatization

® Multi-sorted first-order logic:
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® Multi-sorted first-order logic:
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Special-Relativity Axiomatization

® Multi-sorted first-order logic:

bodies (inertial and photons) B Q sorts
quantities
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Special-Relativity Axiomatization

® Multi-sorted first-order logic:

bodies (inertial and photons) B Q sorts

quantities

IB: B — Boo
Ph: B — Boo
+:QxXQ—Q

QX Q= Q

W : B x B x Q* — Bool
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Special-Relativity Axiomatization

® Multi-sorted first-order logic:

bodies (inertial and photons) B Q sorts
quantities
IB: B +— Boo
< Ph: B — Boo
g +:0XQ—Q
QX Q—Q

W : B x B x Q* — Bool
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Special-Relativity Axiomatization
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Special-Relativity Axiomatization

Hajnal Andréka, Judit X. Madarasz, Istvan Németi, and Gergely Sz€kely. A logic road from special
relativity to general relativity. Synthese, pages 1-17, 2011.
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Special-Relativity Axiomatization

Hajnal Andréka, Judit X. Madarasz, Istvan Németi, and Gergely Sz€kely. A logic road from special
relativity to general relativity. Synthese, pages 1-17, 2011.

SpecRel = {AxFd, AxPh, AxEv, AxSf, AxXSm }
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SpecRel = {AxFd, AxPh, AxEv, AxSf, AxXSm }
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Special-Relativity Axiomatization

Hajnal Andréka, Judit X. Madarasz, Istvan Németi, and Gergely Sz€kely. A logic road from special
relativity to general relativity. Synthese, pages 1-17, 2011.

SpecRel = {AxFd, AxPh, AxEv, AxSf, AxXSm }

Axioms from

Hajnal Andréka, Judit X. Madarasz, Istvan Németi, and Gergely Szé€kely. A logic road from special
relativity to general relativity. Synthese, pages 1-17, 2011.
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The Axioms

Axioms from

Hajnal Andréka, Judit X. Madarasz, Istvan Németi, and Gergely Sz€kely. A logic road from special
relativity to general relativity. Synthese, pages 1-17, 2011.
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The Axioms

AxFd The field axioms

Axioms from

Hajnal Andréka, Judit X. Madarasz, Istvan Németi, and Gergely Sz€kely. A logic road from special
relativity to general relativity. Synthese, pages 1-17, 2011.
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The Axioms

AxFd The field axioms

The speed of light is finite and the same in all

AxPh : . . .
directions for all inertial observers

Axioms from

Hajnal Andréka, Judit X. Madarasz, Istvan Németi, and Gergely Sz€kely. A logic road from special
relativity to general relativity. Synthese, pages 1-17, 2011.
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The Axioms

AxFd The field axioms
The speed of light is finite and the same in all
AxPh L : :
directions for all inertial observers
AxPh The same set of events is observed by all

observers.The universe is the same for everyone.

Axioms from

Hajnal Andréka, Judit X. Madarasz, Istvan Németi, and Gergely Sz€kely. A logic road from special
relativity to general relativity. Synthese, pages 1-17, 2011.
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The Axioms

AxFd The field axioms
The speed of light is finite and the same in all
AxPh L : :
directions for all inertial observers
The same set of events is observed by all
AxPh : :
observers.The universe is the same for everyone.
ASf All observers observe themselves to be on the

time axis.

Axioms from

Hajnal Andréka, Judit X. Madarasz, Istvan Németi, and Gergely Sz€kely. A logic road from special
relativity to general relativity. Synthese, pages 1-17, 2011.
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The Axioms

AxFd The field axioms
The speed of light is finite and the same in all
AxPh L L
directions for all inertial observers
The same set of events is observed by all

AxPh : :

observers.The universe is the same for everyone.
ASf All observers obser.ve themselves to be on the

time axis.

AxSm The speed of light for any observer is one, and all

observers use the same units of measurement.

Axioms from

Hajnal Andréka, Judit X. Madarasz, Istvan Németi, and Gergely Sz€kely. A logic road from special
relativity to general relativity. Synthese, pages 1-17, 2011.
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Theorem Neat

(No Event at Two Places)

Sunday, September 23, 12



Theorem Neat

(No Event at Two Places)

VYm,x,y ((I0b(m) A Q(x) A Q(y)) — (X = y — ev(m,x) = ev(m,y)))
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Theorem Neat

(No Event at Two Places)

VYm,x,y ((I0b(m) A Q(x) A Q(y)) — (X = y — ev(m,x) = ev(m,y)))

An inertial observer is just a Inertial body which coordinatizes some body.
|Ob(m) == IB(m) & exists (k,x,y,z,t) W(m,k,x,y,zt)

For all inertial observers m and quantities x and y, if and x and y are distinct, then
the events that m observes at x is not the same as the events that m observes at y.
Sunday, September 23, 12
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Semi-automated Proof in Slate

{AxPh} Assume v

AXPh. Ym,x,y (100b(m) A Q(X) A Q(y)) — (3p (Ph(p) A W(m,p,x) A W(m,p,y)) <> (speed(x,y) = cm)))]‘

{From AxFd} Assume v/

Sort Axiom. Vx (Ph(x) — B(x))
{Sort Axiom} Assume v/

[Definition—Event—P. ¥m,b,p ((I0b(m) A B(b) » Q(p)) — (In(b,ev(m,p)) < W(m,b,p)))]‘

[From AxFd. Ym,x,y ((I0b(m) A Q(x) A Q(y)) = (x =y — 3z (Q(2) A (speed(x,z) = cm) A speed(z,y) = cm)))]‘

{Definition-Event-P} Assume v/
6. Vm,x,y (I0b(m) A Q(x) A Q(y)) = (x =y — 3b (B(b) A (W(m,b,x) A ~W(m,b,y)) v (=-W(m,b,x) A W(m,b,y))))))
{AxPh,From AxFd,Sort Axiom}

{Definition-Event-P}

-

5. Vm,p,q ((I0b(m) A Q(p) A Q(q)) — (p = g — (3b (B(b) A (W(m,b,p) » ~W(m,b,q)) v (-W(m,b,p) » W(m,b,q)))) — ev(m,p) = ev(m,q))))]

2. Vm,x,y ((I0b(m) A Q(x) A Q(y)) = (x =y — ev(m,Xx) = ev(m,y)))
{AxPh,Definition-Event-P,From AxFd,Sort Axiom}
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Manual Informal Proof
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Manual Proof in Slate
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Proof that if there is a body b whose
| wordline for observer m passes through
e point p but not through q or through q
but not through p, then the events
observed by m at p and q are different.

6. ¥bx (In(o,ev(m. ) == Wim.b,)
(Oefinition-venp)

10. ev(m.p) = evim,a)
110} Assume /

9. In(b,ev(m.) = Wim.b,0)
o

Definition-gvent.

11 Intb,ev(m.p)) = Wim.b,)
{10Definiton-tvent-p

13 Infb,ev(m,p)
110,12.0¢fiition-Evene-p)

16. Infb,ev(m.p)
15.0efini

”,

There is a point z reachable at
the speed of light from p but
not from q for observer m.

18. W(m,b,p) <= Wim,b,a)
(10,Defnition£vent-7)

7

Wn.b,p)

(10.24,0efnton-Event-o1

‘me AXFd. ¥Ym,xy (x =y — 32 (speed(x,2) = c(m)  speed(zy) dml)l]
{From Axtd) Assume

23. evim,p) - evima)

[AxPh Vimx.y (10b(m) = @s (Ph(s) » W(m.5, » Wim,5.y) = (speedixy) = c(m

W]

32 Wy (x « y = 32 ((speedix,2) = clm) » speed(zy) = clm)|
(Fom Axed)

28. evim,p) - evim,a)
24,Definiion-Event-#}

Feimd

[37 Wxy (10b(m) — (3s (Ph(s) » W(m,
s

A Wm,a) v (W

2) 2 W) = speed(xn = (lmlml

15} Assume /-

[zz ¥y (p =y — 32 (speed(p,2) = cm) # speed(z,y) » c(m))
From Axid)

29. evimp) - evima)
5. Definton-Event-P)

Fe

349+ a— 3z ((speed(p,2) = clm) » speediz.q) » c(m)
{From axed)

30, (W(mb,p) » ~W(m,b.a) v (-W(m,b,p) » Wim,0,)) — ev(m,p) = ev(m,q)
(Definition-Event-P)

36. 106(m)

136) Assume -

(a4 Phto) » wim.b.p) » Wamb,2)

41 (speed(p,2) = clm) » speed(z,q) = cim)
(44) Assume 1) Assume /

loo 35 (Ph(s) » Wim,s.p) » W(n,s,2) < (speed(p,2) = mnl
6,000

3Lp-q
31) Assome #
46, speed(z.q) - cm) 42. speed(p.2) = c(m)
i u

51,35 (Ph(s) » Wim.s,2) » Wim.s.)
35. 32 (speed(p.2) = cm) » speediz.a) - c(m)) T51)Assume
31.From AxF) (43735 Phes) » wam.s, ) wim,5,2)
136,410

52. speedi(z,q) = c(m)
144) 136,41 AxPh}. issume /.
[z
a4} 144,56]
[tintro 4
m observes that there is a
body which passes through p

i

but not through q or through

q but not through p.

N

G eump) - evim)
(36,41 Deinion Event
N

65. evm,p) « evima)
131,36,Ax¢h, Definition- Event-f,From AxFe)

The theorem

66.p -~ evim.p) - evm.a)
36.AxPh Defintion-Event-p rom Axrd)

(67.10b(m) ~ (p - @ — ev(m,p) - evim.)
(AxPh,Defnition-Event-P,from AxFd]

65. vy (0b(m) — (b » y — ev(m.p) = ev(m.y))
(Axeh,Defntion. Event-pifrom AxFd]

69. ¥y (I0b(m) — (x + y — ev(mx) - ev(m,y))
[Ax#h,Defnition-Event-P,from AxFdl

[Neat. ¥m,xy (10B(m) — (x = y — ev(mx) = ev(m.y))
{A3¢h,Defnicion- Event-P,From AXFd]

7

(4935 (Ph(5) » W(m.s.2) » Wim,5,) = (speed(z.q) = c(m)
6.

Rensselaer Al and Reasoning Lab




Proof that if there is a body b whose
wordline for observer m passes through
point p but not through q or through q
but not through p, then the events
observed by m at p and q are different.

Definition-Event-P. Vm,b,x (n(b,ev(m,x) = W(m,b,x)
Definition-Event-7) Assume /-

6. ¥bx (In(o,ev(m. ) == Wim.b,)
{Oefiniontvent-7)

7. Vi nfb.ev(m ) = Wim,b.)
(Defintion-£vens-p)

10. ev(m.p) = evim,a)
110} Assume /

9. In(b,ev(m.) = Wim.b,0)
o

Definition-vent

11, Intb.ev(m.p)) += Wim.b.)
{10Definiton-tvent-p

3. In(o,eum,p)
110,12.0¢fiition-Evene-p)

16. Infb,ev(m.p)
15.0efini 7,

There is a point z reachable at
the speed of light from p but
not from q for observer m.

Win,,p)
10,12 0¢fiition-Evene-#)

18. Wm,b,p) < Wm,b,0)
(10,Defnition£vent-7)

19 W(m,b,p) » -Wm,b,a)
119) Assume

7

Wn.b,p)
(10.24,0efnton-Event-o1

[From AxFd. ¥m,x,y (x = y - 3z (speed(x,2) = c(m))  speed(z.y) :(ml)l]
{From Axtd) Assume

23 evim,p) - evim.a)

[AxPh Vimx.y (10b(m) = @5 (Ph(s) » W(m.5,0 » Wim,5,y) = (speedixy) = cm)
119.Defiition-Event-Pi (

(Axeh) Assume £

32.Vxy (x « y = 32 ((speedix:2) = clm)) » speed(z,y) = c(m)]
(Fom Axed)

28. evim,p) - evim,a)
24,Definiion-Event-#}

e (7 o B W W Gt <)
P

35.Vy (p -y — 32 ((speed(p.2) = c(m) 1 speed(z.y) - c(m)
From Axid)

29, eum,p) - evima)
5. Defintion-Event-7

Fe

349+ a— 3z ((speed(p,2) = clm) » speediz.q) » c(m)
{From axed)

30, (W(mb,p) » ~W(m,b.a) v (-W(m,b,p) » Wim,0,)) — ev(m,p) = ev(m,q)
efinion-Event-P)

36. 106(m)
136) Assume -

(32, Ph) » Vi) ~ W) 1 Gpeedn 2~ ) speedz) )
a4 Assume sume /
TP loo 3517“(51AW(m‘ﬁ‘W)AW('“‘Sle"(Sveed(u‘xl:dml)l Pramr— o e =)
it ke [P e o)
6. speediz.q) - cm) 2. speedip.2) = cim)
i i

(51, 35 (Ph(5) + W(m.5,2) » Wim,s.a)
35. 32 (speed(p.2) = cm) » speediz.a) - c(m)) T51)Assume
31.From AxF) (43735 Phes) » wam.s, ) wim,5,2)
6aLAEn o oo

52. speedi(z,q) = c(m)
oo v
e | o S P W W] [ PO AMmb ) W)
e Nedinmn

56 Wim,b,)
- 56} Assume /-

5435 (Phs)  Wim,s.2) « Wims.a))
59. Phib) » Wim,b,2) 1 Wim.b,a)| 31 1
4,561

55 ~(Ph(b) + W(m,b.2) A W(m,b.a)
36,4 LAxPH1

Manual Proof in Slate

(61 Wim.b.p) » ~Wim.b.a)
(36.41.4AxPh)

[62- @Wim.,9) x ~W(m.b.a) v (-W(m,b.p) » Wi, )
G641

7 5 m observes that there is a

' body which passes through p
but not through q or through
q but not through p.

i

63 evim,p) - evim.a)
136.41,44 AxPh Definitir

7

64. evim,p) « evim,a)
fntion-Event

&

65. evm,p) « evima)
31,36 450, Defnicion-Event,From AxFd)

The theorem

66.p -~ evim.p) - evm.a)
36.AxPh Defintion-Event-p rom Axrd)

(67.10b(m) —~ (p - @ — ew(m,p) - evim @)
(AxPh,Defnition-Event-P,from AxFd]

Rensselaer Al and Reasoning Lab

65. vy
[

10b(m) —~ (p + y — ev(m.p) - ev(my))
(AxPh Definton Event- Fal

(69 Yy (10B(m) — (x  y = evim,x) = ev(my))
(A9, Defnition-Event-P,From AxFd]

[Neat. ¥m,xy (10B(m) — (x = y — ev(mx) = ev(m.y))
{A3¢h,Defnicion- Event-P,From AXFd]
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Theorem NTFLIO
(No Faster Than Light Travel)

vm,k,x,y ((wl(m,k,x) A wl(m,k,y) A x =y A IOb(m) A IOb(k)) — (dist(x,y) < time(x,y)))
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Theorem NTFLIO
(No Faster Than Light Travel)

vm,k,x,y ((wl(m,k,x) A wl(m,k,y) A x =y A IOb(m) A IOb(k)) — (dist(x,y) < time(x,y)))

For all m and k, if m observes k at x and m observes k at also y, and if x is not equal to y and if m and k are inertial
observers, then the spatial distance between x and y is less than the temporal distance between x and y (giving us that
the speed between x and y is less than |, which is the speed of light normalized.)
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Theorem NTFLIO
(No Faster Than Light Travel)

vm,k,x,y ((wl(m,k,x) A wl(m,k,y) A x =y A IOb(m) A IOb(k)) — (dist(x,y) < time(x,y)))

In progress ...

For all m and k, if m observes k at x and m observes k at also y, and if x is not equal to y and if m and k are inertial
observers, then the spatial distance between x and y is less than the temporal distance between x and y (giving us that
the speed between x and y is less than |, which is the speed of light normalized.)
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