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Bringsjord, S. (2008) “Logic-Based/Declarative Computational 
Cognitive Modeling” in R. Sun, ed., The Cambridge Handbook of 
Computational Psychology (Cambridge, UK: Cambridge University 
Press), 127–169.

Preprint:  http://kryten.mm.rpi.edu/sb_lccm_ab-toc_031607.pdf

Bringsjord, S. (2008) “The Logicist Manifesto:  At Long Last Let 
Logic-Based AI Become a Field Unto Itself” Journal of Applied Logic 
6.4: 502–525.

Preprint:  http://kryten.mm.rpi.edu/SB_LAI_Manifesto_091808.pdf
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Available Axiomatizations

• Biology

• Axiomatic Method in Biology (Woodger and 
Tarski)

• (Long ago, a bit outdated now given modern 
biology, and the biologists were clueless.)

• Semi-formally:  biological ontologies.
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Greece, July 21 2008.

[13] C. Glymour. Thinking Things Through. MIT Press, Cambridge, MA, 1992.

[14] Judit X. Madarász. Logic and Relativity (in the light of definability theory). PhD thesis, Eötvös
Loránd University, Budapest, Hungary, 2002.

[15] Adam Naumowicz and Artur Korniłowicz. A brief overview of mizar. In Stefan Berghofer, Tobias
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Figure 4: The round-trip for Ph3 takes the same time as for Ph4, seen
both from Spaceship and from the Earth. Hence Earth infers that Middle
is indeed in the middle of the ship.

As we said earlier, we observe from the Earth that Ph3, Ph4 and Middle
meet in a single event. Therefore, since we observe that Ph3 arrives to
Middle exactly when Ph4 arrives to Middle after their round-trips, we have
to infer, on the Earth, that Middle really stands exactly in the middle of
Spaceship. There remains only the possibility that Nose sent out his photon
Ph2, which we see as fast-moving along the hull of the space ship, much
later than Rear sent Ph1 which we see as slowly-moving along the hull of
the spaceship. Thus, as seen from the Earth, the clocks at the nose and at
the rear of the spaceship show di�erent times (at the same Earth-moment).
This is what we mean when we say that the clocks of the spaceship get out
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Figure 1. Illustration for the proof of Theorem 2.1

Proof. Let m and k be inertial observers and let x̄, ȳ 2 wlm(k) such
that x̄ 6= ȳ. By AxFd, � is a total order, so there are three possibilities
only: |ȳs � x̄s| < |yt �xt|, |ȳs � x̄s| > |yt �xt| or |ȳs � x̄s| = |yt �xt|. We
will prove |ȳs � x̄s| < |yt � xt| by excluding the other two possibilities.

Let us first prove that |ȳs � x̄s| > |yt � xt| cannot hold. Figure 1
illustrates this proof.6 So, let us assume that |ȳs � x̄s| > |yt � xt|, we
will derive a contradiction. By AxFd, there is a coordinate point z̄ such
that |z̄s � x̄s| = |zt �xt| 6= 0, zt = yt and z̄s � x̄s is orthogonal to z̄s � ȳs

if xt 6= yt, and |z̄s � x̄s| = |zt � xt| 6= 0 and z̄s � x̄s is orthogonal to
ȳs � x̄s if xt = yt (here we used that |ȳs � x̄s| > |yt �xt|). Any choice of
such a z̄ implies that any line of slope 1 in the plane x̄ȳz̄ is parallel to
the line x̄z̄ (because the plane x̄ȳz̄ is tangent to the light cone through
z̄). To choose one concrete z̄ from the many, let

w̄s
d
=

ȳs � x̄s

|ȳs � x̄s|
, w̄�

s
d
=

hy2 � x2, x1 � y1, 0i�
(y2 � x2)2 + (x1 � y1)2

.

Then, if xt = yt, let

z̄s
d
= |ȳs � x̄s| · w̄�

s + x̄s, zt
d
= |ȳs � x̄s| + xt,

and, if xt 6= yt, let

z̄s
d
=

|yt � xt|2

|ȳs � x̄s|
· w̄s +

|yt � xt| ·
�

|ȳs � x̄s|2 � |yt � xt|2
|ȳs � x̄s|

· w̄�
s , zt

d
= yt.

6To simplify the figure, we have drawn x̄ to the origin. This is not used in the
proof but it can be assumed without losing generality.

Figure 5: Geometric Reasoning Using Diagrams
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In Aiello et al. (1), pages 607–711.
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|ȳs � x̄s|
, w̄�

s
d
=

hy2 � x2, x1 � y1, 0i�
(y2 � x2)2 + (x1 � y1)2

.

Then, if xt = yt, let

z̄s
d
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|ȳs � x̄s|2 � |yt � xt|2
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I. Sain, and Cs. Töke. http://www.math-inst.hu/pub/algebraic-logic/olsort.html.
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only: |ȳs � x̄s| < |yt �xt|, |ȳs � x̄s| > |yt �xt| or |ȳs � x̄s| = |yt �xt|. We
will prove |ȳs � x̄s| < |yt � xt| by excluding the other two possibilities.

Let us first prove that |ȳs � x̄s| > |yt � xt| cannot hold. Figure 1
illustrates this proof.6 So, let us assume that |ȳs � x̄s| > |yt � xt|, we
will derive a contradiction. By AxFd, there is a coordinate point z̄ such
that |z̄s � x̄s| = |zt �xt| 6= 0, zt = yt and z̄s � x̄s is orthogonal to z̄s � ȳs

if xt 6= yt, and |z̄s � x̄s| = |zt � xt| 6= 0 and z̄s � x̄s is orthogonal to
ȳs � x̄s if xt = yt (here we used that |ȳs � x̄s| > |yt �xt|). Any choice of
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Proof. Let m and k be inertial observers and let x̄, ȳ 2 wlm(k) such
that x̄ 6= ȳ. By AxFd, � is a total order, so there are three possibilities
only: |ȳs � x̄s| < |yt �xt|, |ȳs � x̄s| > |yt �xt| or |ȳs � x̄s| = |yt �xt|. We
will prove |ȳs � x̄s| < |yt � xt| by excluding the other two possibilities.

Let us first prove that |ȳs � x̄s| > |yt � xt| cannot hold. Figure 1
illustrates this proof.6 So, let us assume that |ȳs � x̄s| > |yt � xt|, we
will derive a contradiction. By AxFd, there is a coordinate point z̄ such
that |z̄s � x̄s| = |zt �xt| 6= 0, zt = yt and z̄s � x̄s is orthogonal to z̄s � ȳs

if xt 6= yt, and |z̄s � x̄s| = |zt � xt| 6= 0 and z̄s � x̄s is orthogonal to
ȳs � x̄s if xt = yt (here we used that |ȳs � x̄s| > |yt �xt|). Any choice of
such a z̄ implies that any line of slope 1 in the plane x̄ȳz̄ is parallel to
the line x̄z̄ (because the plane x̄ȳz̄ is tangent to the light cone through
z̄). To choose one concrete z̄ from the many, let
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1 The Vision

The vision of machines carrying out substantive proof verification, proof discovery, and theorem dis-
covery (= conjecture generation) in mathematics and the natural sciences has a long history that reaches
back before the development of automatic systems for such purposes.1 While there has been consid-
erable progress in proof verification in mathematics, e.g. the Mizar project (15) (and see also (8) for
coverage of the Four-Color Theorem, now machine verified), there has been little such work carried out
in the realm of the natural sciences — until recently. This delay in the case of the natural sciences can
be attributed to both a lack of formal analysis of the “theories” in such sciences, and the lack of suffi-
cient progress in automated theorem proving. While the lack of analysis is due to an inclination toward
informality and empiricism on the part of nearly all of the relevant scientists, the lack of progress is to
be expected, given the computational hardness of automated theorem proving; after all, theoremhood in
even first-order logic is Turing-undecidable.

To be sure, there has been some work devoted to formally modeling biological theories; e.g.,
Woodger and Tarski, as early as 1937, carried out such work (19). In addition, a representative of the
modern logicist analysis of the structure of biological entities, a precursor to the formal, computational
theory development we are pursuing, is the Open Biomedical Ontologies Foundry enterprise described
in (16). In the case of physics, the situation is much more mature, courtesy of extensive, seminal inves-
tigation by Székely, Andréka, X. Madarász and Németi in (14; 2; 3; 18; 4), which is devoted to setting
out the logical structure of relativistic theories in physics. This is a necessary first step toward the trio
of proof verification, proof discovery, and theorem discovery in physics; toward, that is, a point in time
when physics and AI are inseparable and synergistic. We give in the present short paper a compressed
report on our attempt to build upon these formal theories using logic-based AI in order to achieve, in
relativity, both machine proof verification and machine proof discovery.

2 Background

Given an informal theory T , we wish to formalize it as a logical theory G in a formal language L . In
our case, the theory is special relativity, SpecRel, and the language is L , that of first-order logic. We
also assume that there is a proof theory ` associated with the language (with suitable augmentation
of alphabet and grammar to enable mechanically checkable inferences). Truth of any formula in L is
defined through standard model-theoretic interpretations over first-order structures. That a sentence f is
true under an interpretation M is written M ✏ f. Provability of f from a set of axioms G is written G `r f,
where r is one possible proof of f from G. If we are not interested in any one proof, but rather want to
look at provability in general, we write G ` f. We use terminology closely following that used in Boolos
et al. in (11).

With this background in place, we now define the following terms:

Proof Verification Given a proof r, a formula f, and a set of axioms G, verify that r represents a proof
of f from G. Expressed in query form: Is it true that G `r f?

Proof Discovery Given a formula f and a set of axioms G, find a proof r that derives f from G. I.e.,
find a r such that G `r f.

Theorem Discovery Given G, find an interesting f such that G ` f. (This is also known as conjecture
generation.)

1One could in fact argue that Aristotle, over two thousand years back, intuitively had, and indeed pursued, the vision. See
the discussion of Aristotle in connection with modern knowledge-based AI given by Glymour in (13).
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1 The Vision

The vision of machines carrying out substantive proof verification, proof discovery, and theorem dis-
covery (= conjecture generation) in mathematics and the natural sciences has a long history that reaches
back before the development of automatic systems for such purposes.1 While there has been consid-
erable progress in proof verification in mathematics, e.g. the Mizar project (15) (and see also (8) for
coverage of the Four-Color Theorem, now machine verified), there has been little such work carried out
in the realm of the natural sciences — until recently. This delay in the case of the natural sciences can
be attributed to both a lack of formal analysis of the “theories” in such sciences, and the lack of suffi-
cient progress in automated theorem proving. While the lack of analysis is due to an inclination toward
informality and empiricism on the part of nearly all of the relevant scientists, the lack of progress is to
be expected, given the computational hardness of automated theorem proving; after all, theoremhood in
even first-order logic is Turing-undecidable.

To be sure, there has been some work devoted to formally modeling biological theories; e.g.,
Woodger and Tarski, as early as 1937, carried out such work (19). In addition, a representative of the
modern logicist analysis of the structure of biological entities, a precursor to the formal, computational
theory development we are pursuing, is the Open Biomedical Ontologies Foundry enterprise described
in (16). In the case of physics, the situation is much more mature, courtesy of extensive, seminal inves-
tigation by Székely, Andréka, X. Madarász and Németi in (14; 2; 3; 18; 4), which is devoted to setting
out the logical structure of relativistic theories in physics. This is a necessary first step toward the trio
of proof verification, proof discovery, and theorem discovery in physics; toward, that is, a point in time
when physics and AI are inseparable and synergistic. We give in the present short paper a compressed
report on our attempt to build upon these formal theories using logic-based AI in order to achieve, in
relativity, both machine proof verification and machine proof discovery.

2 Background

Given an informal theory T , we wish to formalize it as a logical theory G in a formal language L . In
our case, the theory is special relativity, SpecRel, and the language is L , that of first-order logic. We
also assume that there is a proof theory ` associated with the language (with suitable augmentation
of alphabet and grammar to enable mechanically checkable inferences). Truth of any formula in L is
defined through standard model-theoretic interpretations over first-order structures. That a sentence f is
true under an interpretation M is written M ✏ f. Provability of f from a set of axioms G is written G `r f,
where r is one possible proof of f from G. If we are not interested in any one proof, but rather want to
look at provability in general, we write G ` f. We use terminology closely following that used in Boolos
et al. in (11).

With this background in place, we now define the following terms:

Proof Verification Given a proof r, a formula f, and a set of axioms G, verify that r represents a proof
of f from G. Expressed in query form: Is it true that G `r f?

Proof Discovery Given a formula f and a set of axioms G, find a proof r that derives f from G. I.e.,
find a r such that G `r f.

Theorem Discovery Given G, find an interesting f such that G ` f. (This is also known as conjecture
generation.)

1One could in fact argue that Aristotle, over two thousand years back, intuitively had, and indeed pursued, the vision. See
the discussion of Aristotle in connection with modern knowledge-based AI given by Glymour in (13).
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also assume that there is a proof theory ` associated with the language (with suitable augmentation
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true under an interpretation M is written M ✏ f. Provability of f from a set of axioms G is written G `r f,
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With this background in place, we now define the following terms:
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of f from G. Expressed in query form: Is it true that G `r f?
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informality and empiricism on the part of nearly all of the relevant scientists, the lack of progress is to
be expected, given the computational hardness of automated theorem proving; after all, theoremhood in
even first-order logic is Turing-undecidable.
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of proof verification, proof discovery, and theorem discovery in physics; toward, that is, a point in time
when physics and AI are inseparable and synergistic. We give in the present short paper a compressed
report on our attempt to build upon these formal theories using logic-based AI in order to achieve, in
relativity, both machine proof verification and machine proof discovery.

2 Background

Given an informal theory T , we wish to formalize it as a logical theory G in a formal language L . In
our case, the theory is special relativity, SpecRel, and the language is L , that of first-order logic. We
also assume that there is a proof theory ` associated with the language (with suitable augmentation
of alphabet and grammar to enable mechanically checkable inferences). Truth of any formula in L is
defined through standard model-theoretic interpretations over first-order structures. That a sentence f is
true under an interpretation M is written M ✏ f. Provability of f from a set of axioms G is written G `r f,
where r is one possible proof of f from G. If we are not interested in any one proof, but rather want to
look at provability in general, we write G ` f. We use terminology closely following that used in Boolos
et al. in (11).

With this background in place, we now define the following terms:

Proof Verification Given a proof r, a formula f, and a set of axioms G, verify that r represents a proof
of f from G. Expressed in query form: Is it true that G `r f?

Proof Discovery Given a formula f and a set of axioms G, find a proof r that derives f from G. I.e.,
find a r such that G `r f.

Theorem Discovery Given G, find an interesting f such that G ` f. (This is also known as conjecture
generation.)

1One could in fact argue that Aristotle, over two thousand years back, intuitively had, and indeed pursued, the vision. See
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The vision of machines carrying out substantive proof verification, proof discovery, and theorem dis-
covery (= conjecture generation) in mathematics and the natural sciences has a long history that reaches
back before the development of automatic systems for such purposes.1 While there has been consid-
erable progress in proof verification in mathematics, e.g. the Mizar project (15) (and see also (8) for
coverage of the Four-Color Theorem, now machine verified), there has been little such work carried out
in the realm of the natural sciences — until recently. This delay in the case of the natural sciences can
be attributed to both a lack of formal analysis of the “theories” in such sciences, and the lack of suffi-
cient progress in automated theorem proving. While the lack of analysis is due to an inclination toward
informality and empiricism on the part of nearly all of the relevant scientists, the lack of progress is to
be expected, given the computational hardness of automated theorem proving; after all, theoremhood in
even first-order logic is Turing-undecidable.

To be sure, there has been some work devoted to formally modeling biological theories; e.g.,
Woodger and Tarski, as early as 1937, carried out such work (19). In addition, a representative of the
modern logicist analysis of the structure of biological entities, a precursor to the formal, computational
theory development we are pursuing, is the Open Biomedical Ontologies Foundry enterprise described
in (16). In the case of physics, the situation is much more mature, courtesy of extensive, seminal inves-
tigation by Székely, Andréka, X. Madarász and Németi in (14; 2; 3; 18; 4), which is devoted to setting
out the logical structure of relativistic theories in physics. This is a necessary first step toward the trio
of proof verification, proof discovery, and theorem discovery in physics; toward, that is, a point in time
when physics and AI are inseparable and synergistic. We give in the present short paper a compressed
report on our attempt to build upon these formal theories using logic-based AI in order to achieve, in
relativity, both machine proof verification and machine proof discovery.

2 Background

Given an informal theory T , we wish to formalize it as a logical theory G in a formal language L . In
our case, the theory is special relativity, SpecRel, and the language is L , that of first-order logic. We
also assume that there is a proof theory ` associated with the language (with suitable augmentation
of alphabet and grammar to enable mechanically checkable inferences). Truth of any formula in L is
defined through standard model-theoretic interpretations over first-order structures. That a sentence f is
true under an interpretation M is written M ✏ f. Provability of f from a set of axioms G is written G `r f,
where r is one possible proof of f from G. If we are not interested in any one proof, but rather want to
look at provability in general, we write G ` f. We use terminology closely following that used in Boolos
et al. in (11).

With this background in place, we now define the following terms:

Proof Verification Given a proof r, a formula f, and a set of axioms G, verify that r represents a proof
of f from G. Expressed in query form: Is it true that G `r f?

Proof Discovery Given a formula f and a set of axioms G, find a proof r that derives f from G. I.e.,
find a r such that G `r f.

Theorem Discovery Given G, find an interesting f such that G ` f. (This is also known as conjecture
generation.)

1One could in fact argue that Aristotle, over two thousand years back, intuitively had, and indeed pursued, the vision. See
the discussion of Aristotle in connection with modern knowledge-based AI given by Glymour in (13).
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The vision of machines carrying out substantive proof verification, proof discovery, and theorem dis-
covery (= conjecture generation) in mathematics and the natural sciences has a long history that reaches
back before the development of automatic systems for such purposes.1 While there has been consid-
erable progress in proof verification in mathematics, e.g. the Mizar project (15) (and see also (8) for
coverage of the Four-Color Theorem, now machine verified), there has been little such work carried out
in the realm of the natural sciences — until recently. This delay in the case of the natural sciences can
be attributed to both a lack of formal analysis of the “theories” in such sciences, and the lack of suffi-
cient progress in automated theorem proving. While the lack of analysis is due to an inclination toward
informality and empiricism on the part of nearly all of the relevant scientists, the lack of progress is to
be expected, given the computational hardness of automated theorem proving; after all, theoremhood in
even first-order logic is Turing-undecidable.

To be sure, there has been some work devoted to formally modeling biological theories; e.g.,
Woodger and Tarski, as early as 1937, carried out such work (19). In addition, a representative of the
modern logicist analysis of the structure of biological entities, a precursor to the formal, computational
theory development we are pursuing, is the Open Biomedical Ontologies Foundry enterprise described
in (16). In the case of physics, the situation is much more mature, courtesy of extensive, seminal inves-
tigation by Székely, Andréka, X. Madarász and Németi in (14; 2; 3; 18; 4), which is devoted to setting
out the logical structure of relativistic theories in physics. This is a necessary first step toward the trio
of proof verification, proof discovery, and theorem discovery in physics; toward, that is, a point in time
when physics and AI are inseparable and synergistic. We give in the present short paper a compressed
report on our attempt to build upon these formal theories using logic-based AI in order to achieve, in
relativity, both machine proof verification and machine proof discovery.

2 Background

Given an informal theory T , we wish to formalize it as a logical theory G in a formal language L . In
our case, the theory is special relativity, SpecRel, and the language is L , that of first-order logic. We
also assume that there is a proof theory ` associated with the language (with suitable augmentation
of alphabet and grammar to enable mechanically checkable inferences). Truth of any formula in L is
defined through standard model-theoretic interpretations over first-order structures. That a sentence f is
true under an interpretation M is written M ✏ f. Provability of f from a set of axioms G is written G `r f,
where r is one possible proof of f from G. If we are not interested in any one proof, but rather want to
look at provability in general, we write G ` f. We use terminology closely following that used in Boolos
et al. in (11).

With this background in place, we now define the following terms:

Proof Verification Given a proof r, a formula f, and a set of axioms G, verify that r represents a proof
of f from G. Expressed in query form: Is it true that G `r f?

Proof Discovery Given a formula f and a set of axioms G, find a proof r that derives f from G. I.e.,
find a r such that G `r f.

Theorem Discovery Given G, find an interesting f such that G ` f. (This is also known as conjecture
generation.)

1One could in fact argue that Aristotle, over two thousand years back, intuitively had, and indeed pursued, the vision. See
the discussion of Aristotle in connection with modern knowledge-based AI given by Glymour in (13).
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tigation by Székely, Andréka, X. Madarász and Németi in (14; 2; 3; 18; 4), which is devoted to setting
out the logical structure of relativistic theories in physics. This is a necessary first step toward the trio
of proof verification, proof discovery, and theorem discovery in physics; toward, that is, a point in time
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2 Background

Given an informal theory T , we wish to formalize it as a logical theory G in a formal language L . In
our case, the theory is special relativity, SpecRel, and the language is L , that of first-order logic. We
also assume that there is a proof theory ` associated with the language (with suitable augmentation
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defined through standard model-theoretic interpretations over first-order structures. That a sentence f is
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where r is one possible proof of f from G. If we are not interested in any one proof, but rather want to
look at provability in general, we write G ` f. We use terminology closely following that used in Boolos
et al. in (11).

With this background in place, we now define the following terms:

Proof Verification Given a proof r, a formula f, and a set of axioms G, verify that r represents a proof
of f from G. Expressed in query form: Is it true that G `r f?

Proof Discovery Given a formula f and a set of axioms G, find a proof r that derives f from G. I.e.,
find a r such that G `r f.

Theorem Discovery Given G, find an interesting f such that G ` f. (This is also known as conjecture
generation.)

1One could in fact argue that Aristotle, over two thousand years back, intuitively had, and indeed pursued, the vision. See
the discussion of Aristotle in connection with modern knowledge-based AI given by Glymour in (13).
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tigation by Székely, Andréka, X. Madarász and Németi in (14; 2; 3; 18; 4), which is devoted to setting
out the logical structure of relativistic theories in physics. This is a necessary first step toward the trio
of proof verification, proof discovery, and theorem discovery in physics; toward, that is, a point in time
when physics and AI are inseparable and synergistic. We give in the present short paper a compressed
report on our attempt to build upon these formal theories using logic-based AI in order to achieve, in
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Given an informal theory T , we wish to formalize it as a logical theory G in a formal language L . In
our case, the theory is special relativity, SpecRel, and the language is L , that of first-order logic. We
also assume that there is a proof theory ` associated with the language (with suitable augmentation
of alphabet and grammar to enable mechanically checkable inferences). Truth of any formula in L is
defined through standard model-theoretic interpretations over first-order structures. That a sentence f is
true under an interpretation M is written M ✏ f. Provability of f from a set of axioms G is written G `r f,
where r is one possible proof of f from G. If we are not interested in any one proof, but rather want to
look at provability in general, we write G ` f. We use terminology closely following that used in Boolos
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of f from G. Expressed in query form: Is it true that G `r f?
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tigation by Székely, Andréka, X. Madarász and Németi in (14; 2; 3; 18; 4), which is devoted to setting
out the logical structure of relativistic theories in physics. This is a necessary first step toward the trio
of proof verification, proof discovery, and theorem discovery in physics; toward, that is, a point in time
when physics and AI are inseparable and synergistic. We give in the present short paper a compressed
report on our attempt to build upon these formal theories using logic-based AI in order to achieve, in
relativity, both machine proof verification and machine proof discovery.

2 Background

Given an informal theory T , we wish to formalize it as a logical theory G in a formal language L . In
our case, the theory is special relativity, SpecRel, and the language is L , that of first-order logic. We
also assume that there is a proof theory ` associated with the language (with suitable augmentation
of alphabet and grammar to enable mechanically checkable inferences). Truth of any formula in L is
defined through standard model-theoretic interpretations over first-order structures. That a sentence f is
true under an interpretation M is written M ✏ f. Provability of f from a set of axioms G is written G `r f,
where r is one possible proof of f from G. If we are not interested in any one proof, but rather want to
look at provability in general, we write G ` f. We use terminology closely following that used in Boolos
et al. in (11).

With this background in place, we now define the following terms:

Proof Verification Given a proof r, a formula f, and a set of axioms G, verify that r represents a proof
of f from G. Expressed in query form: Is it true that G `r f?

Proof Discovery Given a formula f and a set of axioms G, find a proof r that derives f from G. I.e.,
find a r such that G `r f.

Theorem Discovery Given G, find an interesting f such that G ` f. (This is also known as conjecture
generation.)

1One could in fact argue that Aristotle, over two thousand years back, intuitively had, and indeed pursued, the vision. See
the discussion of Aristotle in connection with modern knowledge-based AI given by Glymour in (13).

1
MachineAxioms Theorem

Sunday, September 23, 12



Machine

The Master Process:

Machine
Axioms

Machine

Axioms
Theorem

Combine All Three

Sunday, September 23, 12



MachineAxioms

The Master Process:

Machine
Axioms

Machine

Axioms
Theorem

Combine All Three

Sunday, September 23, 12



MachineAxioms

The Master Process:

Machine
Axioms

Theorem

Machine

Axioms
Theorem

Combine All Three

Sunday, September 23, 12



MachineAxioms

The Master Process:

Machine
Axioms

Theorem

Machine

Axioms
Theorem
Proof

Combine All Three

Sunday, September 23, 12



MachineAxioms

The Master Process:

Machine
Axioms

Theorem

Machine

Axioms
Theorem
Proof

Verified/No

Combine All Three

Sunday, September 23, 12



Systems for Proof Verification 
and Proof Discovery ...

Sunday, September 23, 12



Proof Verification Using 
Denotational Proof Languages

Sunday, September 23, 12



Proof Verification Using 
Denotational Proof Languages

sentences

Sunday, September 23, 12



Proof Verification Using 
Denotational Proof Languages

L

sentences

Sunday, September 23, 12



Proof Verification Using 
Denotational Proof Languages

L

sentences

logic language

Sunday, September 23, 12



Proof Verification Using 
Denotational Proof Languages

L

sentences proofs

logic language

Sunday, September 23, 12



Proof Verification Using 
Denotational Proof Languages

L

sentences proofs

K

logic language

Sunday, September 23, 12



Proof Verification Using 
Denotational Proof Languages

L

sentences proofs

K

logic language denotational proof language

Sunday, September 23, 12



Proof Verification Using 
Denotational Proof Languages

L

sentences proofs

K

logic language denotational proof language

diagrammatic and symbolic reasoning.5
trip Rear-Middle for Ph3. Summarizing the segments, the round-trip takes
twice as much time for Ph4 as for Ph3.

Earth

time

space

Ph3

Ph4

v

Figure 4: The round-trip for Ph3 takes the same time as for Ph4, seen
both from Spaceship and from the Earth. Hence Earth infers that Middle
is indeed in the middle of the ship.

As we said earlier, we observe from the Earth that Ph3, Ph4 and Middle
meet in a single event. Therefore, since we observe that Ph3 arrives to
Middle exactly when Ph4 arrives to Middle after their round-trips, we have
to infer, on the Earth, that Middle really stands exactly in the middle of
Spaceship. There remains only the possibility that Nose sent out his photon
Ph2, which we see as fast-moving along the hull of the space ship, much
later than Rear sent Ph1 which we see as slowly-moving along the hull of
the spaceship. Thus, as seen from the Earth, the clocks at the nose and at
the rear of the spaceship show di�erent times (at the same Earth-moment).
This is what we mean when we say that the clocks of the spaceship get out
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Figure 4: Conceptual Reasoning Using Diagrams
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Figure 1. Illustration for the proof of Theorem 2.1

Proof. Let m and k be inertial observers and let x̄, ȳ 2 wlm(k) such
that x̄ 6= ȳ. By AxFd, � is a total order, so there are three possibilities
only: |ȳs � x̄s| < |yt �xt|, |ȳs � x̄s| > |yt �xt| or |ȳs � x̄s| = |yt �xt|. We
will prove |ȳs � x̄s| < |yt � xt| by excluding the other two possibilities.

Let us first prove that |ȳs � x̄s| > |yt � xt| cannot hold. Figure 1
illustrates this proof.6 So, let us assume that |ȳs � x̄s| > |yt � xt|, we
will derive a contradiction. By AxFd, there is a coordinate point z̄ such
that |z̄s � x̄s| = |zt �xt| 6= 0, zt = yt and z̄s � x̄s is orthogonal to z̄s � ȳs

if xt 6= yt, and |z̄s � x̄s| = |zt � xt| 6= 0 and z̄s � x̄s is orthogonal to
ȳs � x̄s if xt = yt (here we used that |ȳs � x̄s| > |yt �xt|). Any choice of
such a z̄ implies that any line of slope 1 in the plane x̄ȳz̄ is parallel to
the line x̄z̄ (because the plane x̄ȳz̄ is tangent to the light cone through
z̄). To choose one concrete z̄ from the many, let

w̄s
d
=

ȳs � x̄s

|ȳs � x̄s|
, w̄�

s
d
=

hy2 � x2, x1 � y1, 0i�
(y2 � x2)2 + (x1 � y1)2

.

Then, if xt = yt, let
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= |ȳs � x̄s| · w̄�

s + x̄s, zt
d
= |ȳs � x̄s| + xt,

and, if xt 6= yt, let

z̄s
d
=
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|ȳs � x̄s|
· w̄s +

|yt � xt| ·
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|ȳs � x̄s|2 � |yt � xt|2
|ȳs � x̄s|

· w̄�
s , zt

d
= yt.

6To simplify the figure, we have drawn x̄ to the origin. This is not used in the
proof but it can be assumed without losing generality.

Figure 5: Geometric Reasoning Using Diagrams
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that x̄ 6= ȳ. By AxFd, � is a total order, so there are three possibilities
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will derive a contradiction. By AxFd, there is a coordinate point z̄ such
that |z̄s � x̄s| = |zt �xt| 6= 0, zt = yt and z̄s � x̄s is orthogonal to z̄s � ȳs
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ȳ
yt

z̄

w̄ w̄

x̄�

ȳ�
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(y2 � x2)2 + (x1 � y1)2

.

Then, if xt = yt, let

z̄s
d
= |ȳs � x̄s| · w̄�

s + x̄s, zt
d
= |ȳs � x̄s| + xt,

and, if xt 6= yt, let

z̄s
d
=

|yt � xt|2

|ȳs � x̄s|
· w̄s +

|yt � xt| ·
�

|ȳs � x̄s|2 � |yt � xt|2
|ȳs � x̄s|

· w̄�
s , zt

d
= yt.

6To simplify the figure, we have drawn x̄ to the origin. This is not used in the
proof but it can be assumed without losing generality.

Figure 5: Geometric Reasoning Using Diagrams
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a first-order language L whose sentences are S(L)

let � ⇢ S(L) be the entire set of axioms that one is allowed to use

Two things should be noted. First, there is no mechanism to represent r in L in a transparent
fashion. This is why denotational proof languages are very useful. Second, and this will come as no
surprise to cognoscenti, the problem of what makes a theorem interesting is ill-defined. We do not
discuss interestingness any further in the present paper, but leave the topic to subsequent expansion of
the work described synoptically herein.

3 Systems for Proof Verification and Proof Discovery

In the section, we briefly enumerate the formalisms and systems that we will be using. The proofs shown
in this paper were done using the Slate system (12).

3.1 Proof Verification using Denotational Proof Languages

For proof verification, we use a system built upon a denotational proof language (DPL). Given a logical
system L , a DPL K for that system provides a way to formally express proofs in L in the language of
K . The syntax of a DPL is built using the lµ calculus; the basic syntactic categories are propositions,
deductions, and methods. Evaluation in a DPL reduces to proof checking. A Deduction D, when eval-
uated correctly in the context of an assumption base b, which is a set of propositions corresponding to
axioms or premises, produces a proposition P, denoted as b ` D P. If the evaluation is not warranted,
the object error, which differs from all the propositions, is produced. Deductions are either a single
method or methods combined in permissible ways specified by the proof system of L .

Methods can be primitive or derived. Primitive methods correspond to primitive rules of reasoning
in L . Derived methods in the lµ calculus, or lµ-methods, are arbitrary abstractions over deductions and
are analogous to functions in the l calculus. lµ-methods are intended to abstract over common reason-
ing scenarios and allow for modular theorem proving.2 Derived methods are obtained from primitive
methods through a certain set of operations; e.g., method composition. We use the DPL CND described
in (5, Chapter 4); this DPL is a formalization of classical natural deduction.

3.2 Semi-automated Proof Discovery Using Automated Theorem Proving

Inspired by how a user of a monolithic theorem prover can break up problems, we have built a sim-
ple inference system semi that models semi-automated theorem proving with a sound and complete
monolithic theorem prover.

Given a first-order language L whose sentences are S(L), let b ⇢ S(L) be the entire set of axioms
that one is allowed to use. In our case, b will be the field axioms, axioms in physics, and any other
definitional axioms. We define a problem to be a triple consisting of a theorem to be proved, a list
of premises, and a list of other problems whose theorems can be added to the list of premises of this
problem. Formally,

problem := htheorem,premises,listhproblemii
theorem 2 S(L)

premises ⇢ S(L)

We have the function theorem, which denotes the theorem to be proved in a problem.

eval(htheorem,premises,nili) =

(
error if premises 6✓ b
prover(theorem, premises) if premises ✓ b

eval(htheorem,premises, [p1, . . . , pn]i) = (^ieval(pi)) ) prover(theorem, premises [{theorem(p1), . . . ,

theorem(pn)}))

2For more on DPLs see Arkoudas’s (5). For an example of methods used to produce cognitively “deep” proofs, see (7).
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(This serves as well as a meta proof theory for semi-
automated proofs that do not use natural deduction in Slate.)

Sunday, September 23, 12



Sunday, September 23, 12



Resolution Example from 
Russell and Norvig’s AIMA ...

Sunday, September 23, 12



The problem

Negated goal

Sunday, September 23, 12



Signature
Predicate Symbol Arity

Animal 1
Loves 2
Kills 2
Cat 1

Function Symbol Arity
F 1
G 1

Jack 0
Curiosity 0

Tuna 0
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A Resolution Proof
Cat(Tuna) ¬Cat(x)⋁ Animal(x)

Animal(Tuna)

Kills(Jack,Tuna) ⋁ Kills(Curiosity, Tuna)

Kills(Jack,Tuna)

¬Kills(Curiosity, Tuna)

Step 1 Step 2

¬Loves(y,x)⋁¬Animal(z)⋁¬Kills(x,z)

Step 3

¬Loves(y,x)⋁¬Kills(x,Tuna)

¬Loves(x,F(x))⋁ Loves(G(x),x)

¬Animal(x)⋁ Loves(Jack,x)

Step4

¬Animal(F(Jack))⋁ Loves(G(Jack),Jack)   Animal(F(x)) ⋁ Loves(G(x),x)

Step5

Loves(G(Jack),Jack)

¬Loves(y,Jack)
Step6

Step7
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Proof Verification & Discovery in Slate

• Provides a highly-flexible, visual, hypergraph-based 
workspace for proof construction and proof discovery.

• Mathematically, based on Bringsjord-Sundar G. extension 
of KU machines.

• Proof theory

• Manual mode:  natural-deduction-based.

• Workspaces for PC, FOL/MSL, S4, S5, SDL, QML, etc.

• Automated: Resolution- and paramodulation-based

• Uses eg SNARK underneath, and other/any ATPs.

• Used to teach logic in RPI.
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diagrammatic and symbolic reasoning.5
trip Rear-Middle for Ph3. Summarizing the segments, the round-trip takes
twice as much time for Ph4 as for Ph3.

Earth

time

space

Ph3

Ph4

v

Figure 4: The round-trip for Ph3 takes the same time as for Ph4, seen
both from Spaceship and from the Earth. Hence Earth infers that Middle
is indeed in the middle of the ship.

As we said earlier, we observe from the Earth that Ph3, Ph4 and Middle
meet in a single event. Therefore, since we observe that Ph3 arrives to
Middle exactly when Ph4 arrives to Middle after their round-trips, we have
to infer, on the Earth, that Middle really stands exactly in the middle of
Spaceship. There remains only the possibility that Nose sent out his photon
Ph2, which we see as fast-moving along the hull of the space ship, much
later than Rear sent Ph1 which we see as slowly-moving along the hull of
the spaceship. Thus, as seen from the Earth, the clocks at the nose and at
the rear of the spaceship show di�erent times (at the same Earth-moment).
This is what we mean when we say that the clocks of the spaceship get out
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ȳ�

w̄�

z̄�

z̄s ȳs
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Proof. Let m and k be inertial observers and let x̄, ȳ 2 wlm(k) such
that x̄ 6= ȳ. By AxFd, � is a total order, so there are three possibilities
only: |ȳs � x̄s| < |yt �xt|, |ȳs � x̄s| > |yt �xt| or |ȳs � x̄s| = |yt �xt|. We
will prove |ȳs � x̄s| < |yt � xt| by excluding the other two possibilities.

Let us first prove that |ȳs � x̄s| > |yt � xt| cannot hold. Figure 1
illustrates this proof.6 So, let us assume that |ȳs � x̄s| > |yt � xt|, we
will derive a contradiction. By AxFd, there is a coordinate point z̄ such
that |z̄s � x̄s| = |zt �xt| 6= 0, zt = yt and z̄s � x̄s is orthogonal to z̄s � ȳs

if xt 6= yt, and |z̄s � x̄s| = |zt � xt| 6= 0 and z̄s � x̄s is orthogonal to
ȳs � x̄s if xt = yt (here we used that |ȳs � x̄s| > |yt �xt|). Any choice of
such a z̄ implies that any line of slope 1 in the plane x̄ȳz̄ is parallel to
the line x̄z̄ (because the plane x̄ȳz̄ is tangent to the light cone through
z̄). To choose one concrete z̄ from the many, let
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6To simplify the figure, we have drawn x̄ to the origin. This is not used in the
proof but it can be assumed without losing generality.
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In Aiello et al. (1), pages 607–711.
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will prove |ȳs � x̄s| < |yt � xt| by excluding the other two possibilities.

Let us first prove that |ȳs � x̄s| > |yt � xt| cannot hold. Figure 1
illustrates this proof.6 So, let us assume that |ȳs � x̄s| > |yt � xt|, we
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ȳs � x̄s
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= |ȳs � x̄s| · w̄�

s + x̄s, zt
d
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Note that one can directly embed a theorem prover in a DPL if a primitive method denoting the
theorem prover is introduced. This can allow us to combine different proof systems, say a resolution-
based theorem prover with a natural-deduction DPL; the combination yields a hybrid DPL. The semi

system is more limited, in that the only rules of inferences introduced are those of the theorem prover’s.
Such an oracular black-box system is useful in helping us decide quickly, for instance, if a certain lemma
or sub proof can be fruitful in a bigger proof.

3.3 Proof Verification and Proof Discovery in Slate

Slate is a graphical workspace for constructing natural deduction proofs in propositional logic, first-order
logic and modal logics. Slate also has the ability to automatically discover proofs by calling the Snark
theorem prover (see (17).) For an overview of an earlier version of Slate, please see (17). Formally, the
current version of Slate can be seen as a graphical DPL with primitive methods for natural deduction
and a primitive method for reasoning by Snark.

4 Examples

We report upon nascent work in producing machine-verifiable proofs and machine-generated proofs for
theorems in (3; 4). Our initial work focuses on the special theory of relativity, which has been formalized
as the set of axioms SpecRel = {AxFd,AxPh,AxEv,AxSf,AxSm}.

4.1 Theorem Neat: No Event at Two Places

We have obtained a machine-verified proof and a machine-generated proof of a simple theorem in Slate
whose givens include lemmas from field theory. The theorem, dubbed ‘Neat,’ states that for no inertial
observer are the events at one point the same as the events at another point. This theorem depends only
the field axioms and the physics axiom AxPh; the latter states that the speed of light for a given inertial
observer is the same in every direction and at every point. Our formalization of this axiom follows
closely follows that in (4), and the language is the same, save for:

1. Qq: a predicate symbol representing objects in Q⇥Q⇥Q⇥Q ;

2. In: a predicate symbol defined below for representing events;

3. speed: a field-theoretic functor for representing the speed between two space-time coordinates;

4. c: the functor representing the light speed for a given observer.

The axiom AxPh is given below:

8m 8xy(IOb(m)^Qq(x)Qq(y)) )
�
(9p Ph(p)^W(m, p,x)^W(m, p,y)) , speed(x,y) = c(m)

�

We introduce a new functor ev(m,x) for capturing the set of events observed by an observer m at a
space-time point x. This is defined using the W predicate symbol and a new predicate symbol In:

8m,b, p (IOb(m)^B(b)^Qq(p)) ) In(b,ev(m, p)) , W(m,b, p)

Theorem Neat is then:

8m 8xy(IOb(m)^Qq(x)^Qq(y)) )
�
x 6= y ) ev(m,x) 6= ev(m,y)

�
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As we said earlier, we observe from the Earth that Ph3, Ph4 and Middle
meet in a single event. Therefore, since we observe that Ph3 arrives to
Middle exactly when Ph4 arrives to Middle after their round-trips, we have
to infer, on the Earth, that Middle really stands exactly in the middle of
Spaceship. There remains only the possibility that Nose sent out his photon
Ph2, which we see as fast-moving along the hull of the space ship, much
later than Rear sent Ph1 which we see as slowly-moving along the hull of
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Proof. Let m and k be inertial observers and let x̄, ȳ 2 wlm(k) such
that x̄ 6= ȳ. By AxFd, � is a total order, so there are three possibilities
only: |ȳs � x̄s| < |yt �xt|, |ȳs � x̄s| > |yt �xt| or |ȳs � x̄s| = |yt �xt|. We
will prove |ȳs � x̄s| < |yt � xt| by excluding the other two possibilities.

Let us first prove that |ȳs � x̄s| > |yt � xt| cannot hold. Figure 1
illustrates this proof.6 So, let us assume that |ȳs � x̄s| > |yt � xt|, we
will derive a contradiction. By AxFd, there is a coordinate point z̄ such
that |z̄s � x̄s| = |zt �xt| 6= 0, zt = yt and z̄s � x̄s is orthogonal to z̄s � ȳs

if xt 6= yt, and |z̄s � x̄s| = |zt � xt| 6= 0 and z̄s � x̄s is orthogonal to
ȳs � x̄s if xt = yt (here we used that |ȳs � x̄s| > |yt �xt|). Any choice of
such a z̄ implies that any line of slope 1 in the plane x̄ȳz̄ is parallel to
the line x̄z̄ (because the plane x̄ȳz̄ is tangent to the light cone through
z̄). To choose one concrete z̄ from the many, let
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Proof. Let m and k be inertial observers and let x̄, ȳ 2 wlm(k) such
that x̄ 6= ȳ. By AxFd, � is a total order, so there are three possibilities
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= |ȳs � x̄s| + xt,

and, if xt 6= yt, let

z̄s
d
=

|yt � xt|2
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Note that one can directly embed a theorem prover in a DPL if a primitive method denoting the
theorem prover is introduced. This can allow us to combine different proof systems, say a resolution-
based theorem prover with a natural-deduction DPL; the combination yields a hybrid DPL. The semi

system is more limited, in that the only rules of inferences introduced are those of the theorem prover’s.
Such an oracular black-box system is useful in helping us decide quickly, for instance, if a certain lemma
or sub proof can be fruitful in a bigger proof.

3.3 Proof Verification and Proof Discovery in Slate

Slate is a graphical workspace for constructing natural deduction proofs in propositional logic, first-order
logic and modal logics. Slate also has the ability to automatically discover proofs by calling the Snark
theorem prover (see (17).) For an overview of an earlier version of Slate, please see (17). Formally, the
current version of Slate can be seen as a graphical DPL with primitive methods for natural deduction
and a primitive method for reasoning by Snark.

4 Examples

We report upon nascent work in producing machine-verifiable proofs and machine-generated proofs for
theorems in (3; 4). Our initial work focuses on the special theory of relativity, which has been formalized
as the set of axioms SpecRel = {AxFd,AxPh,AxEv,AxSf,AxSm}.

4.1 Theorem Neat: No Event at Two Places

We have obtained a machine-verified proof and a machine-generated proof of a simple theorem in Slate
whose givens include lemmas from field theory. The theorem, dubbed ‘Neat,’ states that for no inertial
observer are the events at one point the same as the events at another point. This theorem depends only
the field axioms and the physics axiom AxPh; the latter states that the speed of light for a given inertial
observer is the same in every direction and at every point. Our formalization of this axiom follows
closely follows that in (4), and the language is the same, save for:

1. Qq: a predicate symbol representing objects in Q⇥Q⇥Q⇥Q ;

2. In: a predicate symbol defined below for representing events;

3. speed: a field-theoretic functor for representing the speed between two space-time coordinates;

4. c: the functor representing the light speed for a given observer.

The axiom AxPh is given below:

8m 8xy(IOb(m)^Qq(x)Qq(y)) )
�
(9p Ph(p)^W(m, p,x)^W(m, p,y)) , speed(x,y) = c(m)

�

We introduce a new functor ev(m,x) for capturing the set of events observed by an observer m at a
space-time point x. This is defined using the W predicate symbol and a new predicate symbol In:

8m,b, p (IOb(m)^B(b)^Qq(p)) ) In(b,ev(m, p)) , W(m,b, p)

Theorem Neat is then:

8m 8xy(IOb(m)^Qq(x)^Qq(y)) )
�
x 6= y ) ev(m,x) 6= ev(m,y)

�
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trip Rear-Middle for Ph3. Summarizing the segments, the round-trip takes
twice as much time for Ph4 as for Ph3.
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Figure 4: The round-trip for Ph3 takes the same time as for Ph4, seen
both from Spaceship and from the Earth. Hence Earth infers that Middle
is indeed in the middle of the ship.

As we said earlier, we observe from the Earth that Ph3, Ph4 and Middle
meet in a single event. Therefore, since we observe that Ph3 arrives to
Middle exactly when Ph4 arrives to Middle after their round-trips, we have
to infer, on the Earth, that Middle really stands exactly in the middle of
Spaceship. There remains only the possibility that Nose sent out his photon
Ph2, which we see as fast-moving along the hull of the space ship, much
later than Rear sent Ph1 which we see as slowly-moving along the hull of
the spaceship. Thus, as seen from the Earth, the clocks at the nose and at
the rear of the spaceship show di�erent times (at the same Earth-moment).
This is what we mean when we say that the clocks of the spaceship get out
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Proof. Let m and k be inertial observers and let x̄, ȳ 2 wlm(k) such
that x̄ 6= ȳ. By AxFd, � is a total order, so there are three possibilities
only: |ȳs � x̄s| < |yt �xt|, |ȳs � x̄s| > |yt �xt| or |ȳs � x̄s| = |yt �xt|. We
will prove |ȳs � x̄s| < |yt � xt| by excluding the other two possibilities.

Let us first prove that |ȳs � x̄s| > |yt � xt| cannot hold. Figure 1
illustrates this proof.6 So, let us assume that |ȳs � x̄s| > |yt � xt|, we
will derive a contradiction. By AxFd, there is a coordinate point z̄ such
that |z̄s � x̄s| = |zt �xt| 6= 0, zt = yt and z̄s � x̄s is orthogonal to z̄s � ȳs

if xt 6= yt, and |z̄s � x̄s| = |zt � xt| 6= 0 and z̄s � x̄s is orthogonal to
ȳs � x̄s if xt = yt (here we used that |ȳs � x̄s| > |yt �xt|). Any choice of
such a z̄ implies that any line of slope 1 in the plane x̄ȳz̄ is parallel to
the line x̄z̄ (because the plane x̄ȳz̄ is tangent to the light cone through
z̄). To choose one concrete z̄ from the many, let

w̄s
d
=
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, w̄�
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Then, if xt = yt, let
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d
= |ȳs � x̄s| + xt,

and, if xt 6= yt, let
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d
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6To simplify the figure, we have drawn x̄ to the origin. This is not used in the
proof but it can be assumed without losing generality.
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relativity to general relativity. Synthese, pages 1–17, 2011.

[5] K. Arkoudas. Denotational Proof Languages. PhD thesis, MIT, 2000.

[6] K. Arkoudas. Combining diagrammatic and symbolic reasoning. Technical Report 2005-59, MIT
Computer Science and Artificial Intelligence Lab, Cambridge, USA, October 2005.

[7] K. Arkoudas and S. Bringsjord. Propositional Attitudes and Causation. International Journal of
Software and Informatics, 3(1):47–65, 2009.

[8] Konstantine Arkoudas and Selmer Bringsjord. Computers, justification, and mathematical knowl-
edge. Minds and Machines, 17(2):185–202, 2007.

[9] Konstantine Arkoudas and Selmer Bringsjord. Vivid: An AI framework for hetero-
geneous problem solving. Artificial Intelligence, 173(15):1367–1405, 2009. The url
http://kryten.mm.rpi.edu/vivid/vivid.pdf provides a preprint of the penultimate draft only. If
for some reason it is not working, please contact either author directly by email.

5The criterion for distinguishing diagrammatic representations from symbolic representations is that former are homomor-
phic in some fashion to what is being represented; see (10) for a discussion of this form of representation, versus symbolic
representations. The distinction is discussed in the context of logic-based AI and computational logic generally in (9).

7

Axioms from

Special-Relativity Axiomatization

Sunday, September 23, 12



The Axioms

diagrammatic and symbolic reasoning.5
trip Rear-Middle for Ph3. Summarizing the segments, the round-trip takes
twice as much time for Ph4 as for Ph3.

Earth

time

space

Ph3

Ph4

v

Figure 4: The round-trip for Ph3 takes the same time as for Ph4, seen
both from Spaceship and from the Earth. Hence Earth infers that Middle
is indeed in the middle of the ship.

As we said earlier, we observe from the Earth that Ph3, Ph4 and Middle
meet in a single event. Therefore, since we observe that Ph3 arrives to
Middle exactly when Ph4 arrives to Middle after their round-trips, we have
to infer, on the Earth, that Middle really stands exactly in the middle of
Spaceship. There remains only the possibility that Nose sent out his photon
Ph2, which we see as fast-moving along the hull of the space ship, much
later than Rear sent Ph1 which we see as slowly-moving along the hull of
the spaceship. Thus, as seen from the Earth, the clocks at the nose and at
the rear of the spaceship show di�erent times (at the same Earth-moment).
This is what we mean when we say that the clocks of the spaceship get out

13

Figure 4: Conceptual Reasoning Using Diagrams

A LOGIC ROAD FROM SPECIAL TO GENERAL RELATIVITY 7

m k

p

p

p1

p1

p2
p2

p3

p3

x̄

ȳ
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Proof. Let m and k be inertial observers and let x̄, ȳ 2 wlm(k) such
that x̄ 6= ȳ. By AxFd, � is a total order, so there are three possibilities
only: |ȳs � x̄s| < |yt �xt|, |ȳs � x̄s| > |yt �xt| or |ȳs � x̄s| = |yt �xt|. We
will prove |ȳs � x̄s| < |yt � xt| by excluding the other two possibilities.

Let us first prove that |ȳs � x̄s| > |yt � xt| cannot hold. Figure 1
illustrates this proof.6 So, let us assume that |ȳs � x̄s| > |yt � xt|, we
will derive a contradiction. By AxFd, there is a coordinate point z̄ such
that |z̄s � x̄s| = |zt �xt| 6= 0, zt = yt and z̄s � x̄s is orthogonal to z̄s � ȳs

if xt 6= yt, and |z̄s � x̄s| = |zt � xt| 6= 0 and z̄s � x̄s is orthogonal to
ȳs � x̄s if xt = yt (here we used that |ȳs � x̄s| > |yt �xt|). Any choice of
such a z̄ implies that any line of slope 1 in the plane x̄ȳz̄ is parallel to
the line x̄z̄ (because the plane x̄ȳz̄ is tangent to the light cone through
z̄). To choose one concrete z̄ from the many, let
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|ȳs � x̄s|
, w̄�

s
d
=

hy2 � x2, x1 � y1, 0i�
(y2 � x2)2 + (x1 � y1)2

.

Then, if xt = yt, let

z̄s
d
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AxPh The speed of light is finite and the same in all 
directions for all inertial observers 

AxPh The same set of events is observed by all 
observers. The universe is the same for everyone.

AxSf All observers observe themselves to be on the 
time axis.

AxSm The speed of light for any observer is one, and all 
observers use the same units of measurement.
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Let us first prove that |ȳs � x̄s| > |yt � xt| cannot hold. Figure 1
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Proof. Let m and k be inertial observers and let x̄, ȳ 2 wlm(k) such
that x̄ 6= ȳ. By AxFd, � is a total order, so there are three possibilities
only: |ȳs � x̄s| < |yt �xt|, |ȳs � x̄s| > |yt �xt| or |ȳs � x̄s| = |yt �xt|. We
will prove |ȳs � x̄s| < |yt � xt| by excluding the other two possibilities.

Let us first prove that |ȳs � x̄s| > |yt � xt| cannot hold. Figure 1
illustrates this proof.6 So, let us assume that |ȳs � x̄s| > |yt � xt|, we
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if xt 6= yt, and |z̄s � x̄s| = |zt � xt| 6= 0 and z̄s � x̄s is orthogonal to
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[4] Hajnal Andréka, Judit X. Madarász, István Németi, and Gergely Székely. A logic road from special
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Figure 4: The round-trip for Ph3 takes the same time as for Ph4, seen
both from Spaceship and from the Earth. Hence Earth infers that Middle
is indeed in the middle of the ship.

As we said earlier, we observe from the Earth that Ph3, Ph4 and Middle
meet in a single event. Therefore, since we observe that Ph3 arrives to
Middle exactly when Ph4 arrives to Middle after their round-trips, we have
to infer, on the Earth, that Middle really stands exactly in the middle of
Spaceship. There remains only the possibility that Nose sent out his photon
Ph2, which we see as fast-moving along the hull of the space ship, much
later than Rear sent Ph1 which we see as slowly-moving along the hull of
the spaceship. Thus, as seen from the Earth, the clocks at the nose and at
the rear of the spaceship show di�erent times (at the same Earth-moment).
This is what we mean when we say that the clocks of the spaceship get out
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ȳs � x̄s if xt = yt (here we used that |ȳs � x̄s| > |yt �xt|). Any choice of
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ȳs � x̄s if xt = yt (here we used that |ȳs � x̄s| > |yt �xt|). Any choice of
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|ȳs � x̄s|2 � |yt � xt|2
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I. Sain, and Cs. Töke. http://www.math-inst.hu/pub/algebraic-logic/olsort.html.

[3] Hajnal Andréka, Judit X. Madarász, and István Németi. Logic of space-time and relativity theory.
In Aiello et al. (1), pages 607–711.
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Theorem Neat
(No Event at Two Places)

FOL ⊢ !

FOL ⊢ !

FOL  ⊢  !

Sort Axiom. !x (Ph(x) " B(x))
{Sort Axiom} Assume !

5. !m,p,q ((IOb(m) # Q(p) # Q(q)) " (p ≠ q " ($b (B(b) # ((W(m,b,p) # ¬W(m,b,q)) % (¬W(m,b,p) # W(m,b,q)))) " ev(m,p) ≠ ev(m,q))))
{Definition-Event-P}

6. !m,x,y ((IOb(m) # Q(x) # Q(y)) " (x ≠ y " $b (B(b) # ((W(m,b,x) # ¬W(m,b,y)) % (¬W(m,b,x) # W(m,b,y))))))
{AxPh,Sort Axiom,Speed2}

AxPh. !m,x,y ((IOb(m) # Q(x) # Q(y)) " ($p (Ph(p) # W(m,p,x) # W(m,p,y)) & (speed(x,y) = cm)))
{AxPh} Assume !

Definition-Event-P. !m,b,p ((IOb(m) # B(b) # Q(p)) " (In(b,ev(m,p)) & W(m,b,p)))
{Definition-Event-P} Assume !

Speed2. !m,x,y ((IOb(m) # Q(x) # Q(y)) " (x ≠ y " $z (Q(z) # (speed(x,z) = cm) # speed(z,y) ≠ cm)))
{Speed2} Assume !

2. !m,x,y ((IOb(m) # Q(x) # Q(y)) " (x ≠ y " ev(m,x) ≠ ev(m,y)))
{AxPh,Definition-Event-P,Sort Axiom,Speed2}
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Speed2. !m,x,y ((IOb(m) # Q(x) # Q(y)) " (x ≠ y " $z (Q(z) # (speed(x,z) = cm) # speed(z,y) ≠ cm)))
{Speed2} Assume !

2. !m,x,y ((IOb(m) # Q(x) # Q(y)) " (x ≠ y " ev(m,x) ≠ ev(m,y)))
{AxPh,Definition-Event-P,Sort Axiom,Speed2}

An inertial observer is just a Inertial body which coördinatizes some body.
IOb(m) == IB(m) & exists (k,x,y,z,t) W(m,k,x,y,z,t)

For all inertial observers m and quantities x and y, if and x and y are distinct, then 
the events that m observes at x is not the same as the events that m observes at y.
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Semi-automated Proof in Slate

FOL  ⊢  ✓

FOL ⊢ ✓

FOL  ⊢  ✓

Sort Axiom. ∀x (Ph(x) → B(x))
{Sort Axiom} Assume ✓

AxPh. ∀m,x,y ((IOb(m) ∧ Q(x) ∧ Q(y)) → (∃p (Ph(p) ∧ W(m,p,x) ∧ W(m,p,y)) ↔ (speed(x,y) = cm)))
{AxPh} Assume ✓

6. ∀m,x,y ((IOb(m) ∧ Q(x) ∧ Q(y)) → (x ≠ y → ∃b (B(b) ∧ ((W(m,b,x) ∧ ¬W(m,b,y)) ∨ (¬W(m,b,x) ∧ W(m,b,y))))))
{AxPh,From AxFd,Sort Axiom}

5. ∀m,p,q ((IOb(m) ∧ Q(p) ∧ Q(q)) → (p ≠ q → (∃b (B(b) ∧ ((W(m,b,p) ∧ ¬W(m,b,q)) ∨ (¬W(m,b,p) ∧ W(m,b,q)))) → ev(m,p) ≠ ev(m,q))))
{Definition-Event-P}

Definition-Event-P. ∀m,b,p ((IOb(m) ∧ B(b) ∧ Q(p)) → (In(b,ev(m,p)) ↔ W(m,b,p)))
{Definition-Event-P} Assume ✓

From AxFd. ∀m,x,y ((IOb(m) ∧ Q(x) ∧ Q(y)) → (x ≠ y → ∃z (Q(z) ∧ (speed(x,z) = cm) ∧ speed(z,y) ≠ cm)))
{From AxFd} Assume ✓

2. ∀m,x,y ((IOb(m) ∧ Q(x) ∧ Q(y)) → (x ≠ y → ev(m,x) ≠ ev(m,y)))
{AxPh,Definition-Event-P,From AxFd,Sort Axiom}
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Manual Informal Proof
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Proof that if there is a body b whose 
wordline for observer m passes through 
point p but not through q or through q 
but not through p, then the events 
observed by m at p and q are different.

The theorem

m observes that there is a 
body which passes through p 
but not through q or through 
q but not through p.

There is a point z reachable  at 
the speed of light from p but 
not from q for observer m.

∀ intro ✓

→ intro ✓

∃ elim ✓

↔ elim ✓

∧ elim ✓

∀ elim ✓

∀ elim ✓

→ elim ✓

→ elim ✓

∧ intro ✓

∧ elim ✓

¬ intro ✓

↔ elim ✓

∀ elim ✓

∀ elim ✓

∀ elim ✓

→ elim  ✓

∧ elim ✓

¬ intro ✓

∃ intro ✓

∧ intro ✓

∧ elim ✓

∧ elim  ✓

¬ intro ✓

∨ intro ✓

∨ elim  ✓

∧ elim ✓

↔  elim  ✓

↔  elim  ✓

↔ elim ✓

↔ elim ✓

∀ elim ✓

∀ elim ✓

∀  elim  ✓

↔ elim ✓

∀ elim ✓

= elim ✓

↔ intro ✓

∧ elim ✓

¬ intro ✓

∧ elim ✓

↔  elim  ✓

∧ elim ✓

¬ intro ✓

→ intro ✓

∃  elim  ✓

∀ elim ✓

∀ elim ✓

∀ elim ✓

→ elim  ✓

→ intro ✓

∀ intro ✓

∀  intro ✓

42. speed(p,z) = c(m)
{41}

46. speed(z,q) ≠ c(m)
{41}

37. ∀x,y (IOb(m) → (∃s (Ph(s) ∧ W(m,s,x) ∧ W(m,s,y)) ↔ (speed(x,y) = c(m))))
{AxPh}

45. W(m,b,p)
{44}

44. Ph(b) ∧ W(m,b,p) ∧ W(m,b,z)
{44} Assume ✓

AxPh. ∀m,x,y (IOb(m) → (∃s (Ph(s) ∧ W(m,s,x) ∧ W(m,s,y)) ↔ (speed(x,y) = c(m))))
{AxPh} Assume ✓

65. ev(m,p) ≠ ev(m,q)
{31,36,AxPh,Definition-Event-P,From AxFd}

66. p ≠ q → ev(m,p) ≠ ev(m,q)
{36,AxPh,Definition-Event-P,From AxFd}

68. ∀y (IOb(m) → (p ≠ y → ev(m,p) ≠ ev(m,y)))
{AxPh,Definition-Event-P,From AxFd}

69. ∀x,y (IOb(m) → (x ≠ y → ev(m,x) ≠ ev(m,y)))
{AxPh,Definition-Event-P,From AxFd}

67. IOb(m) → (p ≠ q → ev(m,p) ≠ ev(m,q))
{AxPh,Definition-Event-P,From AxFd}

Definition-Event-P. ∀m,b,x (In(b,ev(m,x)) ↔ W(m,b,x))
{Definition-Event-P} Assume ✓

7. ∀x (In(b,ev(m,x)) ↔ W(m,b,x))
{Definition-Event-P}

6. ∀b,x (In(b,ev(m,x)) ↔ W(m,b,x))
{Definition-Event-P}

9. In(b,ev(m,q)) ↔ W(m,b,q)
{Definition-Event-P}

12. W(m,b,q)
{12} Assume ✓

14. W(m,b,p)
{10,12,Definition-Event-P}

17. W(m,b,q)
{10,15,Definition-Event-P}

13. In(b,ev(m,p))
{10,12,Definition-Event-P}

8. In(b,ev(m,p)) ↔ W(m,b,p)
{Definition-Event-P}

18. W(m,b,p) ↔ W(m,b,q)
{10,Definition-Event-P}

19. W(m,b,p) ∧ ¬W(m,b,q)
{19} Assume ✓

27. W(m,b,p)
{10,24,Definition-Event-P}

23. ev(m,p) ≠ ev(m,q)
{19,Definition-Event-P}

22. W(m,b,q)
{10,19,Definition-Event-P}

21. ¬W(m,b,q)
{19}

25. ¬W(m,b,p)
{24}

28. ev(m,p) ≠ ev(m,q)
{24,Definition-Event-P}

26. W(m,b,q)
{24}

24. ¬W(m,b,p) ∧ W(m,b,q)
{24} Assume ✓

29. ev(m,p) ≠ ev(m,q)
{5,Definition-Event-P}

5. (W(m,b,p) ∧ ¬W(m,b,q)) ∨ (¬W(m,b,p) ∧ W(m,b,q))
{5} Assume ✓

30. ((W(m,b,p) ∧ ¬W(m,b,q)) ∨ (¬W(m,b,p) ∧ W(m,b,q))) → ev(m,p) ≠ ev(m,q)
{Definition-Event-P}

64. ev(m,p) ≠ ev(m,q)
{36,41,AxPh,Definition-Event-P}

41. (speed(p,z) = c(m)) ∧ speed(z,q) ≠ c(m)
{41} Assume ✓

61. W(m,b,p) ∧ ¬W(m,b,q)
{36,41,44,AxPh}

59. Ph(b) ∧ W(m,b,z) ∧ W(m,b,q)
{44,56}

11. In(b,ev(m,p)) ↔ W(m,b,q)
{10,Definition-Event-P}

16. In(b,ev(m,p))
{15,Definition-Event-P}

15. W(m,b,p)
{15} Assume ✓

10. ev(m,p) = ev(m,q)
{10} Assume ✓

20. W(m,b,p)
{19}

50. ¬∃s (Ph(s) ∧ W(m,s,z) ∧ W(m,s,q))
{36,41,AxPh}

55. ¬(Ph(b) ∧ W(m,b,z) ∧ W(m,b,q))
{36,41,AxPh}

54. ∃s (Ph(s) ∧ W(m,s,z) ∧ W(m,s,q))
{53}

53. Ph(b) ∧ W(m,b,z) ∧ W(m,b,q)
{53} Assume ✓

43. ∃s (Ph(s) ∧ W(m,s,p) ∧ W(m,s,z))
{36,41,AxPh}

40. ∃s (Ph(s) ∧ W(m,s,p) ∧ W(m,s,z)) ↔ (speed(p,z) = c(m))
{36,AxPh}

39. IOb(m) → (∃s (Ph(s) ∧ W(m,s,p) ∧ W(m,s,z)) ↔ (speed(p,z) = c(m)))
{AxPh}

38. ∀y (IOb(m) → (∃s (Ph(s) ∧ W(m,s,p) ∧ W(m,s,y)) ↔ (speed(p,y) = c(m))))
{AxPh}

36. IOb(m)
{36} Assume ✓

52. speed(z,q) = c(m)
{36,51,AxPh}

49. ∃s (Ph(s) ∧ W(m,s,z) ∧ W(m,s,q)) ↔ (speed(z,q) = c(m))
{36,AxPh}

51. ∃s (Ph(s) ∧ W(m,s,z) ∧ W(m,s,q))
{51} Assume ✓

48. IOb(m) → (∃s (Ph(s) ∧ W(m,s,z) ∧ W(m,s,q)) ↔ (speed(z,q) = c(m)))
{AxPh}

47. ∀y (IOb(m) → (∃s (Ph(s) ∧ W(m,s,z) ∧ W(m,s,y)) ↔ (speed(z,y) = c(m))))
{AxPh}

58. W(m,b,z)
{44}57. Ph(b)

{44}

56. W(m,b,q)
{56} Assume ✓

62. (W(m,b,p) ∧ ¬W(m,b,q)) ∨ (¬W(m,b,p) ∧ W(m,b,q))
{36,41,44,AxPh}

63. ev(m,p) ≠ ev(m,q)
{36,41,44,AxPh,Definition-Event-P}

35. ∃z ((speed(p,z) = c(m)) ∧ speed(z,q) ≠ c(m))
{31,From AxFd}

60. ¬W(m,b,q)
{36,41,44,AxPh}

31. p ≠ q
{31} Assume ✓

34. p ≠ q → ∃z ((speed(p,z) = c(m)) ∧ speed(z,q) ≠ c(m))
{From AxFd}

33. ∀y (p ≠ y → ∃z ((speed(p,z) = c(m)) ∧ speed(z,y) ≠ c(m)))
{From AxFd}

32. ∀x,y (x ≠ y → ∃z ((speed(x,z) = c(m)) ∧ speed(z,y) ≠ c(m)))
{From AxFd}

From AxFd. ∀m,x,y (x ≠ y → ∃z ((speed(x,z) = c(m)) ∧ speed(z,y) ≠ c(m)))
{From AxFd} Assume ✓

Neat. ∀m,x,y (IOb(m) → (x ≠ y → ev(m,x) ≠ ev(m,y)))
{AxPh,Definition-Event-P,From AxFd}

Figure 3: Manual Proof in Slate of Neat6
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Proof that if there is a body b whose 
wordline for observer m passes through 
point p but not through q or through q 
but not through p, then the events 
observed by m at p and q are different.

The theorem

m observes that there is a 
body which passes through p 
but not through q or through 
q but not through p.

There is a point z reachable  at 
the speed of light from p but 
not from q for observer m.

∀ intro ✓

→ intro ✓

∃ elim ✓

↔ elim ✓

∧ elim ✓

∀ elim ✓

∀ elim ✓

→ elim ✓

→ elim ✓

∧ intro ✓

∧ elim ✓

¬ intro ✓

↔ elim ✓

∀ elim ✓

∀ elim ✓

∀ elim ✓

→ elim  ✓

∧ elim ✓

¬ intro ✓

∃ intro ✓

∧ intro ✓

∧ elim ✓

∧ elim  ✓

¬ intro ✓

∨ intro ✓

∨ elim  ✓

∧ elim ✓

↔  elim  ✓

↔  elim  ✓

↔ elim ✓

↔ elim ✓

∀ elim ✓

∀ elim ✓

∀  elim  ✓

↔ elim ✓

∀ elim ✓

= elim ✓

↔ intro ✓

∧ elim ✓

¬ intro ✓

∧ elim ✓

↔  elim  ✓

∧ elim ✓

¬ intro ✓

→ intro ✓

∃  elim  ✓

∀ elim ✓

∀ elim ✓

∀ elim ✓

→ elim  ✓

→ intro ✓

∀ intro ✓

∀  intro ✓

42. speed(p,z) = c(m)
{41}

46. speed(z,q) ≠ c(m)
{41}

37. ∀x,y (IOb(m) → (∃s (Ph(s) ∧ W(m,s,x) ∧ W(m,s,y)) ↔ (speed(x,y) = c(m))))
{AxPh}

45. W(m,b,p)
{44}

44. Ph(b) ∧ W(m,b,p) ∧ W(m,b,z)
{44} Assume ✓

AxPh. ∀m,x,y (IOb(m) → (∃s (Ph(s) ∧ W(m,s,x) ∧ W(m,s,y)) ↔ (speed(x,y) = c(m))))
{AxPh} Assume ✓

65. ev(m,p) ≠ ev(m,q)
{31,36,AxPh,Definition-Event-P,From AxFd}

66. p ≠ q → ev(m,p) ≠ ev(m,q)
{36,AxPh,Definition-Event-P,From AxFd}

68. ∀y (IOb(m) → (p ≠ y → ev(m,p) ≠ ev(m,y)))
{AxPh,Definition-Event-P,From AxFd}

69. ∀x,y (IOb(m) → (x ≠ y → ev(m,x) ≠ ev(m,y)))
{AxPh,Definition-Event-P,From AxFd}

67. IOb(m) → (p ≠ q → ev(m,p) ≠ ev(m,q))
{AxPh,Definition-Event-P,From AxFd}

Definition-Event-P. ∀m,b,x (In(b,ev(m,x)) ↔ W(m,b,x))
{Definition-Event-P} Assume ✓

7. ∀x (In(b,ev(m,x)) ↔ W(m,b,x))
{Definition-Event-P}

6. ∀b,x (In(b,ev(m,x)) ↔ W(m,b,x))
{Definition-Event-P}

9. In(b,ev(m,q)) ↔ W(m,b,q)
{Definition-Event-P}

12. W(m,b,q)
{12} Assume ✓

14. W(m,b,p)
{10,12,Definition-Event-P}

17. W(m,b,q)
{10,15,Definition-Event-P}

13. In(b,ev(m,p))
{10,12,Definition-Event-P}

8. In(b,ev(m,p)) ↔ W(m,b,p)
{Definition-Event-P}

18. W(m,b,p) ↔ W(m,b,q)
{10,Definition-Event-P}

19. W(m,b,p) ∧ ¬W(m,b,q)
{19} Assume ✓

27. W(m,b,p)
{10,24,Definition-Event-P}

23. ev(m,p) ≠ ev(m,q)
{19,Definition-Event-P}

22. W(m,b,q)
{10,19,Definition-Event-P}

21. ¬W(m,b,q)
{19}

25. ¬W(m,b,p)
{24}

28. ev(m,p) ≠ ev(m,q)
{24,Definition-Event-P}

26. W(m,b,q)
{24}

24. ¬W(m,b,p) ∧ W(m,b,q)
{24} Assume ✓

29. ev(m,p) ≠ ev(m,q)
{5,Definition-Event-P}

5. (W(m,b,p) ∧ ¬W(m,b,q)) ∨ (¬W(m,b,p) ∧ W(m,b,q))
{5} Assume ✓

30. ((W(m,b,p) ∧ ¬W(m,b,q)) ∨ (¬W(m,b,p) ∧ W(m,b,q))) → ev(m,p) ≠ ev(m,q)
{Definition-Event-P}

64. ev(m,p) ≠ ev(m,q)
{36,41,AxPh,Definition-Event-P}

41. (speed(p,z) = c(m)) ∧ speed(z,q) ≠ c(m)
{41} Assume ✓

61. W(m,b,p) ∧ ¬W(m,b,q)
{36,41,44,AxPh}

59. Ph(b) ∧ W(m,b,z) ∧ W(m,b,q)
{44,56}

11. In(b,ev(m,p)) ↔ W(m,b,q)
{10,Definition-Event-P}

16. In(b,ev(m,p))
{15,Definition-Event-P}

15. W(m,b,p)
{15} Assume ✓

10. ev(m,p) = ev(m,q)
{10} Assume ✓

20. W(m,b,p)
{19}

50. ¬∃s (Ph(s) ∧ W(m,s,z) ∧ W(m,s,q))
{36,41,AxPh}

55. ¬(Ph(b) ∧ W(m,b,z) ∧ W(m,b,q))
{36,41,AxPh}

54. ∃s (Ph(s) ∧ W(m,s,z) ∧ W(m,s,q))
{53}

53. Ph(b) ∧ W(m,b,z) ∧ W(m,b,q)
{53} Assume ✓

43. ∃s (Ph(s) ∧ W(m,s,p) ∧ W(m,s,z))
{36,41,AxPh}

40. ∃s (Ph(s) ∧ W(m,s,p) ∧ W(m,s,z)) ↔ (speed(p,z) = c(m))
{36,AxPh}

39. IOb(m) → (∃s (Ph(s) ∧ W(m,s,p) ∧ W(m,s,z)) ↔ (speed(p,z) = c(m)))
{AxPh}

38. ∀y (IOb(m) → (∃s (Ph(s) ∧ W(m,s,p) ∧ W(m,s,y)) ↔ (speed(p,y) = c(m))))
{AxPh}

36. IOb(m)
{36} Assume ✓

52. speed(z,q) = c(m)
{36,51,AxPh}

49. ∃s (Ph(s) ∧ W(m,s,z) ∧ W(m,s,q)) ↔ (speed(z,q) = c(m))
{36,AxPh}

51. ∃s (Ph(s) ∧ W(m,s,z) ∧ W(m,s,q))
{51} Assume ✓

48. IOb(m) → (∃s (Ph(s) ∧ W(m,s,z) ∧ W(m,s,q)) ↔ (speed(z,q) = c(m)))
{AxPh}

47. ∀y (IOb(m) → (∃s (Ph(s) ∧ W(m,s,z) ∧ W(m,s,y)) ↔ (speed(z,y) = c(m))))
{AxPh}

58. W(m,b,z)
{44}57. Ph(b)

{44}

56. W(m,b,q)
{56} Assume ✓

62. (W(m,b,p) ∧ ¬W(m,b,q)) ∨ (¬W(m,b,p) ∧ W(m,b,q))
{36,41,44,AxPh}

63. ev(m,p) ≠ ev(m,q)
{36,41,44,AxPh,Definition-Event-P}

35. ∃z ((speed(p,z) = c(m)) ∧ speed(z,q) ≠ c(m))
{31,From AxFd}

60. ¬W(m,b,q)
{36,41,44,AxPh}

31. p ≠ q
{31} Assume ✓

34. p ≠ q → ∃z ((speed(p,z) = c(m)) ∧ speed(z,q) ≠ c(m))
{From AxFd}

33. ∀y (p ≠ y → ∃z ((speed(p,z) = c(m)) ∧ speed(z,y) ≠ c(m)))
{From AxFd}

32. ∀x,y (x ≠ y → ∃z ((speed(x,z) = c(m)) ∧ speed(z,y) ≠ c(m)))
{From AxFd}

From AxFd. ∀m,x,y (x ≠ y → ∃z ((speed(x,z) = c(m)) ∧ speed(z,y) ≠ c(m)))
{From AxFd} Assume ✓

Neat. ∀m,x,y (IOb(m) → (x ≠ y → ev(m,x) ≠ ev(m,y)))
{AxPh,Definition-Event-P,From AxFd}

Figure 3: Manual Proof in Slate of Neat6
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Theorem NTFLIO
(No Faster Than Light Travel)

1. ∀m,k,x,y ((wl(m,k,x) ∧ wl(m,k,y) ∧ x ≠ y ∧ IOb(m) ∧ IOb(k)) → (dist(x,y) < time(x,y)))
{1} Assume ✓
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Theorem NTFLIO
(No Faster Than Light Travel)

For all m and k, if m observes k at x and m observes k at also y, and if x is not equal to y and if m and k are inertial 
observers, then the spatial distance between x and y is less than the temporal distance between x and y (giving us that 
the speed between x and y is less than 1, which is the speed of light normalized.)

1. ∀m,k,x,y ((wl(m,k,x) ∧ wl(m,k,y) ∧ x ≠ y ∧ IOb(m) ∧ IOb(k)) → (dist(x,y) < time(x,y)))
{1} Assume ✓
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Theorem NTFLIO
(No Faster Than Light Travel)

in progress ...

For all m and k, if m observes k at x and m observes k at also y, and if x is not equal to y and if m and k are inertial 
observers, then the spatial distance between x and y is less than the temporal distance between x and y (giving us that 
the speed between x and y is less than 1, which is the speed of light normalized.)

1. ∀m,k,x,y ((wl(m,k,x) ∧ wl(m,k,y) ∧ x ≠ y ∧ IOb(m) ∧ IOb(k)) → (dist(x,y) < time(x,y)))
{1} Assume ✓

Sunday, September 23, 12


