A new representation theory Representing cylindric-like algebras by cylindric relativized set algebras

Miklós Ferenczi

TUB Department of Algebra

September 2012

CONTENTS

- On the Resek-Thompson-Andréka theorem (and on the refinement)
- On the results obtained after the theorem
- Connections with neat embeddability

Boolean algebras are representable, but Cylindric algebras, Polyadic equality algebras not!

Definition

 $\mathfrak{A} \in CA_{\alpha}$ is representable if $\mathfrak{A} \in I \operatorname{Gs}_{\alpha}$.

(the unit of a Gs_{α} is of the form $\bigcup_{k \in K} {}^{\alpha}U_k$ where $U_i \cap U_j = \emptyset$, $i \neq j$)

Theorem

(Monk) I Gs_{α} is not finite schema axiomatizable.

Important representable subclasses: Lf_{α} , Dc_{α} , Ss_{α} , etc.

- CA_{α}^{++} : the system of axioms of CA_{α} is expanded by infinitely many merry-go-round axioms
- for the unit V of a Crs_{α} , $V \subseteq {}^{\alpha}U$ for some set U
- Crs: Henkin, Németi, vanBenthem.

- CA_{α}^{++} : the system of axioms of CA_{α} is expanded by infinitely many merry-go-round axioms
- for the unit V of a Crs_{α} , $V \subseteq {}^{\alpha}U$ for some set U
- Crs: Henkin, Németi, vanBenthem.
- Concept of *r*-representation.

- $\mathsf{CA}^{++}_{\alpha}$: the system of axioms of CA_{α} is expanded by infinitely many merry-go-round axioms
- for the unit V of a Crs_{α} , $V \subseteq {}^{\alpha}U$ for some set U
- Crs: Henkin, Németi, vanBenthem.
- Concept of *r*-representation.
- Analogy in Logic: the completeness of the Henkin's semantics.

- $\mathsf{CA}^{++}_{\alpha}$: the system of axioms of CA_{α} is expanded by infinitely many merry-go-round axioms
- for the unit V of a Crs_{α} , $V \subseteq {}^{\alpha}U$ for some set U
- Crs: Henkin, Németi, vanBenthem.
- Concept of *r*-representation.
- Analogy in Logic: the completeness of the Henkin's semantics.
- PROBLEMS:

- CA_{α}^{++} : the system of axioms of CA_{α} is expanded by infinitely many merry-go-round axioms
- for the unit V of a Crs_{α} , $V \subseteq {}^{\alpha}U$ for some set U
- Crs: Henkin, Németi, vanBenthem.
- Concept of *r*-representation.
- Analogy in Logic: the completeness of the Henkin's semantics.
- PROBLEMS:
- the infinite schema,

- $\mathsf{CA}^{++}_{\alpha}$: the system of axioms of CA_{α} is expanded by infinitely many merry-go-round axioms
- for the unit V of a Crs_{α} , $V \subseteq {}^{\alpha}U$ for some set U
- Crs: Henkin, Németi, vanBenthem.
- Concept of *r*-representation.
- Analogy in Logic: the completeness of the Henkin's semantics.
- PROBLEMS:
- the infinite schema,
- the class $Crs_{\alpha} \cap CA_{\alpha}$.

(Resek-Thompson-Andréka) $\mathfrak{A} \in CA^+_{\alpha}$ if and only if $\mathfrak{A} \in I D_{\alpha}$.

where

CA⁺_α: the system of axioms of CA_α is expanded by TWO merry-go-round axioms (MGR) and

axiom C₄ is replaced by its weakening $(C_4)^* := d_{ik} \cdot c_i c_j x \le c_j c_i x$ where *i*, *j*, *k* and *m* are different.

•
$$\mathsf{D}_{\alpha} = \mathsf{Crs}_{\alpha} \cap \mathsf{Mod}\{\mathsf{C}_i\mathsf{D}_{ij} = V\}$$

MGR axioms:

$$\mathbf{s}_{i}^{k}\mathbf{s}_{j}^{j}\mathbf{s}_{k}^{j}\mathbf{c}_{k}\mathbf{x} = \mathbf{s}_{j}^{k}\mathbf{s}_{i}^{j}\mathbf{s}_{k}^{i}\mathbf{c}_{k}\mathbf{x}$$

$$\mathbf{s}_{i}^{k}\mathbf{s}_{j}^{i}\mathbf{s}_{m}^{j}\mathbf{s}_{k}^{m}\mathbf{c}_{k}x = \mathbf{s}_{j}^{k}\mathbf{s}_{m}^{j}\mathbf{s}_{i}^{m}\mathbf{s}_{k}^{i}\mathbf{c}_{k}x$$

for distinct ordinals i, j, k and n.

Remark: Andréka's short proof, Sayed Ahmed's new proof (recently) = MSI Tech Support (Institute) Slides - Beamer 01/07 5 / 15

The axiom
$$(C_4)^{*}$$
 is equivalent to $^-(C_4)$, where

$$^{-}(\mathsf{C}_{4}): \ \mathsf{s}_{k}^{i}\mathsf{s}_{m}^{j}x = \mathsf{s}_{m}^{j}\mathsf{s}_{k}^{i}x \quad i,k \notin \{j,m\} \, .$$

Notation: CNA^+_{α} (non-commutative cylindric algebras): axiom (C₄) is replaced by $^-(C_4)$.

Problem

What is the background (meaning) of the merry-go-round axioms?

• On transposition operators

The axiom $(C_4)^*$ is equivalent to $^-(C_4)$, where

$$^{-}(\mathsf{C}_{4}): \ \mathsf{s}_{k}^{i}\mathsf{s}_{m}^{j}x = \mathsf{s}_{m}^{j}\mathsf{s}_{k}^{i}x \quad i,k \notin \{j,m\} \, .$$

Notation: CNA^+_{α} (non-commutative cylindric algebras): axiom (C₄) is replaced by $^-(C_4)$.

Problem

What is the background (meaning) of the merry-go-round axioms?

• On transposition operators

• Elementary transposition operator: [*i*, *j*] in set algebras.

The axiom $(C_4)^*$ is equivalent to $^-(C_4)$, where

$$^{-}(\mathsf{C}_{4}): \ \mathsf{s}_{k}^{i}\mathsf{s}_{m}^{j}x = \mathsf{s}_{m}^{j}\mathsf{s}_{k}^{i}x \quad i,k \notin \{j,m\} \, .$$

Notation: CNA^+_{α} (non-commutative cylindric algebras): axiom (C₄) is replaced by $^-(C_4)$.

Problem

What is the background (meaning) of the merry-go-round axioms?

• On transposition operators

- Elementary transposition operator: [*i*, *j*] in set algebras.
- Abstract transposition operator: *p_{ij}*.

The axiom $(C_4)^*$ is equivalent to $^-(C_4)$, where

$$^{-}(\mathsf{C}_{4}): \ \mathsf{s}_{k}^{i}\mathsf{s}_{m}^{j}x = \mathsf{s}_{m}^{j}\mathsf{s}_{k}^{i}x \quad i,k \notin \{j,m\} \, .$$

Notation: CNA^+_{α} (non-commutative cylindric algebras): axiom (C₄) is replaced by $^-(C_4)$.

Problem

What is the background (meaning) of the merry-go-round axioms?

On transposition operators

- Elementary transposition operator: [*i*, *j*] in set algebras.
- Abstract transposition operator: *p_{ij}*.
- $_k s(i, j) = s_i^k s_j^i s_k^j$ (*i*, *j*, *k* are different) is a transposition-like operator in cylindric algebras.

The axiom $(C_4)^*$ is equivalent to $^-(C_4)$, where

$$^{-}(\mathsf{C}_{4}): \ \mathsf{s}_{k}^{i}\mathsf{s}_{m}^{j}x = \mathsf{s}_{m}^{j}\mathsf{s}_{k}^{i}x \quad i,k \notin \{j,m\} \, .$$

Notation: CNA^+_{α} (non-commutative cylindric algebras): axiom (C₄) is replaced by $^-(C_4)$.

Problem

What is the background (meaning) of the merry-go-round axioms?

• On transposition operators

- Elementary transposition operator: [i, j] in set algebras.
- Abstract transposition operator: p_{ij}.
- $_k s(i, j) = s_i^k s_j^i s_k^j$ (*i*, *j*, *k* are different) is a transposition-like operator in cylindric algebras.
- REMARK: Not every cylindric algebra has an abstract transposition operator (Ferenczi, Sayed-Ahmed).

MSI Tech Support (Institute)

CONJECTURE: the meaning of MGR is the existence of a kind of transposition operator.

An equivalent form of MGR:

$$_k s(i,j) _k s(j,m) c_k x = _k s(j,m) _k s(m,i) c_k x$$

under the other CNA_{α} axioms if $k \notin \{i, j, m\}, j \notin \{m, i\}$ (Andréka-Thompson).

A variant of the Resek-Thompson-Andréka theorem:

Theorem

(Ferenczi) $\mathfrak{A} \in CNA_{\alpha}$ extended by $p_{ij} := {}_{k}s(i, j)$ is a partial transposition algebra (PTA_{α}) if and only if $\mathfrak{A} \in ID_{\alpha}$.

After the Resek-Thompson-Andréka theorem

CONJECTURE: Transposition algebras are r- representable. TA_{α} is a weekening of finite polyadic equality algebras (being definitionally equivalent to quasi-polyadic equality algebras) introduced by Sain and Thompson:

Definition

 (TA_{α}) A transposition algebra of dimension α ($\alpha \geq 3$) is an algebra

$$\mathfrak{A} = \langle A, +, \cdot, -, 0, 1, c_i, s_j^i, p_{ij}, d_{ij} \rangle_{i,j < \alpha},$$

where c_i , s_j^i , p_{ij} are unary operations, d_{ij} are constants, and the axioms (F0–F9) below are assumed for every $i, j, k < \alpha$:

(F0)
$$\langle A, +, \cdot, -, 0, 1 \rangle$$
 is a Boolean algebra, $s_i^i = p_{ii} = d_{ii} = Id \upharpoonright A$ and
 $p_{ij} = p_{ji}$,
(F1) $x \leq c_i x$,
(F2) $c_i (x + y) = c_i x + c_i y$,
(F3) $s_j^i c_i x = c_i x$,
(F4) $c_i s_j^i x = s_j^i x \ i \neq j$,
(F5)* $s_j^i s_m^k x = s_m^k s_j^i x \ if \ i, j \notin \{k, m\}$
(F6) s_j^i and p_{ij} are Boolean endomorphisms (i.e., $s_j^i (-x) = -s_j^i x$, etc.),
(F7) $p_{ij} p_{ij} x = x$,
(F8) $p_{ij} p_{ij} x = p_{jk} p_{ij} x$ if i, j, k are distinct, (MGR!)
(F9) $p_{ij} s_j^i x = s_i^j x$,
(F10) $s_j^i d_{ij} = 1$,
(F11) $x \cdot d_{ij} \leq s_j^i x$.

Trivial: the cylindric reduct is *r*-representable.

▲ @ ▶ ▲ @ ▶ ▲

э

(Ferenczi) $\mathfrak{A} \in TA_{\alpha}$ if and only if $\mathfrak{A} \in I$ Gwt_{α} .

where the unit of a Gwt_{α} is of the form: $\bigcup_{k \in K} {}^{\alpha}U_{k}^{(pk)}$ (the difference between Gwt and Gws!)

THE GEOMETRICAL MEANING OF Gwt_{α} !

The reformulation of the theorem:

Theorem

The class I Gwt_{α} is finite schema axiomatizable by the TA_{α} axioms.

Stone-type theorem!

 REMARK: I Gws_α is not f.s. axiomatizable (the U_i 's are disjoint), but I Gwt_α is f.s. axiomatizable (the U_i 's are NOT disjoint)

(Ferenczi) $\mathfrak{A} \in TA_{\alpha}$ if and only if $\mathfrak{A} \in I$ Gwt_{α} .

where the unit of a Gwt_{α} is of the form: $\bigcup_{k \in K} {}^{\alpha}U_{k}^{(pk)}$ (the difference between Gwt and Gws!)

THE GEOMETRICAL MEANING OF Gwt_{α} !

The reformulation of the theorem:

Theorem

The class I Gwt_{α} is finite schema axiomatizable by the TA_{α} axioms.

Stone-type theorem!

- REMARK: I Gws_α is not f.s. axiomatizable (the U_i 's are disjoint), but I Gwt_α is f.s. axiomatizable (the U_i 's are NOT disjoint)
- PROBLEM: Generalization for polyadic equality algebras?

(Andréka) $\mathfrak{A} \in CNA^+_{\alpha} \cap Mod \{Ax_{ij}\}$ if and only if $\mathfrak{A} \in I G_{\alpha}$, if α is finite.

where $Ax_{ij} := x \leq c_i c_j (s_j^i c_j x \cdot s_j^j c_i x \cdot \prod_{k < \alpha, k \neq i, j} s_i^k s_j^j s_k^j c_k x)$ $i, j < \alpha$. the unit V of a G_{α} is of the form $V = \bigcup_{k \in K} {}^{\alpha} U_k$ where the sets U_k are arbitrary (the difference between G_{α} and Gs_{α} !) - locally square algebras.

• THE GEOMETRICAL MEANING OF G_{α} !

(Andréka) $\mathfrak{A} \in CNA^+_{\alpha} \cap Mod \{Ax_{ij}\}$ if and only if $\mathfrak{A} \in I G_{\alpha}$, if α is finite.

where $Ax_{ij} := x \leq c_i c_j (s_j^i c_j x \cdot s_j^j c_i x \cdot \prod_{k < \alpha, k \neq i, j} s_i^k s_j^i s_k^j c_k x)$ $i, j < \alpha$. the unit V of a G_{α} is of the form $V = \bigcup_{k \in K} {}^{\alpha} U_k$ where the sets U_k are arbitrary (the difference between G_{α} and Gs_{α} !) - locally square algebras.

- THE GEOMETRICAL MEANING OF G_{α} !
- A reformulation of the theorem: The class G_α is *finite schema* axiomatizable in terms of the above schema.

(Andréka) $\mathfrak{A} \in CNA^+_{\alpha} \cap Mod \{Ax_{ij}\}$ if and only if $\mathfrak{A} \in I G_{\alpha}$, if α is finite.

where $Ax_{ij} := x \leq c_i c_j (s_j^i c_j x \cdot s_j^j c_i x \cdot \prod_{k < \alpha, k \neq i, j} s_i^k s_j^i s_k^j c_k x)$ $i, j < \alpha$. the unit V of a G_{α} is of the form $V = \bigcup_{k \in K} {}^{\alpha} U_k$ where the sets U_k are arbitrary (the difference between G_{α} and Gs_{α} !) - locally square algebras.

- THE GEOMETRICAL MEANING OF G_{α} !
- A reformulation of the theorem: The class G_α is *finite schema* axiomatizable in terms of the above schema.
- PROBLEM: The generalization for infinite α ?

Definition

 (CPE_{α}) A cylindric polyadic equality algebra of dimension α is an algebraic structure

$$\mathfrak{A} = \langle A, +, \cdot, -, 0, 1, c_i, s_{\tau}, d_{ij}
angle_{\tau \in {}^{lpha} lpha, i, j \in lpha}$$

where +, and \cdot are binary operations on A, -, c_i and s_{τ} are unary operations on A, 0, 1 and d_{ij} are elements of A such that for every $i, j \in \alpha$, $x, y \in A$, $\sigma, \tau \in {}^{\alpha}\alpha$ the usual polyadic postulates are satisfied.

Theorem

(Ferenczi) $\mathfrak{A} \in CPE_{\alpha}$ if and only if $\mathfrak{A} \in I \ Gp_{\alpha}^{reg}$.

where the unit of a $\operatorname{Gp}_{\alpha}^{reg}$ is of the form: $\bigcup_{k \in K} {}^{\alpha}U_k$ (the difference between $\operatorname{Gp}_{\alpha}^{reg}$ and $\operatorname{Gs}_{\alpha}$!)

```
• THE GEOMETRICAL MEANING OF \text{Gp}_{\alpha}^{\text{reg}} !
```

Definition

 (CPE_{α}) A cylindric polyadic equality algebra of dimension α is an algebraic structure

$$\mathfrak{A}=\langle A,$$
 +, ·, -, 0, 1, c_i, s_{\u03c0}, d_{ij} $angle_{ u03c0\in lpha}$, i.j $\in lpha$

where +, and \cdot are binary operations on A, -, c_i and s_{τ} are unary operations on A, 0, 1 and d_{ij} are elements of A such that for every $i, j \in \alpha$, $x, y \in A$, $\sigma, \tau \in {}^{\alpha}\alpha$ the usual polyadic postulates are satisfied.

Theorem

(Ferenczi) $\mathfrak{A} \in CPE_{\alpha}$ if and only if $\mathfrak{A} \in I \ Gp_{\alpha}^{reg}$.

where the unit of a $\operatorname{Gp}_{\alpha}^{reg}$ is of the form: $\bigcup_{k \in K} {}^{\alpha}U_k$ (the difference between $\operatorname{Gp}_{\alpha}^{reg}$ and $\operatorname{Gs}_{\alpha}!$)

- \bullet The geometrical meaning of ${\rm Gp}_{\alpha}^{\it reg}$!
- The reformulation of the theorem: The class I Gp_{α}^{reg} is finite schema axiomatizable by the CPE_{α} axioms.

MSI Tech Support (Institute)

Slides - Beamer

On the connection of *r*-representation and neat embeddability.

The classical theorem:

Theorem

 $\mathfrak{A} \in CA_{\alpha}$ is representable if and only if $\mathfrak{A} \in SNr_{\alpha}CA_{\alpha+\omega}$.

Generalization for r-representation:

Theorem

(Ferenczi) \mathfrak{A} is r-representable if and only if $\mathfrak{A} \in SNr_{\alpha}F^{\alpha}_{\alpha+\omega}$,

where $F^{\alpha}_{\alpha+\omega}$ is a many-sorted cylindric-like algebra.

• REMARK: $\mathfrak{A} \in SNr_{\alpha}PEA_{\alpha+\omega} \Rightarrow \mathfrak{A}$ is representable!!! (Daigneault-Monk-Keisler)

On the connection of *r*-representation and neat embeddability.

The classical theorem:

Theorem

 $\mathfrak{A} \in CA_{\alpha}$ is representable if and only if $\mathfrak{A} \in SNr_{\alpha}CA_{\alpha+\omega}$.

Generalization for r-representation:

Theorem

(Ferenczi) \mathfrak{A} is r-representable if and only if $\mathfrak{A} \in SNr_{\alpha}F_{\alpha+\omega}^{\alpha}$,

where $F^{\alpha}_{\alpha+\omega}$ is a many-sorted cylindric-like algebra.

- REMARK: $\mathfrak{A} \in SNr_{\alpha}PEA_{\alpha+\omega} \Rightarrow \mathfrak{A}$ is representable!!! (Daigneault-Monk-Keisler)
- BUT: $\mathfrak{A} \in \mathsf{SNr}_{\alpha} PEA_{\alpha+\omega} \Longrightarrow \mathfrak{A}$ is *r*-representable!

To the memory of Leon Henkin

MSI Tech Support (Institute)

01/07 14/15

メロト メポト メヨト メヨ

MSI Tech Support (Institute)

◆ロト ◆昼 ▶ ◆臣 ▶ ◆臣 ● ● ● ●